author haftmann
Wed, 10 Mar 2010 15:29:22 +0100
changeset 35689 c3bef0c972d7
parent 35625 9c818cab0dd0
child 36176 3fe7e97ccca8
permissions -rw-r--r--
fixed typo

(*  Title:      HOL/Library/Efficient_Nat.thy
    Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen

header {* Implementation of natural numbers by target-language integers *}

theory Efficient_Nat
imports Code_Integer Main

text {*
  When generating code for functions on natural numbers, the
  canonical representation using @{term "0::nat"} and
  @{term "Suc"} is unsuitable for computations involving large
  numbers.  The efficiency of the generated code can be improved
  drastically by implementing natural numbers by target-language
  integers.  To do this, just include this theory.

subsection {* Basic arithmetic *}

text {*
  Most standard arithmetic functions on natural numbers are implemented
  using their counterparts on the integers:

code_datatype number_nat_inst.number_of_nat

lemma zero_nat_code [code, code_unfold_post]:
  "0 = (Numeral0 :: nat)"
  by simp

lemma one_nat_code [code, code_unfold_post]:
  "1 = (Numeral1 :: nat)"
  by simp

lemma Suc_code [code]:
  "Suc n = n + 1"
  by simp

lemma plus_nat_code [code]:
  "n + m = nat (of_nat n + of_nat m)"
  by simp

lemma minus_nat_code [code]:
  "n - m = nat (of_nat n - of_nat m)"
  by simp

lemma times_nat_code [code]:
  "n * m = nat (of_nat n * of_nat m)"
  unfolding of_nat_mult [symmetric] by simp

text {* Specialized @{term "op div \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"} 
  and @{term "op mod \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"} operations. *}

definition divmod_aux ::  "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
  [code del]: "divmod_aux = divmod_nat"

lemma [code]:
  "divmod_nat n m = (if m = 0 then (0, n) else divmod_aux n m)"
  unfolding divmod_aux_def divmod_nat_div_mod by simp

lemma divmod_aux_code [code]:
  "divmod_aux n m = (nat (of_nat n div of_nat m), nat (of_nat n mod of_nat m))"
  unfolding divmod_aux_def divmod_nat_div_mod zdiv_int [symmetric] zmod_int [symmetric] by simp

lemma eq_nat_code [code]:
  "eq_class.eq n m \<longleftrightarrow> eq_class.eq (of_nat n \<Colon> int) (of_nat m)"
  by (simp add: eq)

lemma eq_nat_refl [code nbe]:
  "eq_class.eq (n::nat) n \<longleftrightarrow> True"
  by (rule HOL.eq_refl)

lemma less_eq_nat_code [code]:
  "n \<le> m \<longleftrightarrow> (of_nat n \<Colon> int) \<le> of_nat m"
  by simp

lemma less_nat_code [code]:
  "n < m \<longleftrightarrow> (of_nat n \<Colon> int) < of_nat m"
  by simp

subsection {* Case analysis *}

text {*
  Case analysis on natural numbers is rephrased using a conditional

lemma [code, code_unfold]:
  "nat_case = (\<lambda>f g n. if n = 0 then f else g (n - 1))"
  by (auto simp add: expand_fun_eq dest!: gr0_implies_Suc)

subsection {* Preprocessors *}

text {*
  In contrast to @{term "Suc n"}, the term @{term "n + (1::nat)"} is no longer
  a constructor term. Therefore, all occurrences of this term in a position
  where a pattern is expected (i.e.\ on the left-hand side of a recursion
  equation or in the arguments of an inductive relation in an introduction
  rule) must be eliminated.
  This can be accomplished by applying the following transformation rules:

lemma Suc_if_eq: "(\<And>n. f (Suc n) \<equiv> h n) \<Longrightarrow> f 0 \<equiv> g \<Longrightarrow>
  f n \<equiv> if n = 0 then g else h (n - 1)"
  by (rule eq_reflection) (cases n, simp_all)

lemma Suc_clause: "(\<And>n. P n (Suc n)) \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> P (n - 1) n"
  by (cases n) simp_all

text {*
  The rules above are built into a preprocessor that is plugged into
  the code generator. Since the preprocessor for introduction rules
  does not know anything about modes, some of the modes that worked
  for the canonical representation of natural numbers may no longer work.

setup {*

fun remove_suc thy thms =
    val vname = Name.variant (map fst
      (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "n";
    val cv = cterm_of thy (Var ((vname, 0), HOLogic.natT));
    fun lhs_of th = snd (Thm.dest_comb
      (fst (Thm.dest_comb (cprop_of th))));
    fun rhs_of th = snd (Thm.dest_comb (cprop_of th));
    fun find_vars ct = (case term_of ct of
        (Const (@{const_name Suc}, _) $ Var _) => [(cv, snd (Thm.dest_comb ct))]
      | _ $ _ =>
        let val (ct1, ct2) = Thm.dest_comb ct
          map (apfst (fn ct => Thm.capply ct ct2)) (find_vars ct1) @
          map (apfst (Thm.capply ct1)) (find_vars ct2)
      | _ => []);
    val eqs = maps
      (fn th => map (pair th) (find_vars (lhs_of th))) thms;
    fun mk_thms (th, (ct, cv')) =
        val th' =
           (Conv.fconv_rule (Thm.beta_conversion true)
               [SOME (ctyp_of_term ct)] [SOME (Thm.cabs cv ct),
                 SOME (Thm.cabs cv' (rhs_of th)), NONE, SOME cv']
               @{thm Suc_if_eq})) (Thm.forall_intr cv' th)
        case map_filter (fn th'' =>
            SOME (th'', singleton
              ( (K (fn [th'''] => [th''' RS th'])) (Variable.thm_context th'')) th'')
          handle THM _ => NONE) thms of
            [] => NONE
          | thps =>
              let val (ths1, ths2) = split_list thps
              in SOME (subtract Thm.eq_thm (th :: ths1) thms @ ths2) end
  in get_first mk_thms eqs end;

fun eqn_suc_base_preproc thy thms =
    val dest = fst o Logic.dest_equals o prop_of;
    val contains_suc = exists_Const (fn (c, _) => c = @{const_name Suc});
    if forall (can dest) thms andalso exists (contains_suc o dest) thms
      then thms |> perhaps_loop (remove_suc thy) |> ( o map) Drule.zero_var_indexes
       else NONE

val eqn_suc_preproc = Code_Preproc.simple_functrans eqn_suc_base_preproc;

fun remove_suc_clause thy thms =
    val vname = Name.variant (map fst
      (fold (Term.add_var_names o Thm.full_prop_of) thms [])) "x";
    fun find_var (t as Const (@{const_name Suc}, _) $ (v as Var _)) = SOME (t, v)
      | find_var (t $ u) = (case find_var t of NONE => find_var u | x => x)
      | find_var _ = NONE;
    fun find_thm th =
      let val th' = Conv.fconv_rule Object_Logic.atomize th
      in (pair (th, th')) (find_var (prop_of th')) end
    case get_first find_thm thms of
      NONE => thms
    | SOME ((th, th'), (Sucv, v)) =>
          val cert = cterm_of (Thm.theory_of_thm th);
          val th'' = Object_Logic.rulify (Thm.implies_elim
            (Conv.fconv_rule (Thm.beta_conversion true)
              (Drule.instantiate' []
                [SOME (cert (lambda v (Abs ("x", HOLogic.natT,
                   abstract_over (Sucv,
                     HOLogic.dest_Trueprop (prop_of th')))))),
                 SOME (cert v)] @{thm Suc_clause}))
            (Thm.forall_intr (cert v) th'))
          remove_suc_clause thy (map (fn th''' =>
            if (op = o pairself prop_of) (th''', th) then th'' else th''') thms)

fun clause_suc_preproc thy ths =
    val dest = fst o HOLogic.dest_mem o HOLogic.dest_Trueprop
    if forall (can (dest o concl_of)) ths andalso
      exists (fn th => exists (exists_Const (fn (c, _) => c = @{const_name Suc}))
        (map_filter (try dest) (concl_of th :: prems_of th))) ths
    then remove_suc_clause thy ths else ths

  Code_Preproc.add_functrans ("eqn_Suc", eqn_suc_preproc)
  #> Codegen.add_preprocessor clause_suc_preproc


subsection {* Target language setup *}

text {*
  For ML, we map @{typ nat} to target language integers, where we
  ensure that values are always non-negative.

code_type nat
  (SML "")
  (OCaml "Big'_int.big'_int")

  nat ("int")
attach (term_of) {*
val term_of_nat = HOLogic.mk_number HOLogic.natT;
attach (test) {*
fun gen_nat i =
  let val n = random_range 0 i
  in (n, fn () => term_of_nat n) end;

text {*
  For Haskell ans Scala we define our own @{typ nat} type.  The reason
  is that we have to distinguish type class instances for @{typ nat}
  and @{typ int}.

code_include Haskell "Nat" {*
newtype Nat = Nat Integer deriving (Show, Eq);

instance Num Nat where {
  fromInteger k = Nat (if k >= 0 then k else 0);
  Nat n + Nat m = Nat (n + m);
  Nat n - Nat m = fromInteger (n - m);
  Nat n * Nat m = Nat (n * m);
  abs n = n;
  signum _ = 1;
  negate n = error "negate Nat";

instance Ord Nat where {
  Nat n <= Nat m = n <= m;
  Nat n < Nat m = n < m;

instance Real Nat where {
  toRational (Nat n) = toRational n;

instance Enum Nat where {
  toEnum k = fromInteger (toEnum k);
  fromEnum (Nat n) = fromEnum n;

instance Integral Nat where {
  toInteger (Nat n) = n;
  divMod n m = quotRem n m;
  quotRem (Nat n) (Nat m) = (Nat k, Nat l) where (k, l) = quotRem n m;

code_reserved Haskell Nat

code_include Scala "Nat" {*
import scala.Math

object Nat {

  def apply(numeral: BigInt): Nat = new Nat(numeral max 0)
  def apply(numeral: Int): Nat = Nat(BigInt(numeral))
  def apply(numeral: String): Nat = Nat(BigInt(numeral))


class Nat private(private val value: BigInt) {

  override def hashCode(): Int = this.value.hashCode()

  override def equals(that: Any): Boolean = that match {
    case that: Nat => this equals that
    case _ => false

  override def toString(): String = this.value.toString

  def equals(that: Nat): Boolean = this.value == that.value

  def as_BigInt: BigInt = this.value
  def as_Int: Int = if (this.value >= Math.MAX_INT && this.value <= Math.MAX_INT)
    else error("Int value too big:" + this.value.toString)

  def +(that: Nat): Nat = new Nat(this.value + that.value)
  def -(that: Nat): Nat = Nat(this.value + that.value)
  def *(that: Nat): Nat = new Nat(this.value * that.value)

  def /%(that: Nat): (Nat, Nat) = if (that.value == 0) (new Nat(0), this)
    else {
      val (k, l) = this.value /% that.value
      (new Nat(k), new Nat(l))

  def <=(that: Nat): Boolean = this.value <= that.value

  def <(that: Nat): Boolean = this.value < that.value


code_reserved Scala Nat

code_type nat
  (Haskell "Nat.Nat")
  (Scala "Nat.Nat")

code_instance nat :: eq
  (Haskell -)

text {*
  Natural numerals.

lemma [code_unfold_post]:
  "nat (number_of i) = number_nat_inst.number_of_nat i"
  -- {* this interacts as desired with @{thm nat_number_of_def} *}
  by (simp add: number_nat_inst.number_of_nat)

setup {*
  fold (Numeral.add_code @{const_name number_nat_inst.number_of_nat}
    false Code_Printer.literal_positive_numeral) ["SML", "OCaml", "Haskell"]
  #> Numeral.add_code @{const_name number_nat_inst.number_of_nat}
    false Code_Printer.literal_positive_numeral "Scala"

text {*
  Since natural numbers are implemented
  using integers in ML, the coercion function @{const "of_nat"} of type
  @{typ "nat \<Rightarrow> int"} is simply implemented by the identity function.
  For the @{const "nat"} function for converting an integer to a natural
  number, we give a specific implementation using an ML function that
  returns its input value, provided that it is non-negative, and otherwise
  returns @{text "0"}.

definition int :: "nat \<Rightarrow> int" where
  [code del]: "int = of_nat"

lemma int_code' [code]:
  "int (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
  unfolding int_nat_number_of [folded int_def] ..

lemma nat_code' [code]:
  "nat (number_of l) = (if neg (number_of l \<Colon> int) then 0 else number_of l)"
  unfolding nat_number_of_def number_of_is_id neg_def by simp

lemma of_nat_int [code_unfold_post]:
  "of_nat = int" by (simp add: int_def)

lemma of_nat_aux_int [code_unfold]:
  "of_nat_aux (\<lambda>i. i + 1) k 0 = int k"
  by (simp add: int_def Nat.of_nat_code)

code_const int
  (SML "_")
  (OCaml "_")

  int ("(_)")
  nat ("\<module>nat")
attach {*
fun nat i = if i < 0 then 0 else i;

code_const nat
  (SML "IntInf.max/ (/0,/ _)")
  (OCaml "Big'_int.max'_big'_int/ Big''_big'_int")

text {* For Haskell and Scala, things are slightly different again. *}

code_const int and nat
  (Haskell "toInteger" and "fromInteger")
  (Scala "!'_BigInt" and "!Nat.Nat((_))")

text {* Conversion from and to indices. *}

code_const Code_Numeral.of_nat
  (SML "IntInf.toInt")
  (OCaml "_")
  (Haskell "fromEnum")
  (Scala "!'_Int")

code_const Code_Numeral.nat_of
  (SML "IntInf.fromInt")
  (OCaml "_")
  (Haskell "toEnum")
  (Scala "!Nat.Nat((_))")

text {* Using target language arithmetic operations whenever appropriate *}

code_const "op + \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
  (SML "IntInf.+ ((_), (_))")
  (OCaml "Big'_int.add'_big'_int")
  (Haskell infixl 6 "+")
  (Scala infixl 7 "+")

code_const "op - \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
  (Haskell infixl 6 "-")
  (Scala infixl 7 "-")

code_const "op * \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
  (SML "IntInf.* ((_), (_))")
  (OCaml "Big'_int.mult'_big'_int")
  (Haskell infixl 7 "*")
  (Scala infixl 8 "*")

code_const divmod_aux
  (SML "IntInf.divMod/ ((_),/ (_))")
  (OCaml "Big'_int.quomod'_big'_int")
  (Haskell "divMod")
  (Scala infixl 8 "/%")

code_const divmod_nat
  (Haskell "divMod")
  (Scala infixl 8 "/%")

code_const "eq_class.eq \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
  (SML "!((_ : = _)")
  (OCaml "Big'_int.eq'_big'_int")
  (Haskell infixl 4 "==")
  (Scala infixl 5 "==")

code_const "op \<le> \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
  (SML "IntInf.<= ((_), (_))")
  (OCaml "Big'_int.le'_big'_int")
  (Haskell infix 4 "<=")
  (Scala infixl 4 "<=")

code_const "op < \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
  (SML "IntInf.< ((_), (_))")
  (OCaml "Big''_big'_int")
  (Haskell infix 4 "<")
  (Scala infixl 4 "<")

  "0::nat"                     ("0")
  "1::nat"                     ("1")
  Suc                          ("(_ +/ 1)")
  "op + \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ +/ _)")
  "op * \<Colon>  nat \<Rightarrow> nat \<Rightarrow> nat"   ("(_ */ _)")
  "op \<le> \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ <=/ _)")
  "op < \<Colon>  nat \<Rightarrow> nat \<Rightarrow> bool"  ("(_ </ _)")

text {* Evaluation *}

lemma [code, code del]:
  "(Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term) = Code_Evaluation.term_of" ..

code_const "Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term"
  (SML "'_number/ HOLogic.natT")

text {* Module names *}

code_modulename SML
  Efficient_Nat Arith

code_modulename OCaml
  Efficient_Nat Arith

code_modulename Haskell
  Efficient_Nat Arith

hide const int