src/HOL/HOLCF/IOA/TL.thy
author wenzelm
Thu, 31 Dec 2015 12:43:09 +0100
changeset 62008 cbedaddc9351
parent 62005 src/HOL/HOLCF/IOA/meta_theory/TL.thy@68db98c2cd97
child 62116 bc178c0fe1a1
permissions -rw-r--r--
clarified directory structure;

(*  Title:      HOL/HOLCF/IOA/TL.thy
    Author:     Olaf Müller
*)

section \<open>A General Temporal Logic\<close>

theory TL
imports Pred Sequence
begin

default_sort type

type_synonym 'a temporal = "'a Seq predicate"

definition validT :: "'a Seq predicate \<Rightarrow> bool"
  where "validT P \<longleftrightarrow> (\<forall>s. s \<noteq> UU \<and> s \<noteq> nil \<longrightarrow> (s \<Turnstile> P))"

definition unlift :: "'a lift \<Rightarrow> 'a"
  where "unlift x = (case x of Def y \<Rightarrow> y)"

definition Init :: "'a predicate \<Rightarrow> 'a temporal"  ("\<langle>_\<rangle>" [0] 1000)
  where "Init P s = P (unlift (HD $ s))"
    \<comment> \<open>this means that for \<open>nil\<close> and \<open>UU\<close> the effect is unpredictable\<close>

definition Next :: "'a temporal \<Rightarrow> 'a temporal"
  where "(Next P) s \<longleftrightarrow> (if TL $ s = UU \<or> TL $ s = nil then P s else P (TL $ s))"

definition suffix :: "'a Seq \<Rightarrow> 'a Seq \<Rightarrow> bool"
  where "suffix s2 s \<longleftrightarrow> (\<exists>s1. Finite s1 \<and> s = s1 @@ s2)"

definition tsuffix :: "'a Seq \<Rightarrow> 'a Seq \<Rightarrow> bool"
  where "tsuffix s2 s \<longleftrightarrow> s2 \<noteq> nil \<and> s2 \<noteq> UU \<and> suffix s2 s"

definition Box :: "'a temporal \<Rightarrow> 'a temporal"  ("\<box>(_)" [80] 80)
  where "(\<box>P) s \<longleftrightarrow> (\<forall>s2. tsuffix s2 s \<longrightarrow> P s2)"

definition Diamond :: "'a temporal \<Rightarrow> 'a temporal"  ("\<diamond>(_)" [80] 80)
  where "\<diamond>P = (\<^bold>\<not> (\<box>(\<^bold>\<not> P)))"

definition Leadsto :: "'a temporal \<Rightarrow> 'a temporal \<Rightarrow> 'a temporal"  (infixr "\<leadsto>" 22)
  where "(P \<leadsto> Q) = (\<box>(P \<^bold>\<longrightarrow> (\<diamond>Q)))"


lemma simple: "\<box>\<diamond>(\<^bold>\<not> P) = (\<^bold>\<not> \<diamond>\<box>P)"
apply (rule ext)
apply (simp add: Diamond_def NOT_def Box_def)
done

lemma Boxnil: "nil \<Turnstile> \<box>P"
apply (simp add: satisfies_def Box_def tsuffix_def suffix_def nil_is_Conc)
done

lemma Diamondnil: "~(nil \<Turnstile> \<diamond>P)"
apply (simp add: Diamond_def satisfies_def NOT_def)
apply (cut_tac Boxnil)
apply (simp add: satisfies_def)
done

lemma Diamond_def2: "(\<diamond>F) s = (? s2. tsuffix s2 s & F s2)"
apply (simp add: Diamond_def NOT_def Box_def)
done



subsection "TLA Axiomatization by Merz"

lemma suffix_refl: "suffix s s"
apply (simp add: suffix_def)
apply (rule_tac x = "nil" in exI)
apply auto
done

lemma reflT: "s~=UU & s~=nil --> (s \<Turnstile> \<box>F \<^bold>\<longrightarrow> F)"
apply (simp add: satisfies_def IMPLIES_def Box_def)
apply (rule impI)+
apply (erule_tac x = "s" in allE)
apply (simp add: tsuffix_def suffix_refl)
done


lemma suffix_trans: "[| suffix y x ; suffix z y |]  ==> suffix z x"
apply (simp add: suffix_def)
apply auto
apply (rule_tac x = "s1 @@ s1a" in exI)
apply auto
apply (simp (no_asm) add: Conc_assoc)
done

lemma transT: "s \<Turnstile> \<box>F \<^bold>\<longrightarrow> \<box>\<box>F"
apply (simp (no_asm) add: satisfies_def IMPLIES_def Box_def tsuffix_def)
apply auto
apply (drule suffix_trans)
apply assumption
apply (erule_tac x = "s2a" in allE)
apply auto
done


lemma normalT: "s \<Turnstile> \<box>(F \<^bold>\<longrightarrow> G) \<^bold>\<longrightarrow> \<box>F \<^bold>\<longrightarrow> \<box>G"
apply (simp (no_asm) add: satisfies_def IMPLIES_def Box_def)
done


subsection "TLA Rules by Lamport"

lemma STL1a: "validT P ==> validT (\<box>P)"
apply (simp add: validT_def satisfies_def Box_def tsuffix_def)
done

lemma STL1b: "valid P ==> validT (Init P)"
apply (simp add: valid_def validT_def satisfies_def Init_def)
done

lemma STL1: "valid P ==> validT (\<box>(Init P))"
apply (rule STL1a)
apply (erule STL1b)
done

(* Note that unlift and HD is not at all used !!! *)
lemma STL4: "valid (P \<^bold>\<longrightarrow> Q)  ==> validT (\<box>(Init P) \<^bold>\<longrightarrow> \<box>(Init Q))"
apply (simp add: valid_def validT_def satisfies_def IMPLIES_def Box_def Init_def)
done


subsection "LTL Axioms by Manna/Pnueli"

lemma tsuffix_TL [rule_format (no_asm)]:
"s~=UU & s~=nil --> tsuffix s2 (TL$s) --> tsuffix s2 s"
apply (unfold tsuffix_def suffix_def)
apply auto
apply (tactic \<open>Seq_case_simp_tac @{context} "s" 1\<close>)
apply (rule_tac x = "a\<leadsto>s1" in exI)
apply auto
done

lemmas tsuffix_TL2 = conjI [THEN tsuffix_TL]

declare split_if [split del]
lemma LTL1:
   "s~=UU & s~=nil --> (s \<Turnstile> \<box>F \<^bold>\<longrightarrow> (F \<^bold>\<and> (Next (\<box>F))))"
apply (unfold Next_def satisfies_def NOT_def IMPLIES_def AND_def Box_def)
apply auto
(* \<box>F \<^bold>\<longrightarrow> F *)
apply (erule_tac x = "s" in allE)
apply (simp add: tsuffix_def suffix_refl)
(* \<box>F \<^bold>\<longrightarrow> Next \<box>F *)
apply (simp split add: split_if)
apply auto
apply (drule tsuffix_TL2)
apply assumption+
apply auto
done
declare split_if [split]


lemma LTL2a:
    "s \<Turnstile> \<^bold>\<not> (Next F) \<^bold>\<longrightarrow> (Next (\<^bold>\<not> F))"
apply (unfold Next_def satisfies_def NOT_def IMPLIES_def)
apply simp
done

lemma LTL2b:
    "s \<Turnstile> (Next (\<^bold>\<not> F)) \<^bold>\<longrightarrow> (\<^bold>\<not> (Next F))"
apply (unfold Next_def satisfies_def NOT_def IMPLIES_def)
apply simp
done

lemma LTL3:
"ex \<Turnstile> (Next (F \<^bold>\<longrightarrow> G)) \<^bold>\<longrightarrow> (Next F) \<^bold>\<longrightarrow> (Next G)"
apply (unfold Next_def satisfies_def NOT_def IMPLIES_def)
apply simp
done


lemma ModusPonens: "[| validT (P \<^bold>\<longrightarrow> Q); validT P |] ==> validT Q"
apply (simp add: validT_def satisfies_def IMPLIES_def)
done

end