src/HOL/Tools/Function/size.ML
author haftmann
Wed, 11 Aug 2010 14:31:43 +0200
changeset 38348 cf7b2121ad9d
parent 36610 bafd82950e24
child 39557 fe5722fce758
permissions -rw-r--r--
moved instantiation target formally to class_target.ML

(*  Title:      HOL/Tools/Function/size.ML
    Author:     Stefan Berghofer, Florian Haftmann & Alexander Krauss, TU Muenchen

Size functions for datatypes.
*)

signature SIZE =
sig
  val size_thms: theory -> string -> thm list
  val setup: theory -> theory
end;

structure Size: SIZE =
struct

open Datatype_Aux;

structure SizeData = Theory_Data
(
  type T = (string * thm list) Symtab.table;
  val empty = Symtab.empty;
  val extend = I
  fun merge data = Symtab.merge (K true) data;
);

val lookup_size = SizeData.get #> Symtab.lookup;

fun plus (t1, t2) = Const (@{const_name Groups.plus},
  HOLogic.natT --> HOLogic.natT --> HOLogic.natT) $ t1 $ t2;

fun size_of_type f g h (T as Type (s, Ts)) =
      (case f s of
         SOME t => SOME t
       | NONE => (case g s of
           SOME size_name =>
             SOME (list_comb (Const (size_name,
               map (fn U => U --> HOLogic.natT) Ts @ [T] ---> HOLogic.natT),
                 map (size_of_type' f g h) Ts))
         | NONE => NONE))
  | size_of_type f g h (TFree (s, _)) = h s
and size_of_type' f g h T = (case size_of_type f g h T of
      NONE => Abs ("x", T, HOLogic.zero)
    | SOME t => t);

fun is_poly thy (DtType (name, dts)) =
      (case Datatype.get_info thy name of
         NONE => false
       | SOME _ => exists (is_poly thy) dts)
  | is_poly _ _ = true;

fun constrs_of thy name =
  let
    val {descr, index, ...} = Datatype.the_info thy name
    val SOME (_, _, constrs) = AList.lookup op = descr index
  in constrs end;

val app = curry (list_comb o swap);

fun prove_size_thms (info : info) new_type_names thy =
  let
    val {descr, alt_names, sorts, rec_names, rec_rewrites, induct, ...} = info;
    val l = length new_type_names;
    val alt_names' = (case alt_names of
      NONE => replicate l NONE | SOME names => map SOME names);
    val descr' = List.take (descr, l);
    val (rec_names1, rec_names2) = chop l rec_names;
    val recTs = get_rec_types descr sorts;
    val (recTs1, recTs2) = chop l recTs;
    val (_, (_, paramdts, _)) :: _ = descr;
    val paramTs = map (typ_of_dtyp descr sorts) paramdts;
    val ((param_size_fs, param_size_fTs), f_names) = paramTs |>
      map (fn T as TFree (s, _) =>
        let
          val name = "f" ^ implode (tl (explode s));
          val U = T --> HOLogic.natT
        in
          (((s, Free (name, U)), U), name)
        end) |> split_list |>> split_list;
    val param_size = AList.lookup op = param_size_fs;

    val extra_rewrites = descr |> map (#1 o snd) |> distinct op = |>
      map_filter (Option.map snd o lookup_size thy) |> flat;
    val extra_size = Option.map fst o lookup_size thy;

    val (((size_names, size_fns), def_names), def_names') =
      recTs1 ~~ alt_names' |>
      map (fn (T as Type (s, _), optname) =>
        let
          val s' = the_default (Long_Name.base_name s) optname ^ "_size";
          val s'' = Sign.full_bname thy s'
        in
          (s'',
           (list_comb (Const (s'', param_size_fTs @ [T] ---> HOLogic.natT),
              map snd param_size_fs),
            (s' ^ "_def", s' ^ "_overloaded_def")))
        end) |> split_list ||>> split_list ||>> split_list;
    val overloaded_size_fns = map HOLogic.size_const recTs1;

    (* instantiation for primrec combinator *)
    fun size_of_constr b size_ofp ((_, cargs), (_, cargs')) =
      let
        val Ts = map (typ_of_dtyp descr sorts) cargs;
        val k = length (filter is_rec_type cargs);
        val (ts, _, _) = fold_rev (fn ((dt, dt'), T) => fn (us, i, j) =>
          if is_rec_type dt then (Bound i :: us, i + 1, j + 1)
          else
            (if b andalso is_poly thy dt' then
               case size_of_type (K NONE) extra_size size_ofp T of
                 NONE => us | SOME sz => sz $ Bound j :: us
             else us, i, j + 1))
              (cargs ~~ cargs' ~~ Ts) ([], 0, k);
        val t =
          if null ts andalso (not b orelse not (exists (is_poly thy) cargs'))
          then HOLogic.zero
          else foldl1 plus (ts @ [HOLogic.Suc_zero])
      in
        fold_rev (fn T => fn t' => Abs ("x", T, t')) (Ts @ replicate k HOLogic.natT) t
      end;

    val fs = maps (fn (_, (name, _, constrs)) =>
      map (size_of_constr true param_size) (constrs ~~ constrs_of thy name)) descr;
    val fs' = maps (fn (n, (name, _, constrs)) =>
      map (size_of_constr (l <= n) (K NONE)) (constrs ~~ constrs_of thy name)) descr;
    val fTs = map fastype_of fs;

    val (rec_combs1, rec_combs2) = chop l (map (fn (T, rec_name) =>
      Const (rec_name, fTs @ [T] ---> HOLogic.natT))
        (recTs ~~ rec_names));

    fun define_overloaded (def_name, eq) lthy =
      let
        val (Free (c, _), rhs) = (Logic.dest_equals o Syntax.check_term lthy) eq;
        val (thm, lthy') = lthy
          |> Local_Theory.define ((Binding.name c, NoSyn), ((Binding.name def_name, []), rhs))
          |-> (fn (t, (_, thm)) => Spec_Rules.add Spec_Rules.Equational ([t], [thm]) #> pair thm);
        val ctxt_thy = ProofContext.init_global (ProofContext.theory_of lthy');
        val thm' = singleton (ProofContext.export lthy' ctxt_thy) thm;
      in (thm', lthy') end;

    val ((size_def_thms, size_def_thms'), thy') =
      thy
      |> Sign.add_consts_i (map (fn (s, T) =>
           (Binding.name (Long_Name.base_name s), param_size_fTs @ [T] ---> HOLogic.natT, NoSyn))
           (size_names ~~ recTs1))
      |> PureThy.add_defs false
        (map (Thm.no_attributes o apsnd (Logic.mk_equals o apsnd (app fs)))
           (map Binding.name def_names ~~ (size_fns ~~ rec_combs1)))
      ||> Class.instantiation
           (map (#1 o snd) descr', map dest_TFree paramTs, [HOLogic.class_size])
      ||>> fold_map define_overloaded
        (def_names' ~~ map Logic.mk_equals (overloaded_size_fns ~~ map (app fs') rec_combs1))
      ||> Class.prove_instantiation_instance (K (Class.intro_classes_tac []))
      ||> Local_Theory.exit_global;

    val ctxt = ProofContext.init_global thy';

    val simpset1 = HOL_basic_ss addsimps @{thm Nat.add_0} :: @{thm Nat.add_0_right} ::
      size_def_thms @ size_def_thms' @ rec_rewrites @ extra_rewrites;
    val xs = map (fn i => "x" ^ string_of_int i) (1 upto length recTs2);

    fun mk_unfolded_size_eq tab size_ofp fs (p as (x, T), r) =
      HOLogic.mk_eq (app fs r $ Free p,
        the (size_of_type tab extra_size size_ofp T) $ Free p);

    fun prove_unfolded_size_eqs size_ofp fs =
      if null recTs2 then []
      else split_conj_thm (Skip_Proof.prove ctxt xs []
        (HOLogic.mk_Trueprop (mk_conj (replicate l HOLogic.true_const @
           map (mk_unfolded_size_eq (AList.lookup op =
               (new_type_names ~~ map (app fs) rec_combs1)) size_ofp fs)
             (xs ~~ recTs2 ~~ rec_combs2))))
        (fn _ => (indtac induct xs THEN_ALL_NEW asm_simp_tac simpset1) 1));

    val unfolded_size_eqs1 = prove_unfolded_size_eqs param_size fs;
    val unfolded_size_eqs2 = prove_unfolded_size_eqs (K NONE) fs';

    (* characteristic equations for size functions *)
    fun gen_mk_size_eq p size_of size_ofp size_const T (cname, cargs) =
      let
        val Ts = map (typ_of_dtyp descr sorts) cargs;
        val tnames = Name.variant_list f_names (Datatype_Prop.make_tnames Ts);
        val ts = map_filter (fn (sT as (s, T), dt) =>
          Option.map (fn sz => sz $ Free sT)
            (if p dt then size_of_type size_of extra_size size_ofp T
             else NONE)) (tnames ~~ Ts ~~ cargs)
      in
        HOLogic.mk_Trueprop (HOLogic.mk_eq
          (size_const $ list_comb (Const (cname, Ts ---> T),
             map2 (curry Free) tnames Ts),
           if null ts then HOLogic.zero
           else foldl1 plus (ts @ [HOLogic.Suc_zero])))
      end;

    val simpset2 = HOL_basic_ss addsimps
      rec_rewrites @ size_def_thms @ unfolded_size_eqs1;
    val simpset3 = HOL_basic_ss addsimps
      rec_rewrites @ size_def_thms' @ unfolded_size_eqs2;

    fun prove_size_eqs p size_fns size_ofp simpset =
      maps (fn (((_, (_, _, constrs)), size_const), T) =>
        map (fn constr => Drule.export_without_context (Skip_Proof.prove ctxt [] []
          (gen_mk_size_eq p (AList.lookup op = (new_type_names ~~ size_fns))
             size_ofp size_const T constr)
          (fn _ => simp_tac simpset 1))) constrs)
        (descr' ~~ size_fns ~~ recTs1);

    val size_eqns = prove_size_eqs (is_poly thy') size_fns param_size simpset2 @
      prove_size_eqs is_rec_type overloaded_size_fns (K NONE) simpset3;

    val ([size_thms], thy'') =  PureThy.add_thmss
      [((Binding.name "size", size_eqns),
        [Simplifier.simp_add, Nitpick_Simps.add,
         Thm.declaration_attribute
             (fn thm => Context.mapping (Code.add_default_eqn thm) I)])] thy'

  in
    SizeData.map (fold (Symtab.update_new o apsnd (rpair size_thms))
      (new_type_names ~~ size_names)) thy''
  end;

fun add_size_thms config (new_type_names as name :: _) thy =
  let
    val info as {descr, alt_names, ...} = Datatype.the_info thy name;
    val prefix = Long_Name.map_base_name (K (space_implode "_"
      (the_default (map Long_Name.base_name new_type_names) alt_names))) name;
    val no_size = exists (fn (_, (_, _, constrs)) => exists (fn (_, cargs) => exists (fn dt =>
      is_rec_type dt andalso not (null (fst (strip_dtyp dt)))) cargs) constrs) descr
  in if no_size then thy
    else
      thy
      |> Sign.root_path
      |> Sign.add_path prefix
      |> Theory.checkpoint
      |> prove_size_thms info new_type_names
      |> Sign.restore_naming thy
  end;

val size_thms = snd oo (the oo lookup_size);

val setup = Datatype.interpretation add_size_thms;

end;