src/HOL/Isar_examples/W_correct.thy
author wenzelm
Mon, 06 Nov 2000 22:56:07 +0100
changeset 10408 d8b3613158b1
parent 10387 9dac2cad5500
child 11628 e57a6e51715e
permissions -rw-r--r--
improved: 'induct' handle non-atomic goals;

(*  Title:      HOL/Isar_examples/W_correct.thy
    ID:         $Id$
    Author:     Markus Wenzel, TU Muenchen

Correctness of Milner's type inference algorithm W (let-free version).
*)

header {* Milner's type inference algorithm~W (let-free version) *}

theory W_correct = Main + Type:

text_raw {*
  \footnote{Based upon \url{http://isabelle.in.tum.de/library/HOL/W0/}
  by Dieter Nazareth and Tobias Nipkow.}
*}


subsection "Mini ML with type inference rules"

datatype
  expr = Var nat | Abs expr | App expr expr


text {* Type inference rules. *}

consts
  has_type :: "(typ list * expr * typ) set"

syntax
  "_has_type" :: "typ list => expr => typ => bool"
    ("((_) |-/ (_) :: (_))" [60, 0, 60] 60)
translations
  "a |- e :: t" == "(a, e, t) : has_type"

inductive has_type
  intros [simp]
    Var: "n < length a ==> a |- Var n :: a ! n"
    Abs: "t1#a |- e :: t2 ==> a |- Abs e :: t1 -> t2"
    App: "a |- e1 :: t2 -> t1 ==> a |- e2 :: t2
      ==> a |- App e1 e2 :: t1"


text {* Type assigment is closed wrt.\ substitution. *}

lemma has_type_subst_closed: "a |- e :: t ==> $s a |- e :: $s t"
proof -
  assume "a |- e :: t"
  thus ?thesis (is "?P a e t")
  proof (induct (open) ?P a e t)
    case Var
    hence "n < length (map ($ s) a)" by simp
    hence "map ($ s) a |- Var n :: map ($ s) a ! n"
      by (rule has_type.Var)
    also have "map ($ s) a ! n = $ s (a ! n)"
      by (rule nth_map)
    also have "map ($ s) a = $ s a"
      by (simp only: app_subst_list)
    finally show "?P a (Var n) (a ! n)" .
  next
    case Abs
    hence "$ s t1 # map ($ s) a |- e :: $ s t2"
      by (simp add: app_subst_list)
    hence "map ($ s) a |- Abs e :: $ s t1 -> $ s t2"
      by (rule has_type.Abs)
    thus "?P a (Abs e) (t1 -> t2)"
      by (simp add: app_subst_list)
  next
    case App
    thus "?P a (App e1 e2) t1" by simp
  qed
qed


subsection {* Type inference algorithm W *}

consts
  W :: "expr => typ list => nat => (subst * typ * nat) maybe"

primrec
  "W (Var i) a n =
    (if i < length a then Ok (id_subst, a ! i, n) else Fail)"
  "W (Abs e) a n =
    ((s, t, m) := W e (TVar n # a) (Suc n);
     Ok (s, (s n) -> t, m))"
  "W (App e1 e2) a n =
    ((s1, t1, m1) := W e1 a n;
     (s2, t2, m2) := W e2 ($s1 a) m1;
     u := mgu ($ s2 t1) (t2 -> TVar m2);
     Ok ($u o $s2 o s1, $u (TVar m2), Suc m2))"


subsection {* Correctness theorem *}

theorem W_correct: "!!a s t m n. Ok (s, t, m) = W e a n ==> $ s a |- e :: t"
  (is "PROP ?P e")
proof (induct e)
  fix a s t m n
  {
    fix i
    assume "Ok (s, t, m) = W (Var i) a n"
    thus "$ s a |- Var i :: t" by (simp split: if_splits)
  next
    fix e assume hyp: "PROP ?P e"
    assume "Ok (s, t, m) = W (Abs e) a n"
    then obtain t' where "t = s n -> t'"
        and "Ok (s, t', m) = W e (TVar n # a) (Suc n)"
      by (auto split: bind_splits)
    with hyp show "$ s a |- Abs e :: t"
      by (force intro: has_type.Abs)
  next
    fix e1 e2 assume hyp1: "PROP ?P e1" and hyp2: "PROP ?P e2"
    assume "Ok (s, t, m) = W (App e1 e2) a n"
    then obtain s1 t1 n1 s2 t2 n2 u where
          s: "s = $ u o $ s2 o s1"
        and t: "t = u n2"
        and mgu_ok: "mgu ($ s2 t1) (t2 -> TVar n2) = Ok u"
        and W1_ok: "Ok (s1, t1, n1) = W e1 a n"
        and W2_ok: "Ok (s2, t2, n2) = W e2 ($ s1 a) n1"
      by (auto split: bind_splits simp: that)
    show "$ s a |- App e1 e2 :: t"
    proof (rule has_type.App)
      from s have s': "$ u ($ s2 ($ s1 a)) = $s a"
        by (simp add: subst_comp_tel o_def)
      show "$s a |- e1 :: $ u t2 -> t"
      proof -
        from W1_ok have "$ s1 a |- e1 :: t1" by (rule hyp1)
        hence "$ u ($ s2 ($ s1 a)) |- e1 :: $ u ($ s2 t1)"
          by (intro has_type_subst_closed)
        with s' t mgu_ok show ?thesis by simp
      qed
      show "$ s a |- e2 :: $ u t2"
      proof -
        from W2_ok have "$ s2 ($ s1 a) |- e2 :: t2" by (rule hyp2)
        hence "$ u ($ s2 ($ s1 a)) |- e2 :: $ u t2"
          by (rule has_type_subst_closed)
        with s' show ?thesis by simp
      qed
    qed
  }
qed

end