(* Title: Pure/Isar/isar_cmd.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Derived Isar commands.
*)
signature ISAR_CMD =
sig
val generic_setup: string option -> theory -> theory
val parse_ast_translation: bool * string -> theory -> theory
val parse_translation: bool * string -> theory -> theory
val print_translation: bool * string -> theory -> theory
val typed_print_translation: bool * string -> theory -> theory
val print_ast_translation: bool * string -> theory -> theory
val token_translation: string -> theory -> theory
val oracle: bstring -> string -> string -> theory -> theory
val add_axioms: ((bstring * string) * Attrib.src list) list -> theory -> theory
val add_defs: (bool * bool) * ((bstring * string) * Attrib.src list) list -> theory -> theory
val apply_theorems: (thmref * Attrib.src list) list -> theory -> thm list * theory
val apply_theorems_i: (thm list * attribute list) list -> theory -> thm list * theory
val declaration: string -> local_theory -> local_theory
val simproc_setup: string -> string list -> string -> string list -> local_theory -> local_theory
val have: ((string * Attrib.src list) * (string * string list) list) list ->
bool -> Proof.state -> Proof.state
val hence: ((string * Attrib.src list) * (string * string list) list) list ->
bool -> Proof.state -> Proof.state
val show: ((string * Attrib.src list) * (string * string list) list) list ->
bool -> Proof.state -> Proof.state
val thus: ((string * Attrib.src list) * (string * string list) list) list ->
bool -> Proof.state -> Proof.state
val qed: Method.text option -> Toplevel.transition -> Toplevel.transition
val terminal_proof: Method.text * Method.text option ->
Toplevel.transition -> Toplevel.transition
val default_proof: Toplevel.transition -> Toplevel.transition
val immediate_proof: Toplevel.transition -> Toplevel.transition
val done_proof: Toplevel.transition -> Toplevel.transition
val skip_proof: Toplevel.transition -> Toplevel.transition
val begin_theory: string -> string list -> (string * bool) list -> bool -> theory
val end_theory: theory -> theory
val kill_theory: string -> unit
val theory: string * string list * (string * bool) list
-> Toplevel.transition -> Toplevel.transition
val welcome: Toplevel.transition -> Toplevel.transition
val init_toplevel: Toplevel.transition -> Toplevel.transition
val exit: Toplevel.transition -> Toplevel.transition
val quit: Toplevel.transition -> Toplevel.transition
val touch_child_thys: string -> Toplevel.transition -> Toplevel.transition
val touch_thy: string -> Toplevel.transition -> Toplevel.transition
val remove_thy: string -> Toplevel.transition -> Toplevel.transition
val kill_thy: string -> Toplevel.transition -> Toplevel.transition
val pr: string list * (int option * int option) -> Toplevel.transition -> Toplevel.transition
val disable_pr: Toplevel.transition -> Toplevel.transition
val enable_pr: Toplevel.transition -> Toplevel.transition
val redo: Toplevel.transition -> Toplevel.transition
val undos_proof: int -> Toplevel.transition -> Toplevel.transition
val kill_proof_notify: (unit -> unit) -> Toplevel.transition -> Toplevel.transition
val kill_proof: Toplevel.transition -> Toplevel.transition
val undo_theory: Toplevel.transition -> Toplevel.transition
val undo: Toplevel.transition -> Toplevel.transition
val cannot_undo: string -> Toplevel.transition -> Toplevel.transition
val kill: Toplevel.transition -> Toplevel.transition
val back: Toplevel.transition -> Toplevel.transition
val use: Path.T -> Toplevel.transition -> Toplevel.transition
val use_mltext_theory: string -> Toplevel.transition -> Toplevel.transition
val use_mltext: bool -> string -> Toplevel.transition -> Toplevel.transition
val use_commit: Toplevel.transition -> Toplevel.transition
val nested_command: Markup.property list -> string * Position.T -> Toplevel.transition
val cd: Path.T -> Toplevel.transition -> Toplevel.transition
val pwd: Toplevel.transition -> Toplevel.transition
val use_thy: string -> Toplevel.transition -> Toplevel.transition
val display_drafts: Path.T list -> Toplevel.transition -> Toplevel.transition
val print_drafts: Path.T list -> Toplevel.transition -> Toplevel.transition
val pretty_setmargin: int -> Toplevel.transition -> Toplevel.transition
val print_context: Toplevel.transition -> Toplevel.transition
val print_theory: bool -> Toplevel.transition -> Toplevel.transition
val print_syntax: Toplevel.transition -> Toplevel.transition
val print_abbrevs: Toplevel.transition -> Toplevel.transition
val print_facts: Toplevel.transition -> Toplevel.transition
val print_configs: Toplevel.transition -> Toplevel.transition
val print_theorems: Toplevel.transition -> Toplevel.transition
val print_locales: Toplevel.transition -> Toplevel.transition
val print_locale: bool * (Locale.expr * Element.context list)
-> Toplevel.transition -> Toplevel.transition
val print_registrations: bool -> string -> Toplevel.transition -> Toplevel.transition
val print_attributes: Toplevel.transition -> Toplevel.transition
val print_simpset: Toplevel.transition -> Toplevel.transition
val print_rules: Toplevel.transition -> Toplevel.transition
val print_trans_rules: Toplevel.transition -> Toplevel.transition
val print_methods: Toplevel.transition -> Toplevel.transition
val print_antiquotations: Toplevel.transition -> Toplevel.transition
val class_deps: Toplevel.transition -> Toplevel.transition
val thy_deps: Toplevel.transition -> Toplevel.transition
val thm_deps: (thmref * Attrib.src list) list -> Toplevel.transition -> Toplevel.transition
val find_theorems: (int option * bool) * (bool * string FindTheorems.criterion) list
-> Toplevel.transition -> Toplevel.transition
val print_binds: Toplevel.transition -> Toplevel.transition
val print_cases: Toplevel.transition -> Toplevel.transition
val print_stmts: string list * (thmref * Attrib.src list) list
-> Toplevel.transition -> Toplevel.transition
val print_thms: string list * (thmref * Attrib.src list) list
-> Toplevel.transition -> Toplevel.transition
val print_prfs: bool -> string list * (thmref * Attrib.src list) list option
-> Toplevel.transition -> Toplevel.transition
val print_prop: (string list * string) -> Toplevel.transition -> Toplevel.transition
val print_term: (string list * string) -> Toplevel.transition -> Toplevel.transition
val print_type: (string list * string) -> Toplevel.transition -> Toplevel.transition
val add_header: string * Position.T -> Toplevel.transition -> Toplevel.transition
val add_chapter: xstring option * (string * Position.T) ->
Toplevel.transition -> Toplevel.transition
val add_section: xstring option * (string * Position.T) ->
Toplevel.transition -> Toplevel.transition
val add_subsection: xstring option * (string * Position.T) ->
Toplevel.transition -> Toplevel.transition
val add_subsubsection: xstring option * (string * Position.T) ->
Toplevel.transition -> Toplevel.transition
val add_text: xstring option * (string * Position.T) ->
Toplevel.transition -> Toplevel.transition
val add_text_raw: string * Position.T -> Toplevel.transition -> Toplevel.transition
val add_sect: string * Position.T -> Toplevel.transition -> Toplevel.transition
val add_subsect: string * Position.T -> Toplevel.transition -> Toplevel.transition
val add_subsubsect: string * Position.T -> Toplevel.transition -> Toplevel.transition
val add_txt: string * Position.T -> Toplevel.transition -> Toplevel.transition
val add_txt_raw: string * Position.T -> Toplevel.transition -> Toplevel.transition
end;
structure IsarCmd: ISAR_CMD =
struct
(** theory declarations **)
(* generic_setup *)
fun generic_setup NONE = (fn thy => thy |> Context.setup ())
| generic_setup (SOME txt) =
ML_Context.use_let "val setup: theory -> theory" "Context.map_theory setup" txt
|> Context.theory_map;
(* translation functions *)
local
fun advancedT false = ""
| advancedT true = "Proof.context -> ";
fun advancedN false = ""
| advancedN true = "advanced_";
in
fun parse_ast_translation (a, txt) =
txt |> ML_Context.use_let ("val parse_ast_translation: (string * (" ^ advancedT a ^
"Syntax.ast list -> Syntax.ast)) list")
("Context.map_theory (Sign.add_" ^ advancedN a ^ "trfuns (parse_ast_translation, [], [], []))")
|> Context.theory_map;
fun parse_translation (a, txt) =
txt |> ML_Context.use_let ("val parse_translation: (string * (" ^ advancedT a ^
"term list -> term)) list")
("Context.map_theory (Sign.add_" ^ advancedN a ^ "trfuns ([], parse_translation, [], []))")
|> Context.theory_map;
fun print_translation (a, txt) =
txt |> ML_Context.use_let ("val print_translation: (string * (" ^ advancedT a ^
"term list -> term)) list")
("Context.map_theory (Sign.add_" ^ advancedN a ^ "trfuns ([], [], print_translation, []))")
|> Context.theory_map;
fun print_ast_translation (a, txt) =
txt |> ML_Context.use_let ("val print_ast_translation: (string * (" ^ advancedT a ^
"Syntax.ast list -> Syntax.ast)) list")
("Context.map_theory (Sign.add_" ^ advancedN a ^ "trfuns ([], [], [], print_ast_translation))")
|> Context.theory_map;
fun typed_print_translation (a, txt) =
txt |> ML_Context.use_let ("val typed_print_translation: (string * (" ^ advancedT a ^
"bool -> typ -> term list -> term)) list")
("Context.map_theory (Sign.add_" ^ advancedN a ^ "trfunsT typed_print_translation)")
|> Context.theory_map;
val token_translation =
ML_Context.use_let "val token_translation: (string * string * (string -> output * int)) list"
"Context.map_theory (Sign.add_tokentrfuns token_translation)"
#> Context.theory_map;
end;
(* oracles *)
fun oracle name typ oracle =
let val txt =
"local\n\
\ type T = " ^ typ ^ ";\n\
\ val oracle: theory -> T -> term = " ^ oracle ^ ";\n\
\ val name = " ^ quote name ^ ";\n\
\ exception Arg of T;\n\
\ val _ = ML_Context.>> (Theory.add_oracle (name, fn (thy, Arg x) => oracle thy x));\n\
\ val thy = ML_Context.the_context ();\n\
\ val invoke_" ^ name ^ " = Thm.invoke_oracle_i thy (Sign.full_name thy name);\n\
\in\n\
\ fun " ^ name ^ " thy x = invoke_" ^ name ^ " (thy, Arg x);\n\
\end;\n";
in ML_Context.use_mltext_update txt false end
|> Context.theory_map;
(* axioms *)
fun add_axms f args thy =
f (map (fn (x, srcs) => (x, map (Attrib.attribute thy) srcs)) args) thy;
val add_axioms = add_axms (snd oo PureThy.add_axioms);
fun add_defs ((unchecked, overloaded), args) =
add_axms
(snd oo (if unchecked then PureThy.add_defs_unchecked else PureThy.add_defs) overloaded) args;
(* facts *)
fun apply_theorems args thy =
let val facts = Attrib.map_facts (Attrib.attribute thy) [(("", []), args)]
in apfst (maps snd) (PureThy.note_thmss "" facts thy) end;
fun apply_theorems_i args = apfst (maps snd) o PureThy.note_thmss_i "" [(("", []), args)];
(* declarations *)
val declaration =
ML_Context.use_let "val declaration: Morphism.declaration"
"Context.map_proof (LocalTheory.declaration declaration)"
#> Context.proof_map;
(* simprocs *)
fun simproc_setup name lhss proc identifier =
ML_Context.use_let
"val proc: Morphism.morphism -> Simplifier.simpset -> cterm -> thm option"
("Context.map_proof (Simplifier.def_simproc {name = " ^ ML_Syntax.print_string name ^ ", \
\lhss = " ^ ML_Syntax.print_strings lhss ^ ", proc = proc, \
\identifier = Library.maps ML_Context.thms " ^ ML_Syntax.print_strings identifier ^ "})") proc
|> Context.proof_map;
(* goals *)
fun goal opt_chain goal stmt int =
opt_chain #> goal NONE (K Seq.single) stmt int;
val have = goal I Proof.have;
val hence = goal Proof.chain Proof.have;
val show = goal I Proof.show;
val thus = goal Proof.chain Proof.show;
(* local endings *)
fun local_qed m = Toplevel.proofs (Proof.local_qed (m, true));
val local_terminal_proof = Toplevel.proofs o Proof.local_terminal_proof;
val local_default_proof = Toplevel.proofs Proof.local_default_proof;
val local_immediate_proof = Toplevel.proofs Proof.local_immediate_proof;
val local_done_proof = Toplevel.proofs Proof.local_done_proof;
val local_skip_proof = Toplevel.proofs' Proof.local_skip_proof;
val skip_local_qed =
Toplevel.skip_proof (History.apply (fn i => if i > 1 then i - 1 else raise Toplevel.UNDEF));
(* global endings *)
fun global_qed m = Toplevel.end_proof (K (Proof.global_qed (m, true)));
val global_terminal_proof = Toplevel.end_proof o K o Proof.global_terminal_proof;
val global_default_proof = Toplevel.end_proof (K Proof.global_default_proof);
val global_immediate_proof = Toplevel.end_proof (K Proof.global_immediate_proof);
val global_skip_proof = Toplevel.end_proof Proof.global_skip_proof;
val global_done_proof = Toplevel.end_proof (K Proof.global_done_proof);
val skip_global_qed = Toplevel.skip_proof_to_theory (equal 1);
(* common endings *)
fun qed m = local_qed m o global_qed m o skip_local_qed o skip_global_qed;
fun terminal_proof m = local_terminal_proof m o global_terminal_proof m;
val default_proof = local_default_proof o global_default_proof;
val immediate_proof = local_immediate_proof o global_immediate_proof;
val done_proof = local_done_proof o global_done_proof;
val skip_proof = local_skip_proof o global_skip_proof;
(* init and exit *)
fun begin_theory name imports uses =
ThyInfo.begin_theory name imports (map (apfst Path.explode) uses);
fun end_theory thy =
if ThyInfo.check_known_thy (Context.theory_name thy) then ThyInfo.end_theory thy else thy;
val kill_theory = ThyInfo.if_known_thy ThyInfo.remove_thy;
fun theory (name, imports, uses) =
Toplevel.init_theory (begin_theory name imports uses)
(fn thy => (end_theory thy; ()))
(kill_theory o Context.theory_name);
val init_toplevel = Toplevel.imperative (fn () => raise Toplevel.RESTART);
val welcome = Toplevel.imperative (writeln o Session.welcome);
val exit = Toplevel.keep (fn state =>
(CRITICAL (fn () => ML_Context.set_context (try Toplevel.generic_theory_of state));
raise Toplevel.TERMINATE));
val quit = Toplevel.imperative quit;
(* touch theories *)
fun touch_child_thys name = Toplevel.imperative (fn () => ThyInfo.touch_child_thys name);
fun touch_thy name = Toplevel.imperative (fn () => ThyInfo.touch_thy name);
fun remove_thy name = Toplevel.imperative (fn () => ThyInfo.remove_thy name);
fun kill_thy name = Toplevel.imperative (fn () => kill_theory name);
(* print state *)
fun set_limit _ NONE = ()
| set_limit r (SOME n) = r := n;
fun pr (modes, (lim1, lim2)) = Toplevel.keep (fn state =>
(set_limit goals_limit lim1; set_limit ProofContext.prems_limit lim2; Toplevel.quiet := false;
PrintMode.with_modes modes (Toplevel.print_state true) state));
val disable_pr = Toplevel.imperative (fn () => Toplevel.quiet := true);
val enable_pr = Toplevel.imperative (fn () => Toplevel.quiet := false);
(* history commands *)
val redo =
Toplevel.history History.redo o
Toplevel.actual_proof ProofHistory.redo o
Toplevel.skip_proof History.redo;
fun undos_proof n =
Toplevel.actual_proof (fn prf =>
if ProofHistory.is_initial prf then raise Toplevel.UNDEF else funpow n ProofHistory.undo prf) o
Toplevel.skip_proof (fn h =>
if History.is_initial h then raise Toplevel.UNDEF else funpow n History.undo h);
fun kill_proof_notify (f: unit -> unit) = Toplevel.history (fn hist =>
if is_some (Toplevel.theory_node (History.current hist)) then raise Toplevel.UNDEF
else (f (); History.undo hist));
val kill_proof = kill_proof_notify (K ());
val undo_theory = Toplevel.history (fn hist =>
if History.is_initial hist then raise Toplevel.UNDEF else History.undo hist);
val undo = Toplevel.kill o undo_theory o Toplevel.undo_exit o undos_proof 1;
fun cannot_undo "end" = undo (*ProofGeneral legacy*)
| cannot_undo txt = Toplevel.imperative (fn () => error ("Cannot undo " ^ quote txt));
val kill = Toplevel.kill o kill_proof;
val back =
Toplevel.actual_proof ProofHistory.back o
Toplevel.skip_proof (History.apply I);
(* use ML text *)
fun use path = Toplevel.keep (fn state =>
ML_Context.setmp (try Toplevel.generic_theory_of state) (ThyInfo.load_file false) path);
(*passes changes of theory context*)
val use_mltext_theory = Toplevel.theory' o (Context.theory_map oo ML_Context.use_mltext_update);
(*ignore result theory context*)
fun use_mltext v txt = Toplevel.keep' (fn verb => fn state =>
(ML_Context.use_mltext txt (v andalso verb) (try Toplevel.generic_theory_of state)));
val use_commit = Toplevel.imperative Secure.commit;
(* nested commands *)
fun nested_command props (str, pos) =
let val pos' = Position.of_properties (props @ Position.properties_of pos) in
(case OuterSyntax.parse pos' str of
[transition] => transition
| _ => error "exactly one command expected")
end;
(* current working directory *)
fun cd path = Toplevel.imperative (fn () => (File.cd path));
val pwd = Toplevel.imperative (fn () => writeln (Path.implode (File.pwd ())));
(* load theory files *)
fun use_thy name = Toplevel.imperative (fn () => ML_Context.save ThyInfo.use_thy name);
(* present draft files *)
fun display_drafts files = Toplevel.imperative (fn () =>
let val outfile = File.shell_path (Present.drafts (getenv "ISABELLE_DOC_FORMAT") files)
in File.isatool ("display -c " ^ outfile ^ " &"); () end);
fun print_drafts files = Toplevel.imperative (fn () =>
let val outfile = File.shell_path (Present.drafts "ps" files)
in File.isatool ("print -c " ^ outfile); () end);
(* pretty_setmargin *)
fun pretty_setmargin n = Toplevel.imperative (fn () => Pretty.setmargin n);
(* print parts of theory and proof context *)
val print_context = Toplevel.keep Toplevel.print_state_context;
fun print_theory verbose = Toplevel.unknown_theory o
Toplevel.keep (Pretty.writeln o ProofDisplay.pretty_full_theory verbose o Toplevel.theory_of);
val print_syntax = Toplevel.unknown_context o
Toplevel.keep (ProofContext.print_syntax o Toplevel.context_of);
val print_abbrevs = Toplevel.unknown_context o
Toplevel.keep (ProofContext.print_abbrevs o Toplevel.context_of);
val print_facts = Toplevel.unknown_context o Toplevel.keep (fn state =>
ProofContext.setmp_verbose
ProofContext.print_lthms (Toplevel.context_of state));
val print_configs = Toplevel.unknown_context o Toplevel.keep (fn state =>
Attrib.print_configs (Toplevel.context_of state));
val print_theorems_proof = Toplevel.keep (fn state =>
ProofContext.setmp_verbose
ProofContext.print_lthms (Proof.context_of (Toplevel.proof_of state)));
val print_theorems_theory = Toplevel.keep (fn state =>
Toplevel.theory_of state |>
(case Option.map Toplevel.theory_node (History.previous (Toplevel.node_history_of state)) of
SOME (SOME prev_thy) => ProofDisplay.print_theorems_diff (Context.theory_of prev_thy)
| _ => ProofDisplay.print_theorems));
val print_theorems = Toplevel.unknown_context o print_theorems_theory o print_theorems_proof;
val print_locales = Toplevel.unknown_theory o
Toplevel.keep (Locale.print_locales o Toplevel.theory_of);
fun print_locale (show_facts, (imports, body)) = Toplevel.unknown_theory o
Toplevel.keep (fn state =>
Locale.print_locale (Toplevel.theory_of state) show_facts imports body);
fun print_registrations show_wits name = Toplevel.unknown_context o
Toplevel.keep (Toplevel.node_case
(Context.cases (Locale.print_registrations show_wits name o ProofContext.init)
(Locale.print_registrations show_wits name))
(Locale.print_registrations show_wits name o Proof.context_of));
val print_attributes = Toplevel.unknown_theory o
Toplevel.keep (Attrib.print_attributes o Toplevel.theory_of);
val print_simpset = Toplevel.unknown_context o
Toplevel.keep (Toplevel.node_case
(Context.cases Simplifier.print_simpset Simplifier.print_local_simpset)
(Simplifier.print_local_simpset o Proof.context_of));
val print_rules = Toplevel.unknown_context o
Toplevel.keep (ContextRules.print_rules o Toplevel.context_of);
val print_trans_rules = Toplevel.unknown_context o
Toplevel.keep (Calculation.print_rules o Toplevel.context_of);
val print_methods = Toplevel.unknown_theory o
Toplevel.keep (Method.print_methods o Toplevel.theory_of);
val print_antiquotations = Toplevel.imperative ThyOutput.print_antiquotations;
val thy_deps = Toplevel.unknown_theory o Toplevel.keep (fn state =>
let
val thy = Toplevel.theory_of state;
val all_thys = sort ThyInfo.thy_ord (thy :: Theory.ancestors_of thy);
val gr = all_thys |> map (fn node =>
let
val name = Context.theory_name node;
val parents = map Context.theory_name (Theory.parents_of node);
val dir = Present.session_name node;
val unfold = not (ThyInfo.known_thy name andalso ThyInfo.is_finished name);
in {name = name, ID = name, parents = parents, dir = dir, unfold = unfold, path = ""} end);
in Present.display_graph gr end);
val class_deps = Toplevel.unknown_theory o Toplevel.keep (fn state =>
let
val thy = Toplevel.theory_of state;
val {classes = (space, algebra), ...} = Type.rep_tsig (Sign.tsig_of thy);
val {classes, ...} = Sorts.rep_algebra algebra;
fun entry (c, (i, (_, cs))) =
(i, {name = NameSpace.extern space c, ID = c, parents = cs,
dir = "", unfold = true, path = ""});
val gr =
Graph.fold (cons o entry) classes []
|> sort (int_ord o pairself #1) |> map #2;
in Present.display_graph gr end);
(* retrieve theorems *)
fun thm_deps args = Toplevel.unknown_theory o Toplevel.keep (fn state =>
ThmDeps.thm_deps (Proof.get_thmss (Toplevel.enter_proof_body state) args));
fun find_theorems ((opt_lim, rem_dups), spec) =
Toplevel.unknown_theory o Toplevel.keep (fn state =>
let
val proof_state = Toplevel.enter_proof_body state;
val ctxt = Proof.context_of proof_state;
val opt_goal = try Proof.get_goal proof_state |> Option.map (Thm.prop_of o #2 o #2);
in FindTheorems.print_theorems ctxt opt_goal opt_lim rem_dups spec end);
(* print proof context contents *)
val print_binds = Toplevel.unknown_context o Toplevel.keep (fn state =>
ProofContext.setmp_verbose ProofContext.print_binds (Toplevel.context_of state));
val print_cases = Toplevel.unknown_context o Toplevel.keep (fn state =>
ProofContext.setmp_verbose ProofContext.print_cases (Toplevel.context_of state));
(* print theorems, terms, types etc. *)
local
fun string_of_stmts state args =
Proof.get_thmss state args
|> map (Element.pretty_statement (Proof.context_of state) Thm.theoremK)
|> Pretty.chunks2 |> Pretty.string_of;
fun string_of_thms state args =
Pretty.string_of (ProofContext.pretty_thms (Proof.context_of state)
(Proof.get_thmss state args));
fun string_of_prfs full state arg =
Pretty.string_of (case arg of
NONE =>
let
val (ctxt, (_, thm)) = Proof.get_goal state;
val {thy, der = (_, prf), ...} = Thm.rep_thm thm;
val prop = Thm.full_prop_of thm;
val prf' = Proofterm.rewrite_proof_notypes ([], []) prf
in
ProofContext.pretty_proof ctxt
(if full then Reconstruct.reconstruct_proof thy prop prf' else prf')
end
| SOME args => Pretty.chunks
(map (ProofContext.pretty_proof_of (Proof.context_of state) full)
(Proof.get_thmss state args)));
fun string_of_prop state s =
let
val ctxt = Proof.context_of state;
val prop = Syntax.read_prop ctxt s;
in Pretty.string_of (Pretty.quote (Syntax.pretty_term ctxt prop)) end;
fun string_of_term state s =
let
val ctxt = Proof.context_of state;
val t = Syntax.read_term ctxt s;
val T = Term.type_of t;
in
Pretty.string_of
(Pretty.block [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.fbrk,
Pretty.str "::", Pretty.brk 1, Pretty.quote (Syntax.pretty_typ ctxt T)])
end;
fun string_of_type state s =
let
val ctxt = Proof.context_of state;
val T = Syntax.read_typ ctxt s;
in Pretty.string_of (Pretty.quote (Syntax.pretty_typ ctxt T)) end;
fun print_item string_of (modes, arg) = Toplevel.keep (fn state =>
PrintMode.with_modes modes (fn () =>
writeln (string_of (Toplevel.enter_proof_body state) arg)) ());
in
val print_stmts = print_item string_of_stmts;
val print_thms = print_item string_of_thms;
val print_prfs = print_item o string_of_prfs;
val print_prop = print_item string_of_prop;
val print_term = print_item string_of_term;
val print_type = print_item string_of_type;
end;
(* markup commands *)
fun add_header s = Toplevel.keep' (fn int => fn state =>
(if Toplevel.is_toplevel state then () else raise Toplevel.UNDEF;
if int then OuterSyntax.check_text s NONE else ()));
local
fun present _ txt true node = OuterSyntax.check_text txt (SOME node)
| present f (s, _) false node =
ML_Context.setmp (try (Toplevel.cases_node I (Context.Proof o Proof.context_of)) node) f s;
fun present_local_theory f (loc, txt) = Toplevel.present_local_theory loc (present f txt);
fun present_proof f txt = Toplevel.print o Toplevel.present_proof (present f txt);
in
val add_chapter = present_local_theory Present.section;
val add_section = present_local_theory Present.section;
val add_subsection = present_local_theory Present.subsection;
val add_subsubsection = present_local_theory Present.subsubsection;
val add_text = present_local_theory (K ());
fun add_text_raw txt = present_local_theory (K ()) (NONE, txt);
val add_txt = present_proof (K ());
val add_txt_raw = add_txt;
val add_sect = add_txt;
val add_subsect = add_txt;
val add_subsubsect = add_txt;
end;
end;