author blanchet
Sat, 26 Apr 2014 06:43:06 +0200
changeset 56737 e4f363e16bdc
parent 56684 d8f32f55e463
child 56966 01637dd1260c
permissions -rw-r--r--
use right set of variables for recursive check

(*  Title:      HOL/Tools/BNF/bnf_lfp_size.ML
    Author:     Jasmin Blanchette, TU Muenchen
    Copyright   2014

Generation of size functions for new-style datatypes.

signature BNF_LFP_SIZE =
  val register_size: string -> string -> thm list -> thm list -> local_theory -> local_theory
  val register_size_global: string -> string -> thm list -> thm list -> theory -> theory
  val lookup_size: Proof.context -> string -> (string * (thm list * thm list)) option
  val lookup_size_global: theory -> string -> (string * (thm list * thm list)) option
  val generate_lfp_size: BNF_FP_Util.fp_sugar list -> local_theory -> local_theory

structure BNF_LFP_Size : BNF_LFP_SIZE =

open BNF_Util
open BNF_Tactics
open BNF_Def
open BNF_FP_Util

val size_N = "size_"

val rec_o_mapN = "rec_o_map"
val sizeN = "size"
val size_o_mapN = "size_o_map"

val nitpicksimp_attrs = @{attributes [nitpick_simp]};
val simp_attrs = @{attributes [simp]};
val code_nitpicksimp_simp_attrs = Code.add_default_eqn_attrib :: nitpicksimp_attrs @ simp_attrs;

structure Data = Generic_Data
  type T = (string * (thm list * thm list)) Symtab.table;
  val empty = Symtab.empty;
  val extend = I
  fun merge data = Symtab.merge (K true) data;

fun register_size T_name size_name size_simps size_o_maps =
  Context.proof_map ( (Symtab.update (T_name, (size_name, (size_simps, size_o_maps)))));

fun register_size_global T_name size_name size_simps size_o_maps =
  Context.theory_map ( (Symtab.update (T_name, (size_name, (size_simps, size_o_maps)))));

val lookup_size = Symtab.lookup o Data.get o Context.Proof;
val lookup_size_global = Symtab.lookup o Data.get o Context.Theory;

val zero_nat = @{const (nat)};

fun mk_plus_nat (t1, t2) = Const (@{const_name},
  HOLogic.natT --> HOLogic.natT --> HOLogic.natT) $ t1 $ t2;

fun mk_to_natT T = T --> HOLogic.natT;

fun mk_abs_zero_nat T = Term.absdummy T zero_nat;

fun pointfill ctxt th = unfold_thms ctxt [o_apply] (th RS fun_cong);

fun mk_unabs_def_unused_0 n =
  funpow n (fn thm => thm RS @{thm fun_cong_unused_0} handle THM _ => thm RS fun_cong);

val rec_o_map_simp_thms =
  @{thms o_def id_def case_prod_app case_sum_map_sum case_prod_map_prod BNF_Comp.id_bnf_comp_def};

fun mk_rec_o_map_tac ctxt rec_def pre_map_defs abs_inverses ctor_rec_o_map =
  unfold_thms_tac ctxt [rec_def] THEN
  HEADGOAL (rtac (ctor_rec_o_map RS trans)) THEN
  PRIMITIVE (Conv.fconv_rule Thm.eta_long_conversion) THEN
  HEADGOAL (asm_simp_tac (ss_only (pre_map_defs @ distinct Thm.eq_thm_prop abs_inverses @
    rec_o_map_simp_thms) ctxt));

val size_o_map_simp_thms = @{thms prod_inj_map inj_on_id snd_comp_apfst[unfolded apfst_def]};

fun mk_size_o_map_tac ctxt size_def rec_o_map inj_maps size_maps =
  unfold_thms_tac ctxt [size_def] THEN
  HEADGOAL (rtac (rec_o_map RS trans) THEN'
    asm_simp_tac (ss_only (inj_maps @ size_maps @ size_o_map_simp_thms) ctxt)) THEN
  IF_UNSOLVED (unfold_thms_tac ctxt @{thms o_def} THEN HEADGOAL (rtac refl));

fun generate_lfp_size (fp_sugars as ({T = Type (_, As), BT = Type (_, Bs),
    fp_res = {bnfs = fp_bnfs, xtor_co_rec_o_map_thms = ctor_rec_o_maps, ...}, nested_bnfs,
    nesting_bnfs, ...} : fp_sugar) :: _) lthy0 =
    val data = Data.get (Context.Proof lthy0);

    val Ts = map #T fp_sugars
    val T_names = map (fst o dest_Type) Ts;
    val nn = length Ts;

    val B_ify = Term.typ_subst_atomic (As ~~ Bs);

    val recs = map #co_rec fp_sugars;
    val rec_thmss = map #co_rec_thms fp_sugars;
    val rec_Ts as rec_T1 :: _ = map fastype_of recs;
    val rec_arg_Ts = binder_fun_types rec_T1;
    val Cs = map body_type rec_Ts;
    val Cs_rho = map (rpair HOLogic.natT) Cs;
    val substCnatT = Term.subst_atomic_types Cs_rho;

    val f_Ts = map mk_to_natT As;
    val f_TsB = map mk_to_natT Bs;
    val num_As = length As;

    fun variant_names n pre = fst (Variable.variant_fixes (replicate n pre) lthy0);

    val f_names = variant_names num_As "f";
    val fs = map2 (curry Free) f_names f_Ts;
    val fsB = map2 (curry Free) f_names f_TsB;
    val As_fs = As ~~ fs;

    val size_bs =
      map ((fn base => Binding.qualify false base ( (prefix size_N base))) o
        Long_Name.base_name) T_names;

    fun is_pair_C @{type_name prod} [_, T'] = member (op =) Cs T'
      | is_pair_C _ _ = false;

    fun mk_size_of_typ (T as TFree _) =
        pair (case AList.lookup (op =) As_fs T of
            SOME f => f
          | NONE => if member (op =) Cs T then Term.absdummy T (Bound 0) else mk_abs_zero_nat T)
      | mk_size_of_typ (T as Type (s, Ts)) =
        if is_pair_C s Ts then
          pair (snd_const T)
        else if exists (exists_subtype_in (As @ Cs)) Ts then
          (case Symtab.lookup data s of
            SOME (size_name, (_, size_o_maps as _ :: _)) =>
              val (args, size_o_mapss') = split_list (map (fn T => mk_size_of_typ T []) Ts);
              val size_const = Const (size_name, map fastype_of args ---> mk_to_natT T);
              fold (union Thm.eq_thm) (size_o_maps :: size_o_mapss')
              #> pair (Term.list_comb (size_const, args))
          | _ => pair (mk_abs_zero_nat T))
          pair (mk_abs_zero_nat T);

    fun mk_size_of_arg t =
      mk_size_of_typ (fastype_of t) #>> (fn s => substCnatT (betapply (s, t)));

    fun mk_size_arg rec_arg_T size_o_maps =
        val x_Ts = binder_types rec_arg_T;
        val m = length x_Ts;
        val x_names = variant_names m "x";
        val xs = map2 (curry Free) x_names x_Ts;
        val (summands, size_o_maps') =
          fold_map mk_size_of_arg xs size_o_maps
          |>> remove (op =) zero_nat;
        val sum =
          if null summands then
          else foldl1 mk_plus_nat (summands @ [HOLogic.Suc_zero]);
        (fold_rev Term.lambda (map substCnatT xs) sum, size_o_maps')

    fun mk_size_rhs recx size_o_maps =
      let val (args, size_o_maps') = fold_map mk_size_arg rec_arg_Ts size_o_maps in
        (fold_rev Term.lambda fs (Term.list_comb (substCnatT recx, args)), size_o_maps')

    val maybe_conceal_def_binding = Thm.def_binding
      #> Config.get lthy0 bnf_note_all = false ? Binding.conceal;

    val (size_rhss, nested_size_o_maps) = fold_map mk_size_rhs recs [];
    val size_Ts = map fastype_of size_rhss;

    val ((raw_size_consts, raw_size_defs), (lthy1', lthy1)) = lthy0
      |> apfst split_list o fold_map2 (fn b => fn rhs =>
          Local_Theory.define ((b, NoSyn), ((maybe_conceal_def_binding b, []), rhs)) #>> apsnd snd)
        size_bs size_rhss
      ||> `Local_Theory.restore;

    val phi = Proof_Context.export_morphism lthy1 lthy1';

    val size_defs = map (Morphism.thm phi) raw_size_defs;

    val size_consts0 = map (Morphism.term phi) raw_size_consts;
    val size_consts = map2 retype_const_or_free size_Ts size_consts0;
    val size_constsB = map (Term.map_types B_ify) size_consts;

    val zeros = map mk_abs_zero_nat As;

    val overloaded_size_rhss = map (fn c => Term.list_comb (c, zeros)) size_consts;
    val overloaded_size_Ts = map fastype_of overloaded_size_rhss;
    val overloaded_size_consts = map (curry Const @{const_name size}) overloaded_size_Ts;
    val overloaded_size_def_bs =
      map (maybe_conceal_def_binding o Binding.suffix_name "_overloaded") size_bs;

    fun define_overloaded_size def_b lhs0 rhs lthy =
        val Free (c, _) = Syntax.check_term lthy lhs0;
        val (thm, lthy') = lthy
          |> Local_Theory.define (( c, NoSyn), ((def_b, []), rhs))
          |-> (fn (t, (_, thm)) => Spec_Rules.add Spec_Rules.Equational ([t], [thm]) #> pair thm);
        val ctxt_thy = Proof_Context.init_global (Proof_Context.theory_of lthy');
        val thm' = singleton (Proof_Context.export lthy' ctxt_thy) thm;
      in (thm', lthy') end;

    val (overloaded_size_defs, lthy2) = lthy1
      |> Local_Theory.background_theory_result
        (Class.instantiation (T_names, map dest_TFree As, [HOLogic.class_size])
         #> fold_map3 define_overloaded_size overloaded_size_def_bs overloaded_size_consts
         ##> Class.prove_instantiation_instance (K (Class.intro_classes_tac []))
         ##> Local_Theory.exit_global);

    val size_defs' =
      map (mk_unabs_def (num_As + 1) o (fn thm => thm RS meta_eq_to_obj_eq)) size_defs;
    val size_defs_unused_0 =
      map (mk_unabs_def_unused_0 (num_As + 1) o (fn thm => thm RS meta_eq_to_obj_eq)) size_defs;
    val overloaded_size_defs' =
      map (mk_unabs_def 1 o (fn thm => thm RS meta_eq_to_obj_eq)) overloaded_size_defs;

    val all_overloaded_size_defs = overloaded_size_defs @
      (Spec_Rules.retrieve lthy0 @{const size ('a)}
       |> map_filter (try (fn (Equational, (_, [thm])) => thm)));

    val nested_size_maps = map (pointfill lthy2) nested_size_o_maps @ nested_size_o_maps;
    val all_inj_maps = map inj_map_of_bnf (fp_bnfs @ nested_bnfs @ nesting_bnfs);

    fun derive_size_simp size_def' simp0 =
      (trans OF [size_def', simp0])
      |> Simplifier.asm_full_simplify (ss_only (@{thms inj_on_convol_ident id_def o_def snd_conv} @
        all_inj_maps @ nested_size_maps) lthy2)
      |> fold_thms lthy2 size_defs_unused_0;

    fun derive_overloaded_size_simp overloaded_size_def' simp0 =
      (trans OF [overloaded_size_def', simp0])
      |> unfold_thms lthy2 @{thms add_0_left add_0_right}
      |> fold_thms lthy2 all_overloaded_size_defs;

    val size_simpss = map2 (map o derive_size_simp) size_defs' rec_thmss;
    val size_simps = flat size_simpss;
    val overloaded_size_simpss =
      map2 (map o derive_overloaded_size_simp) overloaded_size_defs' size_simpss;
    val size_thmss = map2 append size_simpss overloaded_size_simpss;

    val ABs = As ~~ Bs;
    val g_names = variant_names num_As "g";
    val gs = map2 (curry Free) g_names (map (op -->) ABs);

    val liveness = map (op <>) ABs;
    val live_gs = AList.find (op =) (gs ~~ liveness) true;
    val live = length live_gs;

    val maps0 = map map_of_bnf fp_bnfs;

    val (rec_o_map_thmss, size_o_map_thmss) =
      if live = 0 then
        `I (replicate nn [])
          val pre_bnfs = map #pre_bnf fp_sugars;
          val pre_map_defs = map map_def_of_bnf pre_bnfs;
          val abs_inverses = map (#abs_inverse o #absT_info) fp_sugars;
          val rec_defs = map #co_rec_def fp_sugars;

          val gmaps = map (fn map0 => Term.list_comb (mk_map live As Bs map0, live_gs)) maps0;

          val num_rec_args = length rec_arg_Ts;
          val h_Ts = map B_ify rec_arg_Ts;
          val h_names = variant_names num_rec_args "h";
          val hs = map2 (curry Free) h_names h_Ts;
          val hrecs = map (fn recx => Term.list_comb (Term.map_types B_ify recx, hs)) recs;

          val rec_o_map_lhss = map2 (curry HOLogic.mk_comp) hrecs gmaps;

          val ABgs = ABs ~~ gs;

          fun mk_rec_arg_arg (x as Free (_, T)) =
            let val U = B_ify T in
              if T = U then x else build_map lthy2 (the o AList.lookup (op =) ABgs) (T, U) $ x

          fun mk_rec_o_map_arg rec_arg_T h =
              val x_Ts = binder_types rec_arg_T;
              val m = length x_Ts;
              val x_names = variant_names m "x";
              val xs = map2 (curry Free) x_names x_Ts;
              val xs' = map mk_rec_arg_arg xs;
              fold_rev Term.lambda xs (Term.list_comb (h, xs'))

          fun mk_rec_o_map_rhs recx =
            let val args = map2 mk_rec_o_map_arg rec_arg_Ts hs in
              Term.list_comb (recx, args)

          val rec_o_map_rhss = map mk_rec_o_map_rhs recs;

          val rec_o_map_goals =
            map2 (fold_rev (fold_rev Logic.all) [gs, hs] o HOLogic.mk_Trueprop oo
              curry HOLogic.mk_eq) rec_o_map_lhss rec_o_map_rhss;
          val rec_o_map_thms =
            map3 (fn goal => fn rec_def => fn ctor_rec_o_map =>
                Goal.prove lthy2 [] [] goal (fn {context = ctxt, ...} =>
                  mk_rec_o_map_tac ctxt rec_def pre_map_defs abs_inverses ctor_rec_o_map)
                |> Thm.close_derivation)
              rec_o_map_goals rec_defs ctor_rec_o_maps;

          val size_o_map_conds =
            if exists (can Logic.dest_implies o Thm.prop_of) nested_size_o_maps then
              map (HOLogic.mk_Trueprop o mk_inj) live_gs

          val fsizes = map (fn size_constB => Term.list_comb (size_constB, fsB)) size_constsB;
          val size_o_map_lhss = map2 (curry HOLogic.mk_comp) fsizes gmaps;

          val fgs = map2 (fn fB => fn g as Free (_, Type (_, [A, B])) =>
            if A = B then fB else HOLogic.mk_comp (fB, g)) fsB gs;
          val size_o_map_rhss = map (fn c => Term.list_comb (c, fgs)) size_consts;

          val size_o_map_goals =
            map2 (fold_rev (fold_rev Logic.all) [fsB, gs] o
              curry Logic.list_implies size_o_map_conds o HOLogic.mk_Trueprop oo
              curry HOLogic.mk_eq) size_o_map_lhss size_o_map_rhss;
          val size_o_map_thms =
            map3 (fn goal => fn size_def => fn rec_o_map =>
                Goal.prove lthy2 [] [] goal (fn {context = ctxt, ...} =>
                  mk_size_o_map_tac ctxt size_def rec_o_map all_inj_maps nested_size_maps)
                |> Thm.close_derivation)
              size_o_map_goals size_defs rec_o_map_thms;
          pairself (map single) (rec_o_map_thms, size_o_map_thms)

    val massage_multi_notes =
      maps (fn (thmN, thmss, attrs) =>
        map2 (fn T_name => fn thms =>
            ((Binding.qualify true (Long_Name.base_name T_name) ( thmN), attrs),
             [(thms, [])]))
          T_names thmss)
      #> filter_out (null o fst o hd o snd);

    val notes =
      [(rec_o_mapN, rec_o_map_thmss, []),
       (sizeN, size_thmss, code_nitpicksimp_simp_attrs),
       (size_o_mapN, size_o_map_thmss, [])]
      |> massage_multi_notes;
    |> Local_Theory.notes notes |> snd
    |> Spec_Rules.add Spec_Rules.Equational (size_consts, size_simps)
    |> Local_Theory.declaration {syntax = false, pervasive = true}
      (fn phi => (fold2 (fn T_name => fn Const (size_name, _) =>
           Symtab.update (T_name, (size_name,
             pairself (map (Morphism.thm phi)) (size_simps, flat size_o_map_thmss))))
         T_names size_consts))