src/HOL/Trancl.ML
author clasohm
Fri, 24 Mar 1995 12:30:35 +0100
changeset 972 e61b058d58d2
parent 923 ff1574a81019
child 1121 485b49694253
permissions -rw-r--r--
changed syntax of tuples from <..., ...> to (..., ...)

(*  Title: 	HOL/trancl
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge

For trancl.thy.  Theorems about the transitive closure of a relation
*)

open Trancl;

(** Natural deduction for trans(r) **)

val prems = goalw Trancl.thy [trans_def]
    "(!! x y z. [| (x,y):r;  (y,z):r |] ==> (x,z):r) ==> trans(r)";
by (REPEAT (ares_tac (prems@[allI,impI]) 1));
qed "transI";

val major::prems = goalw Trancl.thy [trans_def]
    "[| trans(r);  (a,b):r;  (b,c):r |] ==> (a,c):r";
by (cut_facts_tac [major] 1);
by (fast_tac (HOL_cs addIs prems) 1);
qed "transD";

(** Identity relation **)

goalw Trancl.thy [id_def] "(a,a) : id";  
by (rtac CollectI 1);
by (rtac exI 1);
by (rtac refl 1);
qed "idI";

val major::prems = goalw Trancl.thy [id_def]
    "[| p: id;  !!x.[| p = (x,x) |] ==> P  \
\    |] ==>  P";  
by (rtac (major RS CollectE) 1);
by (etac exE 1);
by (eresolve_tac prems 1);
qed "idE";

goalw Trancl.thy [id_def] "(a,b):id = (a=b)";
by(fast_tac prod_cs 1);
qed "pair_in_id_conv";

(** Composition of two relations **)

val prems = goalw Trancl.thy [comp_def]
    "[| (a,b):s; (b,c):r |] ==> (a,c) : r O s";
by (fast_tac (set_cs addIs prems) 1);
qed "compI";

(*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
val prems = goalw Trancl.thy [comp_def]
    "[| xz : r O s;  \
\       !!x y z. [| xz = (x,z);  (x,y):s;  (y,z):r |] ==> P \
\    |] ==> P";
by (cut_facts_tac prems 1);
by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1));
qed "compE";

val prems = goal Trancl.thy
    "[| (a,c) : r O s;  \
\       !!y. [| (a,y):s;  (y,c):r |] ==> P \
\    |] ==> P";
by (rtac compE 1);
by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [Pair_inject,ssubst] 1));
qed "compEpair";

val comp_cs = prod_cs addIs [compI, idI] addSEs [compE, idE];

goal Trancl.thy "!!r s. [| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
by (fast_tac comp_cs 1);
qed "comp_mono";

goal Trancl.thy
    "!!r s. [| s <= Sigma A (%x.B);  r <= Sigma B (%x.C) |] ==> \
\           (r O s) <= Sigma A (%x.C)";
by (fast_tac comp_cs 1);
qed "comp_subset_Sigma";


(** The relation rtrancl **)

goal Trancl.thy "mono(%s. id Un (r O s))";
by (rtac monoI 1);
by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1));
qed "rtrancl_fun_mono";

val rtrancl_unfold = rtrancl_fun_mono RS (rtrancl_def RS def_lfp_Tarski);

(*Reflexivity of rtrancl*)
goal Trancl.thy "(a,a) : r^*";
by (stac rtrancl_unfold 1);
by (fast_tac comp_cs 1);
qed "rtrancl_refl";

(*Closure under composition with r*)
val prems = goal Trancl.thy
    "[| (a,b) : r^*;  (b,c) : r |] ==> (a,c) : r^*";
by (stac rtrancl_unfold 1);
by (fast_tac (comp_cs addIs prems) 1);
qed "rtrancl_into_rtrancl";

(*rtrancl of r contains r*)
val [prem] = goal Trancl.thy "[| (a,b) : r |] ==> (a,b) : r^*";
by (rtac (rtrancl_refl RS rtrancl_into_rtrancl) 1);
by (rtac prem 1);
qed "r_into_rtrancl";

(*monotonicity of rtrancl*)
goalw Trancl.thy [rtrancl_def] "!!r s. r <= s ==> r^* <= s^*";
by(REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1));
qed "rtrancl_mono";

(** standard induction rule **)

val major::prems = goal Trancl.thy 
  "[| (a,b) : r^*; \
\     !!x. P((x,x)); \
\     !!x y z.[| P((x,y)); (x,y): r^*; (y,z): r |]  ==>  P((x,z)) |] \
\  ==>  P((a,b))";
by (rtac ([rtrancl_def, rtrancl_fun_mono, major] MRS def_induct) 1);
by (fast_tac (comp_cs addIs prems) 1);
qed "rtrancl_full_induct";

(*nice induction rule*)
val major::prems = goal Trancl.thy
    "[| (a::'a,b) : r^*;    \
\       P(a); \
\	!!y z.[| (a,y) : r^*;  (y,z) : r;  P(y) |] ==> P(z) |]  \
\     ==> P(b)";
(*by induction on this formula*)
by (subgoal_tac "! y. (a::'a,b) = (a,y) --> P(y)" 1);
(*now solve first subgoal: this formula is sufficient*)
by (fast_tac HOL_cs 1);
(*now do the induction*)
by (resolve_tac [major RS rtrancl_full_induct] 1);
by (fast_tac (comp_cs addIs prems) 1);
by (fast_tac (comp_cs addIs prems) 1);
qed "rtrancl_induct";

(*transitivity of transitive closure!! -- by induction.*)
goal Trancl.thy "trans(r^*)";
by (rtac transI 1);
by (res_inst_tac [("b","z")] rtrancl_induct 1);
by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
qed "trans_rtrancl";

(*elimination of rtrancl -- by induction on a special formula*)
val major::prems = goal Trancl.thy
    "[| (a::'a,b) : r^*;  (a = b) ==> P; 	\
\	!!y.[| (a,y) : r^*; (y,b) : r |] ==> P 	\
\    |] ==> P";
by (subgoal_tac "(a::'a) = b  | (? y. (a,y) : r^* & (y,b) : r)" 1);
by (rtac (major RS rtrancl_induct) 2);
by (fast_tac (set_cs addIs prems) 2);
by (fast_tac (set_cs addIs prems) 2);
by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1));
qed "rtranclE";


(**** The relation trancl ****)

(** Conversions between trancl and rtrancl **)

val [major] = goalw Trancl.thy [trancl_def]
    "(a,b) : r^+ ==> (a,b) : r^*";
by (resolve_tac [major RS compEpair] 1);
by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
qed "trancl_into_rtrancl";

(*r^+ contains r*)
val [prem] = goalw Trancl.thy [trancl_def]
   "[| (a,b) : r |] ==> (a,b) : r^+";
by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1));
qed "r_into_trancl";

(*intro rule by definition: from rtrancl and r*)
val prems = goalw Trancl.thy [trancl_def]
    "[| (a,b) : r^*;  (b,c) : r |]   ==>  (a,c) : r^+";
by (REPEAT (resolve_tac ([compI]@prems) 1));
qed "rtrancl_into_trancl1";

(*intro rule from r and rtrancl*)
val prems = goal Trancl.thy
    "[| (a,b) : r;  (b,c) : r^* |]   ==>  (a,c) : r^+";
by (resolve_tac (prems RL [rtranclE]) 1);
by (etac subst 1);
by (resolve_tac (prems RL [r_into_trancl]) 1);
by (rtac (trans_rtrancl RS transD RS rtrancl_into_trancl1) 1);
by (REPEAT (ares_tac (prems@[r_into_rtrancl]) 1));
qed "rtrancl_into_trancl2";

(*elimination of r^+ -- NOT an induction rule*)
val major::prems = goal Trancl.thy
    "[| (a::'a,b) : r^+;  \
\       (a,b) : r ==> P; \
\	!!y.[| (a,y) : r^+;  (y,b) : r |] ==> P  \
\    |] ==> P";
by (subgoal_tac "(a::'a,b) : r | (? y. (a,y) : r^+  &  (y,b) : r)" 1);
by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1));
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
by (etac rtranclE 1);
by (fast_tac comp_cs 1);
by (fast_tac (comp_cs addSIs [rtrancl_into_trancl1]) 1);
qed "tranclE";

(*Transitivity of r^+.
  Proved by unfolding since it uses transitivity of rtrancl. *)
goalw Trancl.thy [trancl_def] "trans(r^+)";
by (rtac transI 1);
by (REPEAT (etac compEpair 1));
by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
by (REPEAT (assume_tac 1));
qed "trans_trancl";

val prems = goal Trancl.thy
    "[| (a,b) : r;  (b,c) : r^+ |]   ==>  (a,c) : r^+";
by (rtac (r_into_trancl RS (trans_trancl RS transD)) 1);
by (resolve_tac prems 1);
by (resolve_tac prems 1);
qed "trancl_into_trancl2";


val major::prems = goal Trancl.thy
    "[| (a,b) : r^*;  r <= Sigma A (%x.A) |] ==> a=b | a:A";
by (cut_facts_tac prems 1);
by (rtac (major RS rtrancl_induct) 1);
by (rtac (refl RS disjI1) 1);
by (fast_tac (comp_cs addSEs [SigmaE2]) 1);
qed "trancl_subset_Sigma_lemma";

goalw Trancl.thy [trancl_def]
    "!!r. r <= Sigma A (%x.A) ==> trancl(r) <= Sigma A (%x.A)";
by (fast_tac (comp_cs addSDs [trancl_subset_Sigma_lemma]) 1);
qed "trancl_subset_Sigma";

val prod_ss = prod_ss addsimps [pair_in_id_conv];