src/HOL/ex/Lagrange.thy
author wenzelm
Fri, 17 Nov 2006 02:20:03 +0100
changeset 21404 eb85850d3eb7
parent 20807 bd3b60f9a343
child 22173 7a78b9531b80
permissions -rw-r--r--
more robust syntax for definition/abbreviation/notation;

(*  Title:      HOL/ex/Lagrange.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1996 TU Muenchen
*)

header {* A lemma for Lagrange's theorem *}

theory Lagrange imports Main begin

text {* This theory only contains a single theorem, which is a lemma
in Lagrange's proof that every natural number is the sum of 4 squares.
Its sole purpose is to demonstrate ordered rewriting for commutative
rings.

The enterprising reader might consider proving all of Lagrange's
theorem.  *}

definition
  sq :: "'a::times => 'a" where
  "sq x == x*x"

text {* The following lemma essentially shows that every natural
number is the sum of four squares, provided all prime numbers are.
However, this is an abstract theorem about commutative rings.  It has,
a priori, nothing to do with nat. *}

ML_setup {*
  Delsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]
*}

lemma Lagrange_lemma:
  fixes x1 :: "'a::comm_ring"
  shows
  "(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
    sq (x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
    sq (x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
    sq (x1*y3 - x2*y4 + x3*y1 + x4*y2)  +
    sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)"
  by (simp add: sq_def ring_eq_simps)


text {*
  A challenge by John Harrison. Takes about 22s on a 1.6GHz machine.
*}

lemma
  fixes p1 :: "'a::comm_ring"
  shows
  "(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * 
   (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) 
    = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + 
      sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
      sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
      sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
      sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
      sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
      sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
      sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
  by (simp add: sq_def ring_eq_simps)

end