src/HOL/Library/Sum_of_Squares_Remote.thy
author Christian Sternagel
Thu Dec 13 13:11:38 2012 +0100 (2012-12-13)
changeset 50516 ed6b40d15d1c
parent 48934 f9a800f21434
child 58881 b9556a055632
permissions -rw-r--r--
renamed "emb" to "list_hembeq";
make "list_hembeq" reflexive independent of the base order;
renamed "sub" to "sublisteq";
dropped "transp_on" (state transitivity explicitly instead);
no need to hide "sub" after renaming;
replaced some ASCII symbols by proper Isabelle symbols;
NEWS
     1 (*  Title:      HOL/Library/Sum_of_Squares_Remote.thy
     2     Author:     Amine Chaieb, University of Cambridge
     3     Author:     Philipp Meyer, TU Muenchen
     4 *)
     5 
     6 header {* Examples with remote CSDP *}
     7 
     8 theory Sum_of_Squares_Remote
     9 imports Sum_of_Squares
    10 begin
    11 
    12 lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0"
    13   by (sos remote_csdp)
    14 
    15 lemma "a1 >= 0 & a2 >= 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)"
    16   by (sos remote_csdp)
    17 
    18 lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0"
    19   by (sos remote_csdp)
    20 
    21 lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1  --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1"
    22   by (sos remote_csdp)
    23 
    24 lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z"
    25   by (sos remote_csdp)
    26 
    27 lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3"
    28   by (sos remote_csdp)
    29 
    30 lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)"
    31   by (sos remote_csdp)
    32 
    33 lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1"
    34   by (sos remote_csdp)
    35 
    36 end