src/Provers/hypsubst.ML
 author wenzelm Sun, 22 Jul 2007 21:20:53 +0200 changeset 23908 edca7f581c09 parent 21588 cd0dc678a205 child 26833 7c3757fccf0e permissions -rw-r--r--
blast_hyp_subst_tac: plain bool argument;
```
(*  Title:      Provers/hypsubst.ML
ID:         \$Id\$
Authors:    Martin D Coen, Tobias Nipkow and Lawrence C Paulson
Copyright   1995  University of Cambridge

Basic equational reasoning: hyp_subst_tac and methods "hypsubst", "subst".

Tactic to substitute using (at least) the assumption x=t in the rest
of the subgoal, and to delete (at least) that assumption.  Original
version due to Martin Coen.

This version uses the simplifier, and requires it to be already present.

Test data:

Goal "!!x.[| Q(x,y,z); y=x; a=x; z=y; P(y) |] ==> P(z)";
Goal "!!x.[| Q(x,y,z); z=f(x); x=z |] ==> P(z)";
Goal "!!y. [| ?x=y; P(?x) |] ==> y = a";
Goal "!!z. [| ?x=y; P(?x) |] ==> y = a";

Goal "!!x a. [| x = f(b); g(a) = b |] ==> P(x)";

by (bound_hyp_subst_tac 1);
by (hyp_subst_tac 1);

Here hyp_subst_tac goes wrong; harder still to prove P(f(f(a))) & P(f(a))
Goal "P(a) --> (EX y. a=y --> P(f(a)))";

Goal "!!x. [| Q(x,h1); P(a,h2); R(x,y,h3); R(y,z,h4); x=f(y); \
\                 P(x,h5); P(y,h6); K(x,h7) |] ==> Q(x,c)";
by (blast_hyp_subst_tac true 1);
*)

signature HYPSUBST_DATA =
sig
val dest_Trueprop    : term -> term
val dest_eq          : term -> term * term
val dest_imp         : term -> term * term
val eq_reflection    : thm               (* a=b ==> a==b *)
val rev_eq_reflection: thm               (* a==b ==> a=b *)
val imp_intr         : thm               (* (P ==> Q) ==> P-->Q *)
val rev_mp           : thm               (* [| P;  P-->Q |] ==> Q *)
val subst            : thm               (* [| a=b;  P(a) |] ==> P(b) *)
val sym              : thm               (* a=b ==> b=a *)
val thin_refl        : thm               (* [|x=x; PROP W|] ==> PROP W *)
end;

signature HYPSUBST =
sig
val bound_hyp_subst_tac    : int -> tactic
val hyp_subst_tac          : int -> tactic
val blast_hyp_subst_tac    : bool -> int -> tactic
val stac                   : thm -> int -> tactic
val hypsubst_setup         : theory -> theory
end;

functor HypsubstFun(Data: HYPSUBST_DATA): HYPSUBST =
struct

exception EQ_VAR;

fun loose (i,t) = member (op =) (add_loose_bnos (t, i, [])) 0;

(*Simplifier turns Bound variables to special Free variables:
change it back (any Bound variable will do)*)
fun contract t =
(case Pattern.eta_contract_atom t of
Free (a, T) => if Name.is_bound a then Bound 0 else Free (a, T)
| t' => t');

val has_vars = Term.exists_subterm Term.is_Var;
val has_tvars = Term.exists_type (Term.exists_subtype Term.is_TVar);

(*If novars then we forbid Vars in the equality.
If bnd then we only look for Bound variables to eliminate.
When can we safely delete the equality?
Not if it equates two constants; consider 0=1.
Not if it resembles x=t[x], since substitution does not eliminate x.
Not if it resembles ?x=0; consider ?x=0 ==> ?x=1 or even ?x=0 ==> P
Not if it involves a variable free in the premises,
but we can't check for this -- hence bnd and bound_hyp_subst_tac
Prefer to eliminate Bound variables if possible.
Result:  true = use as is,  false = reorient first *)
fun inspect_pair bnd novars (t, u) =
if novars andalso (has_tvars t orelse has_tvars u)
then raise Match   (*variables in the type!*)
else
case (contract t, contract u) of
(Bound i, _) => if loose(i,u) orelse novars andalso has_vars u
then raise Match
else true                (*eliminates t*)
| (_, Bound i) => if loose(i,t) orelse novars andalso has_vars t
then raise Match
else false               (*eliminates u*)
| (Free _, _) =>  if bnd orelse Logic.occs(t,u) orelse
novars andalso has_vars u
then raise Match
else true                (*eliminates t*)
| (_, Free _) =>  if bnd orelse Logic.occs(u,t) orelse
novars andalso has_vars t
then raise Match
else false               (*eliminates u*)
| _ => raise Match;

(*Locates a substitutable variable on the left (resp. right) of an equality
assumption.  Returns the number of intervening assumptions. *)
fun eq_var bnd novars =
let fun eq_var_aux k (Const("all",_) \$ Abs(_,_,t)) = eq_var_aux k t
| eq_var_aux k (Const("==>",_) \$ A \$ B) =
((k, inspect_pair bnd novars
(Data.dest_eq (Data.dest_Trueprop A)))
handle TERM _ => eq_var_aux (k+1) B
| Match => eq_var_aux (k+1) B)
| eq_var_aux k _ = raise EQ_VAR
in  eq_var_aux 0  end;

(*For the simpset.  Adds ALL suitable equalities, even if not first!
No vars are allowed here, as simpsets are built from meta-assumptions*)
fun mk_eqs bnd th =
[ if inspect_pair bnd false (Data.dest_eq
(Data.dest_Trueprop (#prop (rep_thm th))))
then th RS Data.eq_reflection
else symmetric(th RS Data.eq_reflection) (*reorient*) ]
handle TERM _ => [] | Match => [];

local
in

(*Select a suitable equality assumption; substitute throughout the subgoal
If bnd is true, then it replaces Bound variables only. *)
fun gen_hyp_subst_tac bnd =
let fun tac i st = SUBGOAL (fn (Bi, _) =>
let
val (k, _) = eq_var bnd true Bi
val hyp_subst_ss = Simplifier.theory_context (Thm.theory_of_thm st) empty_ss
setmksimps (mk_eqs bnd)
in EVERY [rotate_tac k i, asm_lr_simp_tac hyp_subst_ss i,
etac thin_rl i, rotate_tac (~k) i]
end handle THM _ => no_tac | EQ_VAR => no_tac) i st
in REPEAT_DETERM1 o tac end;

end;

val ssubst = standard (Data.sym RS Data.subst);

val imp_intr_tac = rtac Data.imp_intr;

(*Old version of the tactic above -- slower but the only way
to handle equalities containing Vars.*)
fun vars_gen_hyp_subst_tac bnd = SUBGOAL(fn (Bi,i) =>
let val n = length(Logic.strip_assums_hyp Bi) - 1
val (k,symopt) = eq_var bnd false Bi
in
DETERM
(EVERY [REPEAT_DETERM_N k (etac Data.rev_mp i),
rotate_tac 1 i,
REPEAT_DETERM_N (n-k) (etac Data.rev_mp i),
etac (if symopt then ssubst else Data.subst) i,
REPEAT_DETERM_N n (imp_intr_tac i THEN rotate_tac ~1 i)])
end
handle THM _ => no_tac | EQ_VAR => no_tac);

val hyp_subst_tac = FIRST' [ematch_tac [Data.thin_refl],
gen_hyp_subst_tac false, vars_gen_hyp_subst_tac false];

(*Substitutes for Bound variables only -- this is always safe*)
val bound_hyp_subst_tac =
gen_hyp_subst_tac true ORELSE' vars_gen_hyp_subst_tac true;

(** Version for Blast_tac.  Hyps that are affected by the substitution are
moved to the front.  Defect: even trivial changes are noticed, such as
substitutions in the arguments of a function Var. **)

(*final re-reversal of the changed assumptions*)
fun reverse_n_tac 0 i = all_tac
| reverse_n_tac 1 i = rotate_tac ~1 i
| reverse_n_tac n i =
REPEAT_DETERM_N n (rotate_tac ~1 i THEN etac Data.rev_mp i) THEN
REPEAT_DETERM_N n (imp_intr_tac i THEN rotate_tac ~1 i);

(*Use imp_intr, comparing the old hyps with the new ones as they come out.*)
fun all_imp_intr_tac hyps i =
let fun imptac (r, [])    st = reverse_n_tac r i st
| imptac (r, hyp::hyps) st =
let val (hyp',_) = List.nth (prems_of st, i-1) |>
Logic.strip_assums_concl    |>
Data.dest_Trueprop          |> Data.dest_imp
val (r',tac) = if Pattern.aeconv (hyp,hyp')
then (r, imp_intr_tac i THEN rotate_tac ~1 i)
else (*leave affected hyps at end*)
(r+1, imp_intr_tac i)
in
case Seq.pull(tac st) of
NONE       => Seq.single(st)
| SOME(st',_) => imptac (r',hyps) st'
end
in  imptac (0, rev hyps)  end;

fun blast_hyp_subst_tac trace = SUBGOAL(fn (Bi,i) =>
let val (k,symopt) = eq_var false false Bi
val hyps0 = map Data.dest_Trueprop (Logic.strip_assums_hyp Bi)
(*omit selected equality, returning other hyps*)
val hyps = List.take(hyps0, k) @ List.drop(hyps0, k+1)
val n = length hyps
in
if trace then tracing "Substituting an equality" else ();
DETERM
(EVERY [REPEAT_DETERM_N k (etac Data.rev_mp i),
rotate_tac 1 i,
REPEAT_DETERM_N (n-k) (etac Data.rev_mp i),
etac (if symopt then ssubst else Data.subst) i,
all_imp_intr_tac hyps i])
end
handle THM _ => no_tac | EQ_VAR => no_tac);

(*apply an equality or definition ONCE;
fails unless the substitution has an effect*)
fun stac th =
let val th' = th RS Data.rev_eq_reflection handle THM _ => th
in CHANGED_GOAL (rtac (th' RS ssubst)) end;

(* theory setup *)

val hypsubst_setup =