summary |
shortlog |
changelog |
graph |
tags |
bookmarks |
branches |
files |
changeset |
file |
latest |
revisions |
annotate |
diff |
comparison |
raw |
help

doc-src/Intro/deriv.txt

author | oheimb |

Wed, 12 Nov 1997 18:58:50 +0100 | |

changeset 4223 | f60e3d2c81d3 |

parent 105 | 216d6ed87399 |

child 14148 | 6580d374a509 |

permissions | -rw-r--r-- |

added thin_refl to hyp_subst_tac

(* Deriving an inference rule *) Pretty.setmargin 72; (*existing macros just allow this margin*) print_depth 0; val [major,minor] = goal Int_Rule.thy "[| P&Q; [| P; Q |] ==> R |] ==> R"; prth minor; by (resolve_tac [minor] 1); prth major; prth (major RS conjunct1); by (resolve_tac [major RS conjunct1] 1); prth (major RS conjunct2); by (resolve_tac [major RS conjunct2] 1); prth (topthm()); val conjE = prth(result()); - val [major,minor] = goal Int_Rule.thy = "[| P&Q; [| P; Q |] ==> R |] ==> R"; Level 0 R 1. R val major = Thm {hyps=#,maxidx=#,prop=#,sign=#} : thm val minor = Thm {hyps=#,maxidx=#,prop=#,sign=#} : thm - prth minor; [| P; Q |] ==> R [[| P; Q |] ==> R] - by (resolve_tac [minor] 1); Level 1 R 1. P 2. Q - prth major; P & Q [P & Q] - prth (major RS conjunct1); P [P & Q] - by (resolve_tac [major RS conjunct1] 1); Level 2 R 1. Q - prth (major RS conjunct2); Q [P & Q] - by (resolve_tac [major RS conjunct2] 1); Level 3 R No subgoals! - prth (topthm()); R [P & Q, P & Q, [| P; Q |] ==> R] - val conjE = prth(result()); [| ?P & ?Q; [| ?P; ?Q |] ==> ?R |] ==> ?R val conjE = Thm {hyps=#,maxidx=#,prop=#,sign=#} : thm (*** Derived rules involving definitions ***) (** notI **) val prems = goal Int_Rule.thy "(P ==> False) ==> ~P"; prth not_def; by (rewrite_goals_tac [not_def]); by (resolve_tac [impI] 1); by (resolve_tac prems 1); by (assume_tac 1); val notI = prth(result()); val prems = goalw Int_Rule.thy [not_def] "(P ==> False) ==> ~P"; - prth not_def; ~?P == ?P --> False - val prems = goal Int_Rule.thy "(P ==> False) ==> ~P"; Level 0 ~P 1. ~P - by (rewrite_goals_tac [not_def]); Level 1 ~P 1. P --> False - by (resolve_tac [impI] 1); Level 2 ~P 1. P ==> False - by (resolve_tac prems 1); Level 3 ~P 1. P ==> P - by (assume_tac 1); Level 4 ~P No subgoals! - val notI = prth(result()); (?P ==> False) ==> ~?P val notI = # : thm - val prems = goalw Int_Rule.thy [not_def] = "(P ==> False) ==> ~P"; Level 0 ~P 1. P --> False (** notE **) val [major,minor] = goal Int_Rule.thy "[| ~P; P |] ==> R"; by (resolve_tac [FalseE] 1); by (resolve_tac [mp] 1); prth (rewrite_rule [not_def] major); by (resolve_tac [it] 1); by (resolve_tac [minor] 1); val notE = prth(result()); val [major,minor] = goalw Int_Rule.thy [not_def] "[| ~P; P |] ==> R"; prth (minor RS (major RS mp RS FalseE)); by (resolve_tac [it] 1); val prems = goalw Int_Rule.thy [not_def] "[| ~P; P |] ==> R"; prths prems; by (resolve_tac [FalseE] 1); by (resolve_tac [mp] 1); by (resolve_tac prems 1); by (resolve_tac prems 1); val notE = prth(result()); - val [major,minor] = goal Int_Rule.thy "[| ~P; P |] ==> R"; Level 0 R 1. R val major = # : thm val minor = # : thm - by (resolve_tac [FalseE] 1); Level 1 R 1. False - by (resolve_tac [mp] 1); Level 2 R 1. ?P1 --> False 2. ?P1 - prth (rewrite_rule [not_def] major); P --> False [~P] - by (resolve_tac [it] 1); Level 3 R 1. P - by (resolve_tac [minor] 1); Level 4 R No subgoals! - val notE = prth(result()); [| ~?P; ?P |] ==> ?R val notE = # : thm - val [major,minor] = goalw Int_Rule.thy [not_def] = "[| ~P; P |] ==> R"; Level 0 R 1. R val major = # : thm val minor = # : thm - prth (minor RS (major RS mp RS FalseE)); ?P [P, ~P] - by (resolve_tac [it] 1); Level 1 R No subgoals! - goal Int_Rule.thy "[| ~P; P |] ==> R"; Level 0 R 1. R - prths (map (rewrite_rule [not_def]) it); P --> False [~P] P [P] - val prems = goalw Int_Rule.thy [not_def] = "[| ~P; P |] ==> R"; Level 0 R 1. R val prems = # : thm list - prths prems; P --> False [~P] P [P] - by (resolve_tac [mp RS FalseE] 1); Level 1 R 1. ?P1 --> False 2. ?P1 - by (resolve_tac prems 1); Level 2 R 1. P - by (resolve_tac prems 1); Level 3 R No subgoals! - val notE = prth(result()); [| ~?P; ?P |] ==> ?R val notE = # : thm