src/FOLP/FOLP.thy
 author wenzelm Sun, 18 Sep 2005 14:25:48 +0200 changeset 17480 fd19f77dcf60 parent 3836 f1a1817659e6 child 22577 1a08fce38565 permissions -rw-r--r--
converted to Isar theory format;

(*  Title:      FOLP/FOLP.thy
ID:         \$Id\$
Author:     Martin D Coen, Cambridge University Computer Laboratory
*)

header {* Classical First-Order Logic with Proofs *}

theory FOLP
imports IFOLP
uses
("FOLP_lemmas.ML") ("hypsubst.ML") ("classical.ML")
("simp.ML") ("intprover.ML") ("simpdata.ML")
begin

consts
cla :: "[p=>p]=>p"
axioms
classical: "(!!x. x:~P ==> f(x):P) ==> cla(f):P"

ML {* use_legacy_bindings (the_context ()) *}

use "FOLP_lemmas.ML"

use "hypsubst.ML"
use "classical.ML"      (* Patched 'cos matching won't instantiate proof *)
use "simp.ML"           (* Patched 'cos matching won't instantiate proof *)

ML {*

(*** Applying HypsubstFun to generate hyp_subst_tac ***)

structure Hypsubst_Data =
struct
(*Take apart an equality judgement; otherwise raise Match!*)
fun dest_eq (Const("Proof",_) \$ (Const("op =",_)  \$ t \$ u) \$ _) = (t,u);

val imp_intr = impI

(*etac rev_cut_eq moves an equality to be the last premise. *)
val rev_cut_eq = prove_goal (the_context ())
"[| p:a=b;  !!x. x:a=b ==> f(x):R |] ==> ?p:R"
(fn prems => [ REPEAT(resolve_tac prems 1) ]);

val rev_mp = rev_mp
val subst = subst
val sym = sym
val thin_refl = prove_goal (the_context ())
"!!X. [|p:x=x; PROP W|] ==> PROP W" (K [atac 1]);
end;

structure Hypsubst = HypsubstFun(Hypsubst_Data);
open Hypsubst;
*}

use "intprover.ML"

ML {*
(*** Applying ClassicalFun to create a classical prover ***)
structure Classical_Data =
struct
val sizef = size_of_thm
val mp = mp
val not_elim = notE
val swap = swap
val hyp_subst_tacs=[hyp_subst_tac]
end;

structure Cla = ClassicalFun(Classical_Data);
open Cla;

(*Propositional rules
-- iffCE might seem better, but in the examples in ex/cla
run about 7% slower than with iffE*)
val prop_cs = empty_cs addSIs [refl,TrueI,conjI,disjCI,impI,notI,iffI]