src/FOLP/ex/Nat.thy
author wenzelm
Sun, 18 Sep 2005 14:25:48 +0200
changeset 17480 fd19f77dcf60
parent 1477 4c51ab632cda
child 25991 31b38a39e589
permissions -rw-r--r--
converted to Isar theory format;

(*  Title:      FOLP/ex/nat.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge
*)

header {* Theory of the natural numbers: Peano's axioms, primitive recursion *}

theory Nat
imports FOLP
begin

typedecl nat
arities nat         :: "term"
consts  "0"         :: "nat"    ("0")
        Suc         :: "nat=>nat"
        rec         :: "[nat, 'a, [nat,'a]=>'a] => 'a"
        "+"         :: "[nat, nat] => nat"              (infixl 60)

  (*Proof terms*)
       nrec         :: "[nat,p,[nat,p]=>p]=>p"
       ninj         :: "p=>p"
       nneq         :: "p=>p"
       rec0         :: "p"
       recSuc       :: "p"

axioms
  induct:     "[| b:P(0); !!x u. u:P(x) ==> c(x,u):P(Suc(x))
              |] ==> nrec(n,b,c):P(n)"

  Suc_inject: "p:Suc(m)=Suc(n) ==> ninj(p) : m=n"
  Suc_neq_0:  "p:Suc(m)=0      ==> nneq(p) : R"
  rec_0:      "rec0 : rec(0,a,f) = a"
  rec_Suc:    "recSuc : rec(Suc(m), a, f) = f(m, rec(m,a,f))"
  add_def:    "m+n == rec(m, n, %x y. Suc(y))"

  nrecB0:     "b: A ==> nrec(0,b,c) = b : A"
  nrecBSuc:   "c(n,nrec(n,b,c)) : A ==> nrec(Suc(n),b,c) = c(n,nrec(n,b,c)) : A"

ML {* use_legacy_bindings (the_context ()) *}

end