src/ZF/Cardinal_AC.thy
author paulson
Tue, 06 Mar 2012 16:06:52 +0000
changeset 46821 ff6b0c1087f2
parent 46820 c656222c4dc1
child 46954 d8b3412cdb99
permissions -rw-r--r--
Using mathematical notation for <-> and cardinal arithmetic

(*  Title:      ZF/Cardinal_AC.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1994  University of Cambridge

These results help justify infinite-branching datatypes
*)

header{*Cardinal Arithmetic Using AC*}

theory Cardinal_AC imports CardinalArith Zorn begin

subsection{*Strengthened Forms of Existing Theorems on Cardinals*}

lemma cardinal_eqpoll: "|A| eqpoll A"
apply (rule AC_well_ord [THEN exE])
apply (erule well_ord_cardinal_eqpoll)
done

text{*The theorem @{term "||A|| = |A|"} *}
lemmas cardinal_idem = cardinal_eqpoll [THEN cardinal_cong, simp]

lemma cardinal_eqE: "|X| = |Y| ==> X eqpoll Y"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cardinal_eqE, assumption+)
done

lemma cardinal_eqpoll_iff: "|X| = |Y| \<longleftrightarrow> X eqpoll Y"
by (blast intro: cardinal_cong cardinal_eqE)

lemma cardinal_disjoint_Un:
     "[| |A|=|B|;  |C|=|D|;  A \<inter> C = 0;  B \<inter> D = 0 |]
      ==> |A \<union> C| = |B \<union> D|"
by (simp add: cardinal_eqpoll_iff eqpoll_disjoint_Un)

lemma lepoll_imp_Card_le: "A lepoll B ==> |A| \<le> |B|"
apply (rule AC_well_ord [THEN exE])
apply (erule well_ord_lepoll_imp_Card_le, assumption)
done

lemma cadd_assoc: "(i \<oplus> j) \<oplus> k = i \<oplus> (j \<oplus> k)"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cadd_assoc, assumption+)
done

lemma cmult_assoc: "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cmult_assoc, assumption+)
done

lemma cadd_cmult_distrib: "(i \<oplus> j) \<otimes> k = (i \<otimes> k) \<oplus> (j \<otimes> k)"
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule AC_well_ord [THEN exE])
apply (rule well_ord_cadd_cmult_distrib, assumption+)
done

lemma InfCard_square_eq: "InfCard(|A|) ==> A*A eqpoll A"
apply (rule AC_well_ord [THEN exE])
apply (erule well_ord_InfCard_square_eq, assumption)
done


subsection {*The relationship between cardinality and le-pollence*}

lemma Card_le_imp_lepoll: "|A| \<le> |B| ==> A lepoll B"
apply (rule cardinal_eqpoll
              [THEN eqpoll_sym, THEN eqpoll_imp_lepoll, THEN lepoll_trans])
apply (erule le_imp_subset [THEN subset_imp_lepoll, THEN lepoll_trans])
apply (rule cardinal_eqpoll [THEN eqpoll_imp_lepoll])
done

lemma le_Card_iff: "Card(K) ==> |A| \<le> K \<longleftrightarrow> A lepoll K"
apply (erule Card_cardinal_eq [THEN subst], rule iffI,
       erule Card_le_imp_lepoll)
apply (erule lepoll_imp_Card_le)
done

lemma cardinal_0_iff_0 [simp]: "|A| = 0 \<longleftrightarrow> A = 0";
apply auto
apply (drule cardinal_0 [THEN ssubst])
apply (blast intro: eqpoll_0_iff [THEN iffD1] cardinal_eqpoll_iff [THEN iffD1])
done

lemma cardinal_lt_iff_lesspoll: "Ord(i) ==> i < |A| \<longleftrightarrow> i lesspoll A"
apply (cut_tac A = "A" in cardinal_eqpoll)
apply (auto simp add: eqpoll_iff)
apply (blast intro: lesspoll_trans2 lt_Card_imp_lesspoll Card_cardinal)
apply (force intro: cardinal_lt_imp_lt lesspoll_cardinal_lt lesspoll_trans2
             simp add: cardinal_idem)
done

lemma cardinal_le_imp_lepoll: " i \<le> |A| ==> i \<lesssim> A"
apply (blast intro: lt_Ord Card_le_imp_lepoll Ord_cardinal_le le_trans)
done


subsection{*Other Applications of AC*}

lemma surj_implies_inj: "f: surj(X,Y) ==> \<exists>g. g: inj(Y,X)"
apply (unfold surj_def)
apply (erule CollectE)
apply (rule_tac A1 = Y and B1 = "%y. f-``{y}" in AC_Pi [THEN exE])
apply (fast elim!: apply_Pair)
apply (blast dest: apply_type Pi_memberD
             intro: apply_equality Pi_type f_imp_injective)
done

(*Kunen's Lemma 10.20*)
lemma surj_implies_cardinal_le: "f: surj(X,Y) ==> |Y| \<le> |X|"
apply (rule lepoll_imp_Card_le)
apply (erule surj_implies_inj [THEN exE])
apply (unfold lepoll_def)
apply (erule exI)
done

(*Kunen's Lemma 10.21*)
lemma cardinal_UN_le:
     "[| InfCard(K);  \<forall>i\<in>K. |X(i)| \<le> K |] ==> |\<Union>i\<in>K. X(i)| \<le> K"
apply (simp add: InfCard_is_Card le_Card_iff)
apply (rule lepoll_trans)
 prefer 2
 apply (rule InfCard_square_eq [THEN eqpoll_imp_lepoll])
 apply (simp add: InfCard_is_Card Card_cardinal_eq)
apply (unfold lepoll_def)
apply (frule InfCard_is_Card [THEN Card_is_Ord])
apply (erule AC_ball_Pi [THEN exE])
apply (rule exI)
(*Lemma needed in both subgoals, for a fixed z*)
apply (subgoal_tac "\<forall>z\<in>(\<Union>i\<in>K. X (i)). z: X (LEAST i. z:X (i)) &
                    (LEAST i. z:X (i)) \<in> K")
 prefer 2
 apply (fast intro!: Least_le [THEN lt_trans1, THEN ltD] ltI
             elim!: LeastI Ord_in_Ord)
apply (rule_tac c = "%z. <LEAST i. z:X (i), f ` (LEAST i. z:X (i)) ` z>"
            and d = "%<i,j>. converse (f`i) ` j" in lam_injective)
(*Instantiate the lemma proved above*)
by (blast intro: inj_is_fun [THEN apply_type] dest: apply_type, force)


(*The same again, using csucc*)
lemma cardinal_UN_lt_csucc:
     "[| InfCard(K);  \<forall>i\<in>K. |X(i)| < csucc(K) |]
      ==> |\<Union>i\<in>K. X(i)| < csucc(K)"
by (simp add: Card_lt_csucc_iff cardinal_UN_le InfCard_is_Card Card_cardinal)

(*The same again, for a union of ordinals.  In use, j(i) is a bit like rank(i),
  the least ordinal j such that i:Vfrom(A,j). *)
lemma cardinal_UN_Ord_lt_csucc:
     "[| InfCard(K);  \<forall>i\<in>K. j(i) < csucc(K) |]
      ==> (\<Union>i\<in>K. j(i)) < csucc(K)"
apply (rule cardinal_UN_lt_csucc [THEN Card_lt_imp_lt], assumption)
apply (blast intro: Ord_cardinal_le [THEN lt_trans1] elim: ltE)
apply (blast intro!: Ord_UN elim: ltE)
apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN Card_csucc])
done


(** Main result for infinite-branching datatypes.  As above, but the index
    set need not be a cardinal.  Surprisingly complicated proof!
**)

(*Work backwards along the injection from W into K, given that @{term"W\<noteq>0"}.*)
lemma inj_UN_subset:
     "[| f: inj(A,B);  a:A |] ==>
      (\<Union>x\<in>A. C(x)) \<subseteq> (\<Union>y\<in>B. C(if y: range(f) then converse(f)`y else a))"
apply (rule UN_least)
apply (rule_tac x1= "f`x" in subset_trans [OF _ UN_upper])
 apply (simp add: inj_is_fun [THEN apply_rangeI])
apply (blast intro: inj_is_fun [THEN apply_type])
done

(*Simpler to require |W|=K; we'd have a bijection; but the theorem would
  be weaker.*)
lemma le_UN_Ord_lt_csucc:
     "[| InfCard(K);  |W| \<le> K;  \<forall>w\<in>W. j(w) < csucc(K) |]
      ==> (\<Union>w\<in>W. j(w)) < csucc(K)"
apply (case_tac "W=0")
(*solve the easy 0 case*)
 apply (simp add: InfCard_is_Card Card_is_Ord [THEN Card_csucc]
                  Card_is_Ord Ord_0_lt_csucc)
apply (simp add: InfCard_is_Card le_Card_iff lepoll_def)
apply (safe intro!: equalityI)
apply (erule swap)
apply (rule lt_subset_trans [OF inj_UN_subset cardinal_UN_Ord_lt_csucc], assumption+)
 apply (simp add: inj_converse_fun [THEN apply_type])
apply (blast intro!: Ord_UN elim: ltE)
done

end