Thu, 17 Jan 2013 14:38:12 +0100 simplified prove of compact_imp_bounded
hoelzl [Thu, 17 Jan 2013 14:38:12 +0100] rev 50944
simplified prove of compact_imp_bounded
Thu, 17 Jan 2013 13:58:02 +0100 use accumulation point characterization (avoids t1_space restriction for equivalence of countable and sequential compactness); remove heine_borel_lemma
hoelzl [Thu, 17 Jan 2013 13:58:02 +0100] rev 50943
use accumulation point characterization (avoids t1_space restriction for equivalence of countable and sequential compactness); remove heine_borel_lemma
Thu, 17 Jan 2013 13:21:34 +0100 move auxiliary lemma to top
hoelzl [Thu, 17 Jan 2013 13:21:34 +0100] rev 50942
move auxiliary lemma to top
Thu, 17 Jan 2013 13:20:17 +0100 add countable compacteness; replace finite_range_imp_infinite_repeats by pigeonhole_infinite
hoelzl [Thu, 17 Jan 2013 13:20:17 +0100] rev 50941
add countable compacteness; replace finite_range_imp_infinite_repeats by pigeonhole_infinite
Thu, 17 Jan 2013 12:26:54 +0100 group compactness-eq-seq-compactness lemmas together
hoelzl [Thu, 17 Jan 2013 12:26:54 +0100] rev 50940
group compactness-eq-seq-compactness lemmas together
Thu, 17 Jan 2013 12:21:24 +0100 replace convergent_imp_cauchy by LIMSEQ_imp_Cauchy
hoelzl [Thu, 17 Jan 2013 12:21:24 +0100] rev 50939
replace convergent_imp_cauchy by LIMSEQ_imp_Cauchy
Thu, 17 Jan 2013 12:09:48 +0100 tuned
hoelzl [Thu, 17 Jan 2013 12:09:48 +0100] rev 50938
tuned
Thu, 17 Jan 2013 12:09:21 +0100 removed subseq_bigger (replaced by seq_suble)
hoelzl [Thu, 17 Jan 2013 12:09:21 +0100] rev 50937
removed subseq_bigger (replaced by seq_suble)
Thu, 17 Jan 2013 11:59:12 +0100 countablility of finite subsets and rational numbers
hoelzl [Thu, 17 Jan 2013 11:59:12 +0100] rev 50936
countablility of finite subsets and rational numbers
Thu, 17 Jan 2013 11:57:17 +0100 generalize compact_path_image to topological_space
hoelzl [Thu, 17 Jan 2013 11:57:17 +0100] rev 50935
generalize compact_path_image to topological_space
(0) -30000 -10000 -3000 -1000 -300 -100 -10 +10 +100 +300 +1000 +3000 +10000 tip