Wed, 06 May 2009 16:01:07 +0200 adaptation replaces adaption
haftmann [Wed, 06 May 2009 16:01:07 +0200] rev 31050
adaptation replaces adaption
Wed, 06 May 2009 16:01:06 +0200 explicit type arguments in constants
haftmann [Wed, 06 May 2009 16:01:06 +0200] rev 31049
explicit type arguments in constants
Wed, 06 May 2009 16:01:06 +0200 refined HOL string theories and corresponding ML fragments
haftmann [Wed, 06 May 2009 16:01:06 +0200] rev 31048
refined HOL string theories and corresponding ML fragments
Wed, 06 May 2009 16:01:05 +0200 tuned description of overloading
haftmann [Wed, 06 May 2009 16:01:05 +0200] rev 31047
tuned description of overloading
Wed, 06 May 2009 16:01:05 +0200 confine term setup to Eval serialiser
haftmann [Wed, 06 May 2009 16:01:05 +0200] rev 31046
confine term setup to Eval serialiser
Wed, 06 May 2009 16:01:05 +0200 updated generated file
haftmann [Wed, 06 May 2009 16:01:05 +0200] rev 31045
updated generated file
Wed, 06 May 2009 19:15:40 +0200 new lemmas
nipkow [Wed, 06 May 2009 19:15:40 +0200] rev 31044
new lemmas
Wed, 06 May 2009 09:58:24 +0200 merged
nipkow [Wed, 06 May 2009 09:58:24 +0200] rev 31043
merged
Wed, 06 May 2009 10:55:47 +1000 Prototype introiff option for find_theorems.
Timothy Bourke [Wed, 06 May 2009 10:55:47 +1000] rev 31042
Prototype introiff option for find_theorems. This feature was suggested by Jeremy Avigad / Tobias Nipkow. It adds an introiff keyword for find_theorems that returns, in addition to the usual results for intro, any theorems of the form ([| ... |] ==> (P = Q)) where either P or Q matches the conclusions of the current goal. Such theorems can be made introduction rules with [THEN iffDx]. The current patch is for evaluation only. It assumes an (op = : 'a -> 'a -> bool) operator, which is specific to HOL. It is not clear how this should be generalised.
Wed, 06 May 2009 00:57:29 -0700 replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman [Wed, 06 May 2009 00:57:29 -0700] rev 31041
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
(0) -30000 -10000 -3000 -1000 -300 -100 -10 +10 +100 +300 +1000 +3000 +10000 +30000 tip