Thu, 02 Dec 2010 15:37:32 +0100 merged
wenzelm [Thu, 02 Dec 2010 15:37:32 +0100] rev 40877
merged
Thu, 02 Dec 2010 15:32:48 +0100 merged
hoelzl [Thu, 02 Dec 2010 15:32:48 +0100] rev 40876
merged
Thu, 02 Dec 2010 15:09:02 +0100 generalized simple_functionD
hoelzl [Thu, 02 Dec 2010 15:09:02 +0100] rev 40875
generalized simple_functionD
Thu, 02 Dec 2010 14:57:50 +0100 Moved theorems to appropriate place.
hoelzl [Thu, 02 Dec 2010 14:57:50 +0100] rev 40874
Moved theorems to appropriate place.
Thu, 02 Dec 2010 14:57:21 +0100 Shorter definition for positive_integral.
hoelzl [Thu, 02 Dec 2010 14:57:21 +0100] rev 40873
Shorter definition for positive_integral.
Thu, 02 Dec 2010 14:34:58 +0100 Move SUP_commute, SUP_less_iff to HOL image;
hoelzl [Thu, 02 Dec 2010 14:34:58 +0100] rev 40872
Move SUP_commute, SUP_less_iff to HOL image; Cleanup generic complete_lattice lemmas in Positive_Infinite_Real; Cleanup lemma positive_integral_alt;
Wed, 01 Dec 2010 21:03:02 +0100 Generalized simple_functionD and less_SUP_iff.
hoelzl [Wed, 01 Dec 2010 21:03:02 +0100] rev 40871
Generalized simple_functionD and less_SUP_iff. Moved theorems to appropriate places.
Wed, 01 Dec 2010 20:12:53 +0100 Tuned setup for borel_measurable with min, max and psuminf.
hoelzl [Wed, 01 Dec 2010 20:12:53 +0100] rev 40870
Tuned setup for borel_measurable with min, max and psuminf.
Wed, 01 Dec 2010 20:09:41 +0100 Replace algebra_eqI by algebra.equality;
hoelzl [Wed, 01 Dec 2010 20:09:41 +0100] rev 40869
Replace algebra_eqI by algebra.equality; Move sets_sigma_subset to Sigma_Algebra;
Thu, 02 Dec 2010 14:56:16 +0100 give the Isabelle proof the benefice of the doubt when the Isabelle theorem has fewer literals than the Metis one -- this makes a difference on lemma "Let (x::'a, y::'a) (inv_image (r::'b * 'b => bool) (f::'a => 'b)) = ((f x, f y) : r)" apply (metis in_inv_image mem_def)
blanchet [Thu, 02 Dec 2010 14:56:16 +0100] rev 40868
give the Isabelle proof the benefice of the doubt when the Isabelle theorem has fewer literals than the Metis one -- this makes a difference on lemma "Let (x::'a, y::'a) (inv_image (r::'b * 'b => bool) (f::'a => 'b)) = ((f x, f y) : r)" apply (metis in_inv_image mem_def)
(0) -30000 -10000 -3000 -1000 -300 -100 -10 +10 +100 +300 +1000 +3000 +10000 +30000 tip