2015-10-13 haftmann 2015-10-13 prod_case as canonical name for product type eliminator
2015-09-06 haftmann 2015-09-06 prefer "uncurry" as canonical name for case distinction on products in combinatorial view
2015-07-25 wenzelm 2015-07-25 updated to infer_instantiate; tuned;
2015-07-08 wenzelm 2015-07-08 clarified context;
2015-03-06 wenzelm 2015-03-06 Thm.cterm_of and Thm.ctyp_of operate on local context;
2015-03-04 wenzelm 2015-03-04 tuned signature -- prefer qualified names;
2015-03-03 traytel 2015-03-03 eliminated some clones of Proof_Context.cterm_of
2015-02-10 wenzelm 2015-02-10 proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.; occasionally clarified use of context;
2014-11-26 wenzelm 2014-11-26 renamed "pairself" to "apply2", in accordance to @{apply 2};
2014-11-10 wenzelm 2014-11-10 proper context for assume_tac (atac remains as fall-back without context);
2014-10-30 wenzelm 2014-10-30 eliminated aliases;
2014-02-21 blanchet 2014-02-21 adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
2014-02-12 blanchet 2014-02-12 renamed '{prod,sum,bool,unit}_case' to 'case_...'
2013-04-27 wenzelm 2013-04-27 uniform Proof.context for hyp_subst_tac;
2013-04-18 wenzelm 2013-04-18 simplifier uses proper Proof.context instead of historic type simpset;
2013-02-28 wenzelm 2013-02-28 provide common HOLogic.conj_conv and HOLogic.eq_conv;
2013-02-28 wenzelm 2013-02-28 just one HOLogic.Trueprop_conv, with regular exception CTERM; tuned;
2012-11-08 bulwahn 2012-11-08 using hyp_subst_tac that allows to pass the current simpset to avoid the renamed bound variable warning in the simplifier
2012-11-08 bulwahn 2012-11-08 rewriting with the simpset that is passed to the simproc
2012-11-08 bulwahn 2012-11-08 handling x : S y pattern with the default mechanism instead of raising an exception in the set_comprehension_pointfree simproc
2012-11-08 bulwahn 2012-11-08 tuned
2012-11-08 bulwahn 2012-11-08 syntactic tuning and restructuring of set_comprehension_pointfree simproc
2012-11-08 bulwahn 2012-11-08 using more proper simpset in tactic of set_comprehension_pointfree simproc to avoid renamed bound variable warnings in recursive simplifier calls
2012-11-08 bulwahn 2012-11-08 improving the extension of sets in case of more than one bound variable; rearranging the tactic to prefer simpler steps before more involved ones
2012-11-08 bulwahn 2012-11-08 importing term with schematic type variables properly before passing it to the tactic in the set_comprehension_pointfree simproc
2012-11-08 bulwahn 2012-11-08 handling arbitrary terms in the set comprehension and more general merging of patterns possible in the set_comprehension_pointfree simproc
2012-11-08 bulwahn 2012-11-08 simplified structure of patterns in set_comprehension_simproc
2012-10-21 bulwahn 2012-10-21 another refinement in the comprehension conversion
2012-10-21 bulwahn 2012-10-21 refined simplifier call in comprehension_conv
2012-10-21 bulwahn 2012-10-21 passing around the simpset instead of the context; rewriting tactics to avoid the 'renamed bound variable' warnings in nested simplifier calls
2012-10-20 bulwahn 2012-10-20 improving tactic in setcomprehension_simproc
2012-10-20 bulwahn 2012-10-20 tuned tactic in set_comprehension_pointfree simproc to handle composition of negation and vimage
2012-10-20 bulwahn 2012-10-20 passing names and types of all bounds around in the simproc
2012-10-18 bulwahn 2012-10-18 locally inverting previously applied simplifications with ex_simps in set_comprehension_pointfree
2012-10-17 bulwahn 2012-10-17 comprehension conversion reuses suggested names for bound variables instead of invented fresh ones; tuned tactic
2012-10-17 bulwahn 2012-10-17 checking for bound variables in the set expression; handling negation more generally
2012-10-17 bulwahn 2012-10-17 refined conversion to only react on proper set comprehensions; tuned
2012-10-17 bulwahn 2012-10-17 employing a preprocessing conversion that rewrites {(x1, ..., xn). P x1 ... xn} to {(x1, ..., xn) | x1 ... xn. P x1 ... xn} in set_comprehension_pointfree simproc
2012-10-16 bulwahn 2012-10-16 tactic of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
2012-10-16 bulwahn 2012-10-16 term construction of set_comprehension_pointfree simproc handles f x y : S patterns with Set.vimage
2012-10-16 bulwahn 2012-10-16 extending preprocessing of simproc to rewrite subset inequality into membership of powerset
2012-10-15 bulwahn 2012-10-15 setcomprehension_pointfree simproc also works for set comprehension without an equation
2012-10-14 bulwahn 2012-10-14 refined tactic in set_comprehension_pointfree simproc
2012-10-14 bulwahn 2012-10-14 adding postprocessing of computed pointfree expression in set_comprehension_pointfree simproc
2012-10-14 bulwahn 2012-10-14 extending the setcomprehension_pointfree simproc to handle nesting disjunctions, conjunctions and negations (with contributions from Rafal Kolanski, NICTA); tuned
2012-10-12 bulwahn 2012-10-12 increading indexes to avoid clashes in the set_comprehension_pointfree simproc
2012-10-10 bulwahn 2012-10-10 adding necessary syntactic functions in set_comprehension_pointfree simproc as a first step to integrate an improved simproc
2012-10-10 bulwahn 2012-10-10 unfolding bounded existential quantifiers as first step in the set_comprehension_pointfree simproc
2012-10-10 bulwahn 2012-10-10 generalizing set_comprehension_pointfree simproc to work for arbitrary predicates (and not just the finite predicate)
2012-10-10 bulwahn 2012-10-10 set_comprehension_pointfree also handles terms where the equation is not at the first position, which is a necessary generalisation to eventually handle bounded existentials; tuned
2012-06-25 wenzelm 2012-06-25 merged, resolving conflict with 87c831e30f0a;
2012-06-25 wenzelm 2012-06-25 ignore morphism more explicitly; tuned headers;
2012-06-25 bulwahn 2012-06-25 adding set comprehension simproc to code generation's preprocessing to generate code for some set comprehensions; noting further steps with FIXME
2012-06-20 Rafal Kolanski 2012-06-20 Integrated set comprehension pointfree simproc.