wenzelm@16932: (* Title: HOL/Library/SetsAndFunctions.thy avigad@16908: Author: Jeremy Avigad and Kevin Donnelly avigad@16908: *) avigad@16908: avigad@16908: header {* Operations on sets and functions *} avigad@16908: avigad@16908: theory SetsAndFunctions haftmann@30738: imports Main avigad@16908: begin avigad@16908: wenzelm@19736: text {* avigad@16908: This library lifts operations like addition and muliplication to sets and avigad@16908: functions of appropriate types. It was designed to support asymptotic wenzelm@17161: calculations. See the comments at the top of theory @{text BigO}. avigad@16908: *} avigad@16908: wenzelm@19736: subsection {* Basic definitions *} avigad@16908: haftmann@25594: definition berghofe@26814: set_plus :: "('a::plus) set => 'a set => 'a set" (infixl "\" 65) where berghofe@26814: "A \ B == {c. EX a:A. EX b:B. c = a + b}" haftmann@25594: haftmann@25594: instantiation "fun" :: (type, plus) plus haftmann@25594: begin avigad@16908: haftmann@25594: definition haftmann@25594: func_plus: "f + g == (%x. f x + g x)" haftmann@25594: haftmann@25594: instance .. haftmann@25594: haftmann@25594: end haftmann@25594: haftmann@25594: definition berghofe@26814: set_times :: "('a::times) set => 'a set => 'a set" (infixl "\" 70) where berghofe@26814: "A \ B == {c. EX a:A. EX b:B. c = a * b}" haftmann@25594: haftmann@25594: instantiation "fun" :: (type, times) times haftmann@25594: begin haftmann@25594: haftmann@25594: definition haftmann@25594: func_times: "f * g == (%x. f x * g x)" avigad@16908: haftmann@25594: instance .. haftmann@25594: haftmann@25594: end haftmann@25594: haftmann@25594: haftmann@25594: instantiation "fun" :: (type, zero) zero haftmann@25594: begin haftmann@25594: haftmann@25594: definition haftmann@25594: func_zero: "0::(('a::type) => ('b::zero)) == %x. 0" haftmann@25594: haftmann@25594: instance .. haftmann@25594: haftmann@25594: end haftmann@25594: haftmann@25594: instantiation "fun" :: (type, one) one haftmann@25594: begin haftmann@25594: haftmann@25594: definition avigad@16908: func_one: "1::(('a::type) => ('b::one)) == %x. 1" haftmann@25594: haftmann@25594: instance .. haftmann@25594: haftmann@25594: end avigad@16908: wenzelm@19736: definition wenzelm@21404: elt_set_plus :: "'a::plus => 'a set => 'a set" (infixl "+o" 70) where wenzelm@19736: "a +o B = {c. EX b:B. c = a + b}" avigad@16908: wenzelm@21404: definition wenzelm@21404: elt_set_times :: "'a::times => 'a set => 'a set" (infixl "*o" 80) where wenzelm@19736: "a *o B = {c. EX b:B. c = a * b}" avigad@16908: wenzelm@19656: abbreviation (input) wenzelm@21404: elt_set_eq :: "'a => 'a set => bool" (infix "=o" 50) where wenzelm@19380: "x =o A == x : A" avigad@16908: krauss@20523: instance "fun" :: (type,semigroup_add)semigroup_add wenzelm@19380: by default (auto simp add: func_plus add_assoc) avigad@16908: krauss@20523: instance "fun" :: (type,comm_monoid_add)comm_monoid_add wenzelm@19380: by default (auto simp add: func_zero func_plus add_ac) avigad@16908: krauss@20523: instance "fun" :: (type,ab_group_add)ab_group_add wenzelm@19736: apply default berghofe@26814: apply (simp add: fun_Compl_def func_plus func_zero) berghofe@26814: apply (simp add: fun_Compl_def func_plus fun_diff_def diff_minus) wenzelm@19736: done avigad@16908: krauss@20523: instance "fun" :: (type,semigroup_mult)semigroup_mult wenzelm@19736: apply default avigad@16908: apply (auto simp add: func_times mult_assoc) wenzelm@19736: done avigad@16908: krauss@20523: instance "fun" :: (type,comm_monoid_mult)comm_monoid_mult wenzelm@19736: apply default wenzelm@19736: apply (auto simp add: func_one func_times mult_ac) wenzelm@19736: done avigad@16908: krauss@20523: instance "fun" :: (type,comm_ring_1)comm_ring_1 wenzelm@19736: apply default nipkow@29667: apply (auto simp add: func_plus func_times fun_Compl_def fun_diff_def nipkow@29667: func_one func_zero algebra_simps) avigad@16908: apply (drule fun_cong) avigad@16908: apply simp wenzelm@19736: done avigad@16908: haftmann@29509: interpretation set_semigroup_add!: semigroup_add "op \ :: ('a::semigroup_add) set => 'a set => 'a set" wenzelm@19736: apply default berghofe@26814: apply (unfold set_plus_def) avigad@16908: apply (force simp add: add_assoc) wenzelm@19736: done avigad@16908: haftmann@29509: interpretation set_semigroup_mult!: semigroup_mult "op \ :: ('a::semigroup_mult) set => 'a set => 'a set" wenzelm@19736: apply default berghofe@26814: apply (unfold set_times_def) avigad@16908: apply (force simp add: mult_assoc) wenzelm@19736: done avigad@16908: haftmann@29509: interpretation set_comm_monoid_add!: comm_monoid_add "{0}" "op \ :: ('a::comm_monoid_add) set => 'a set => 'a set" wenzelm@19736: apply default berghofe@26814: apply (unfold set_plus_def) wenzelm@19736: apply (force simp add: add_ac) avigad@16908: apply force wenzelm@19736: done avigad@16908: haftmann@29509: interpretation set_comm_monoid_mult!: comm_monoid_mult "{1}" "op \ :: ('a::comm_monoid_mult) set => 'a set => 'a set" wenzelm@19736: apply default berghofe@26814: apply (unfold set_times_def) wenzelm@19736: apply (force simp add: mult_ac) avigad@16908: apply force wenzelm@19736: done wenzelm@19736: avigad@16908: avigad@16908: subsection {* Basic properties *} avigad@16908: berghofe@26814: lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C \ D" berghofe@26814: by (auto simp add: set_plus_def) avigad@16908: avigad@16908: lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C" wenzelm@19736: by (auto simp add: elt_set_plus_def) avigad@16908: berghofe@26814: lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) \ berghofe@26814: (b +o D) = (a + b) +o (C \ D)" berghofe@26814: apply (auto simp add: elt_set_plus_def set_plus_def add_ac) wenzelm@19736: apply (rule_tac x = "ba + bb" in exI) avigad@16908: apply (auto simp add: add_ac) avigad@16908: apply (rule_tac x = "aa + a" in exI) avigad@16908: apply (auto simp add: add_ac) wenzelm@19736: done avigad@16908: wenzelm@19736: lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) = wenzelm@19736: (a + b) +o C" wenzelm@19736: by (auto simp add: elt_set_plus_def add_assoc) avigad@16908: berghofe@26814: lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) \ C = berghofe@26814: a +o (B \ C)" berghofe@26814: apply (auto simp add: elt_set_plus_def set_plus_def) wenzelm@19736: apply (blast intro: add_ac) avigad@16908: apply (rule_tac x = "a + aa" in exI) avigad@16908: apply (rule conjI) wenzelm@19736: apply (rule_tac x = "aa" in bexI) wenzelm@19736: apply auto avigad@16908: apply (rule_tac x = "ba" in bexI) wenzelm@19736: apply (auto simp add: add_ac) wenzelm@19736: done avigad@16908: berghofe@26814: theorem set_plus_rearrange4: "C \ ((a::'a::comm_monoid_add) +o D) = berghofe@26814: a +o (C \ D)" berghofe@26814: apply (auto intro!: subsetI simp add: elt_set_plus_def set_plus_def add_ac) wenzelm@19736: apply (rule_tac x = "aa + ba" in exI) wenzelm@19736: apply (auto simp add: add_ac) wenzelm@19736: done avigad@16908: avigad@16908: theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2 avigad@16908: set_plus_rearrange3 set_plus_rearrange4 avigad@16908: avigad@16908: lemma set_plus_mono [intro!]: "C <= D ==> a +o C <= a +o D" wenzelm@19736: by (auto simp add: elt_set_plus_def) avigad@16908: wenzelm@19736: lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==> berghofe@26814: C \ E <= D \ F" berghofe@26814: by (auto simp add: set_plus_def) avigad@16908: berghofe@26814: lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C \ D" berghofe@26814: by (auto simp add: elt_set_plus_def set_plus_def) avigad@16908: wenzelm@19736: lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==> berghofe@26814: a +o D <= D \ C" berghofe@26814: by (auto simp add: elt_set_plus_def set_plus_def add_ac) avigad@16908: berghofe@26814: lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C \ D" avigad@16908: apply (subgoal_tac "a +o B <= a +o D") wenzelm@19736: apply (erule order_trans) wenzelm@19736: apply (erule set_plus_mono3) avigad@16908: apply (erule set_plus_mono) wenzelm@19736: done avigad@16908: wenzelm@19736: lemma set_plus_mono_b: "C <= D ==> x : a +o C avigad@16908: ==> x : a +o D" avigad@16908: apply (frule set_plus_mono) avigad@16908: apply auto wenzelm@19736: done avigad@16908: berghofe@26814: lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C \ E ==> berghofe@26814: x : D \ F" avigad@16908: apply (frule set_plus_mono2) wenzelm@19736: prefer 2 wenzelm@19736: apply force avigad@16908: apply assumption wenzelm@19736: done avigad@16908: berghofe@26814: lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C \ D" avigad@16908: apply (frule set_plus_mono3) avigad@16908: apply auto wenzelm@19736: done avigad@16908: wenzelm@19736: lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==> berghofe@26814: x : a +o D ==> x : D \ C" avigad@16908: apply (frule set_plus_mono4) avigad@16908: apply auto wenzelm@19736: done avigad@16908: avigad@16908: lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C" wenzelm@19736: by (auto simp add: elt_set_plus_def) avigad@16908: berghofe@26814: lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A \ B" berghofe@26814: apply (auto intro!: subsetI simp add: set_plus_def) avigad@16908: apply (rule_tac x = 0 in bexI) wenzelm@19736: apply (rule_tac x = x in bexI) wenzelm@19736: apply (auto simp add: add_ac) wenzelm@19736: done avigad@16908: avigad@16908: lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C" wenzelm@19736: by (auto simp add: elt_set_plus_def add_ac diff_minus) avigad@16908: avigad@16908: lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C" avigad@16908: apply (auto simp add: elt_set_plus_def add_ac diff_minus) avigad@16908: apply (subgoal_tac "a = (a + - b) + b") wenzelm@19736: apply (rule bexI, assumption, assumption) avigad@16908: apply (auto simp add: add_ac) wenzelm@19736: done avigad@16908: avigad@16908: lemma set_minus_plus: "((a::'a::ab_group_add) - b : C) = (a : b +o C)" wenzelm@19736: by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus, avigad@16908: assumption) avigad@16908: berghofe@26814: lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C \ D" berghofe@26814: by (auto simp add: set_times_def) avigad@16908: avigad@16908: lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C" wenzelm@19736: by (auto simp add: elt_set_times_def) avigad@16908: berghofe@26814: lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) \ berghofe@26814: (b *o D) = (a * b) *o (C \ D)" berghofe@26814: apply (auto simp add: elt_set_times_def set_times_def) wenzelm@19736: apply (rule_tac x = "ba * bb" in exI) wenzelm@19736: apply (auto simp add: mult_ac) avigad@16908: apply (rule_tac x = "aa * a" in exI) avigad@16908: apply (auto simp add: mult_ac) wenzelm@19736: done avigad@16908: wenzelm@19736: lemma set_times_rearrange2: "(a::'a::semigroup_mult) *o (b *o C) = wenzelm@19736: (a * b) *o C" wenzelm@19736: by (auto simp add: elt_set_times_def mult_assoc) avigad@16908: berghofe@26814: lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) \ C = berghofe@26814: a *o (B \ C)" berghofe@26814: apply (auto simp add: elt_set_times_def set_times_def) wenzelm@19736: apply (blast intro: mult_ac) avigad@16908: apply (rule_tac x = "a * aa" in exI) avigad@16908: apply (rule conjI) wenzelm@19736: apply (rule_tac x = "aa" in bexI) wenzelm@19736: apply auto avigad@16908: apply (rule_tac x = "ba" in bexI) wenzelm@19736: apply (auto simp add: mult_ac) wenzelm@19736: done avigad@16908: berghofe@26814: theorem set_times_rearrange4: "C \ ((a::'a::comm_monoid_mult) *o D) = berghofe@26814: a *o (C \ D)" berghofe@26814: apply (auto intro!: subsetI simp add: elt_set_times_def set_times_def avigad@16908: mult_ac) wenzelm@19736: apply (rule_tac x = "aa * ba" in exI) wenzelm@19736: apply (auto simp add: mult_ac) wenzelm@19736: done avigad@16908: avigad@16908: theorems set_times_rearranges = set_times_rearrange set_times_rearrange2 avigad@16908: set_times_rearrange3 set_times_rearrange4 avigad@16908: avigad@16908: lemma set_times_mono [intro]: "C <= D ==> a *o C <= a *o D" wenzelm@19736: by (auto simp add: elt_set_times_def) avigad@16908: wenzelm@19736: lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==> berghofe@26814: C \ E <= D \ F" berghofe@26814: by (auto simp add: set_times_def) avigad@16908: berghofe@26814: lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C \ D" berghofe@26814: by (auto simp add: elt_set_times_def set_times_def) avigad@16908: wenzelm@19736: lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==> berghofe@26814: a *o D <= D \ C" berghofe@26814: by (auto simp add: elt_set_times_def set_times_def mult_ac) avigad@16908: berghofe@26814: lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C \ D" avigad@16908: apply (subgoal_tac "a *o B <= a *o D") wenzelm@19736: apply (erule order_trans) wenzelm@19736: apply (erule set_times_mono3) avigad@16908: apply (erule set_times_mono) wenzelm@19736: done avigad@16908: wenzelm@19736: lemma set_times_mono_b: "C <= D ==> x : a *o C avigad@16908: ==> x : a *o D" avigad@16908: apply (frule set_times_mono) avigad@16908: apply auto wenzelm@19736: done avigad@16908: berghofe@26814: lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C \ E ==> berghofe@26814: x : D \ F" avigad@16908: apply (frule set_times_mono2) wenzelm@19736: prefer 2 wenzelm@19736: apply force avigad@16908: apply assumption wenzelm@19736: done avigad@16908: berghofe@26814: lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C \ D" avigad@16908: apply (frule set_times_mono3) avigad@16908: apply auto wenzelm@19736: done avigad@16908: wenzelm@19736: lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==> berghofe@26814: x : a *o D ==> x : D \ C" avigad@16908: apply (frule set_times_mono4) avigad@16908: apply auto wenzelm@19736: done avigad@16908: avigad@16908: lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C" wenzelm@19736: by (auto simp add: elt_set_times_def) avigad@16908: wenzelm@19736: lemma set_times_plus_distrib: "(a::'a::semiring) *o (b +o C)= wenzelm@19736: (a * b) +o (a *o C)" nipkow@23477: by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs) avigad@16908: berghofe@26814: lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B \ C) = berghofe@26814: (a *o B) \ (a *o C)" berghofe@26814: apply (auto simp add: set_plus_def elt_set_times_def ring_distribs) wenzelm@19736: apply blast avigad@16908: apply (rule_tac x = "b + bb" in exI) nipkow@23477: apply (auto simp add: ring_distribs) wenzelm@19736: done avigad@16908: berghofe@26814: lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) \ D <= berghofe@26814: a *o D \ C \ D" wenzelm@19736: apply (auto intro!: subsetI simp add: berghofe@26814: elt_set_plus_def elt_set_times_def set_times_def berghofe@26814: set_plus_def ring_distribs) avigad@16908: apply auto wenzelm@19736: done avigad@16908: wenzelm@19380: theorems set_times_plus_distribs = wenzelm@19380: set_times_plus_distrib avigad@16908: set_times_plus_distrib2 avigad@16908: wenzelm@19736: lemma set_neg_intro: "(a::'a::ring_1) : (- 1) *o C ==> wenzelm@19736: - a : C" wenzelm@19736: by (auto simp add: elt_set_times_def) avigad@16908: avigad@16908: lemma set_neg_intro2: "(a::'a::ring_1) : C ==> avigad@16908: - a : (- 1) *o C" wenzelm@19736: by (auto simp add: elt_set_times_def) wenzelm@19736: avigad@16908: end