clasohm@923: (* Title: HOL/List.thy clasohm@923: ID: $Id$ clasohm@923: Author: Tobias Nipkow clasohm@923: Copyright 1994 TU Muenchen clasohm@923: *) clasohm@923: wenzelm@13114: header {* The datatype of finite lists *} wenzelm@13122: wenzelm@13122: theory List = PreList: clasohm@923: wenzelm@13142: datatype 'a list = wenzelm@13142: Nil ("[]") wenzelm@13142: | Cons 'a "'a list" (infixr "#" 65) clasohm@923: clasohm@923: consts wenzelm@13142: "@" :: "'a list => 'a list => 'a list" (infixr 65) wenzelm@13142: filter :: "('a => bool) => 'a list => 'a list" wenzelm@13142: concat :: "'a list list => 'a list" wenzelm@13142: foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b" wenzelm@13142: foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b" wenzelm@13142: hd :: "'a list => 'a" wenzelm@13142: tl :: "'a list => 'a list" wenzelm@13142: last :: "'a list => 'a" wenzelm@13142: butlast :: "'a list => 'a list" wenzelm@13142: set :: "'a list => 'a set" wenzelm@13142: list_all :: "('a => bool) => ('a list => bool)" wenzelm@13142: list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" wenzelm@13142: map :: "('a=>'b) => ('a list => 'b list)" wenzelm@13142: mem :: "'a => 'a list => bool" (infixl 55) wenzelm@13142: nth :: "'a list => nat => 'a" (infixl "!" 100) wenzelm@13142: list_update :: "'a list => nat => 'a => 'a list" wenzelm@13142: take :: "nat => 'a list => 'a list" wenzelm@13142: drop :: "nat => 'a list => 'a list" wenzelm@13142: takeWhile :: "('a => bool) => 'a list => 'a list" wenzelm@13142: dropWhile :: "('a => bool) => 'a list => 'a list" wenzelm@13142: rev :: "'a list => 'a list" wenzelm@13142: zip :: "'a list => 'b list => ('a * 'b) list" wenzelm@13142: upt :: "nat => nat => nat list" ("(1[_../_'(])") wenzelm@13142: remdups :: "'a list => 'a list" wenzelm@13142: null :: "'a list => bool" wenzelm@13142: "distinct" :: "'a list => bool" wenzelm@13142: replicate :: "nat => 'a => 'a list" clasohm@923: nipkow@5077: nonterminals nipkow@5077: lupdbinds lupdbind nipkow@5077: clasohm@923: syntax wenzelm@13142: -- {* list Enumeration *} wenzelm@13142: "@list" :: "args => 'a list" ("[(_)]") clasohm@923: wenzelm@13142: -- {* Special syntax for filter *} wenzelm@13142: "@filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_:_./ _])") clasohm@923: wenzelm@13142: -- {* list update *} wenzelm@13142: "_lupdbind" :: "['a, 'a] => lupdbind" ("(2_ :=/ _)") wenzelm@13142: "" :: "lupdbind => lupdbinds" ("_") wenzelm@13142: "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds" ("_,/ _") wenzelm@13142: "_LUpdate" :: "['a, lupdbinds] => 'a" ("_/[(_)]" [900,0] 900) nipkow@5077: wenzelm@13142: upto :: "nat => nat => nat list" ("(1[_../_])") nipkow@5427: clasohm@923: translations clasohm@923: "[x, xs]" == "x#[xs]" clasohm@923: "[x]" == "x#[]" wenzelm@3842: "[x:xs . P]" == "filter (%x. P) xs" clasohm@923: nipkow@5077: "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs" nipkow@5077: "xs[i:=x]" == "list_update xs i x" nipkow@5077: nipkow@5427: "[i..j]" == "[i..(Suc j)(]" nipkow@5427: nipkow@5427: wenzelm@12114: syntax (xsymbols) wenzelm@13142: "@filter" :: "[pttrn, 'a list, bool] => 'a list" ("(1[_\_ ./ _])") paulson@3342: paulson@3342: wenzelm@13142: text {* wenzelm@13142: Function @{text size} is overloaded for all datatypes. Users may wenzelm@13142: refer to the list version as @{text length}. *} wenzelm@13142: wenzelm@13142: syntax length :: "'a list => nat" wenzelm@13142: translations "length" => "size :: _ list => nat" wenzelm@13114: wenzelm@13142: typed_print_translation {* wenzelm@13142: let wenzelm@13142: fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] = wenzelm@13142: Syntax.const "length" $ t wenzelm@13142: | size_tr' _ _ _ = raise Match; wenzelm@13142: in [("size", size_tr')] end wenzelm@13114: *} paulson@3437: berghofe@5183: primrec berghofe@1898: "hd(x#xs) = x" berghofe@5183: primrec paulson@8972: "tl([]) = []" berghofe@1898: "tl(x#xs) = xs" berghofe@5183: primrec paulson@8972: "null([]) = True" paulson@8972: "null(x#xs) = False" paulson@8972: primrec nipkow@3896: "last(x#xs) = (if xs=[] then x else last xs)" berghofe@5183: primrec paulson@8972: "butlast [] = []" nipkow@3896: "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)" berghofe@5183: primrec paulson@8972: "x mem [] = False" oheimb@5518: "x mem (y#ys) = (if y=x then True else x mem ys)" oheimb@5518: primrec nipkow@3465: "set [] = {}" nipkow@3465: "set (x#xs) = insert x (set xs)" berghofe@5183: primrec wenzelm@13114: list_all_Nil: "list_all P [] = True" wenzelm@13142: list_all_Cons: "list_all P (x#xs) = (P(x) \ list_all P xs)" oheimb@5518: primrec paulson@8972: "map f [] = []" berghofe@1898: "map f (x#xs) = f(x)#map f xs" berghofe@5183: primrec wenzelm@13114: append_Nil: "[] @ys = ys" wenzelm@13114: append_Cons: "(x#xs)@ys = x#(xs@ys)" berghofe@5183: primrec paulson@8972: "rev([]) = []" berghofe@1898: "rev(x#xs) = rev(xs) @ [x]" berghofe@5183: primrec paulson@8972: "filter P [] = []" berghofe@1898: "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)" berghofe@5183: primrec wenzelm@13114: foldl_Nil: "foldl f a [] = a" wenzelm@13114: foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs" berghofe@5183: primrec paulson@8972: "foldr f [] a = a" paulson@8000: "foldr f (x#xs) a = f x (foldr f xs a)" paulson@8000: primrec paulson@8972: "concat([]) = []" nipkow@2608: "concat(x#xs) = x @ concat(xs)" berghofe@5183: primrec wenzelm@13114: drop_Nil: "drop n [] = []" wenzelm@13142: drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)" wenzelm@13142: -- {* Warning: simpset does not contain this definition *} wenzelm@13142: -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} berghofe@5183: primrec wenzelm@13114: take_Nil: "take n [] = []" wenzelm@13142: take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)" wenzelm@13142: -- {* Warning: simpset does not contain this definition *} wenzelm@13142: -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} berghofe@5183: primrec wenzelm@13142: nth_Cons: "(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)" wenzelm@13142: -- {* Warning: simpset does not contain this definition *} wenzelm@13142: -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *} wenzelm@13142: primrec wenzelm@13142: "[][i:=v] = []" wenzelm@13142: "(x#xs)[i:=v] = wenzelm@13142: (case i of 0 => v # xs wenzelm@13142: | Suc j => x # xs[j:=v])" berghofe@5183: primrec paulson@8972: "takeWhile P [] = []" nipkow@2608: "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])" berghofe@5183: primrec paulson@8972: "dropWhile P [] = []" nipkow@3584: "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)" berghofe@5183: primrec oheimb@4132: "zip xs [] = []" wenzelm@13142: zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)" wenzelm@13142: -- {* Warning: simpset does not contain this definition *} wenzelm@13142: -- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *} nipkow@5427: primrec wenzelm@13114: upt_0: "[i..0(] = []" wenzelm@13114: upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])" berghofe@5183: primrec nipkow@12887: "distinct [] = True" wenzelm@13142: "distinct (x#xs) = (x ~: set xs \ distinct xs)" berghofe@5183: primrec nipkow@4605: "remdups [] = []" nipkow@4605: "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)" berghofe@5183: primrec wenzelm@13114: replicate_0: "replicate 0 x = []" wenzelm@13114: replicate_Suc: "replicate (Suc n) x = x # replicate n x" nipkow@8115: defs wenzelm@13114: list_all2_def: wenzelm@13142: "list_all2 P xs ys == length xs = length ys \ (\(x, y) \ set (zip xs ys). P x y)" nipkow@8115: paulson@3196: wenzelm@13142: subsection {* Lexicographic orderings on lists *} nipkow@5281: nipkow@5281: consts wenzelm@13142: lexn :: "('a * 'a)set => nat => ('a list * 'a list)set" nipkow@5281: primrec wenzelm@13142: "lexn r 0 = {}" wenzelm@13142: "lexn r (Suc n) = wenzelm@13142: (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int wenzelm@13142: {(xs,ys). length xs = Suc n \ length ys = Suc n}" nipkow@5281: nipkow@5281: constdefs wenzelm@13142: lex :: "('a \ 'a) set => ('a list \ 'a list) set" wenzelm@13142: "lex r == \n. lexn r n" nipkow@5281: wenzelm@13142: lexico :: "('a \ 'a) set => ('a list \ 'a list) set" wenzelm@13142: "lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))" paulson@9336: wenzelm@13142: sublist :: "'a list => nat set => 'a list" wenzelm@13142: "sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))" nipkow@5281: wenzelm@13114: wenzelm@13142: lemma not_Cons_self [simp]: "xs \ x # xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] wenzelm@13114: wenzelm@13142: lemma neq_Nil_conv: "(xs \ []) = (\y ys. xs = y # ys)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma length_induct: wenzelm@13142: "(!!xs. \ys. length ys < length xs --> P ys ==> P xs) ==> P xs" wenzelm@13142: by (rule measure_induct [of length]) rules wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text lists}: the list-forming operator over sets *} wenzelm@13114: wenzelm@13142: consts lists :: "'a set => 'a list set" wenzelm@13142: inductive "lists A" wenzelm@13142: intros wenzelm@13142: Nil [intro!]: "[]: lists A" wenzelm@13142: Cons [intro!]: "[| a: A; l: lists A |] ==> a#l : lists A" wenzelm@13114: wenzelm@13142: inductive_cases listsE [elim!]: "x#l : lists A" wenzelm@13114: wenzelm@13142: lemma lists_mono: "A \ B ==> lists A \ lists B" wenzelm@13142: by (unfold lists.defs) (blast intro!: lfp_mono) wenzelm@13114: wenzelm@13142: lemma lists_IntI [rule_format]: wenzelm@13142: "l: lists A ==> l: lists B --> l: lists (A Int B)" wenzelm@13142: apply (erule lists.induct) wenzelm@13142: apply blast+ wenzelm@13142: done wenzelm@13142: wenzelm@13142: lemma lists_Int_eq [simp]: "lists (A \ B) = lists A \ lists B" wenzelm@13142: apply (rule mono_Int [THEN equalityI]) wenzelm@13142: apply (simp add: mono_def lists_mono) wenzelm@13142: apply (blast intro!: lists_IntI) wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma append_in_lists_conv [iff]: wenzelm@13142: "(xs @ ys : lists A) = (xs : lists A \ ys : lists A)" wenzelm@13142: by (induct xs) auto wenzelm@13142: wenzelm@13142: wenzelm@13142: subsection {* @{text length} *} wenzelm@13114: wenzelm@13142: text {* wenzelm@13142: Needs to come before @{text "@"} because of theorem @{text wenzelm@13142: append_eq_append_conv}. wenzelm@13142: *} wenzelm@13114: wenzelm@13142: lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma length_map [simp]: "length (map f xs) = length xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma length_rev [simp]: "length (rev xs) = length xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma length_tl [simp]: "length (tl xs) = length xs - 1" wenzelm@13142: by (cases xs) auto wenzelm@13114: wenzelm@13142: lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \ [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13114: lemma length_Suc_conv: wenzelm@13142: "(length xs = Suc n) = (\y ys. xs = y # ys \ length ys = n)" wenzelm@13142: by (induct xs) auto wenzelm@13142: wenzelm@13114: wenzelm@13142: subsection {* @{text "@"} -- append *} wenzelm@13114: wenzelm@13142: lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma append_Nil2 [simp]: "xs @ [] = xs" wenzelm@13142: by (induct xs) auto nipkow@3507: wenzelm@13142: lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \ ys = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \ ys = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma append_eq_append_conv [rule_format, simp]: wenzelm@13142: "\ys. length xs = length ys \ length us = length vs wenzelm@13142: --> (xs@us = ys@vs) = (xs=ys \ us=vs)" wenzelm@13142: apply (induct_tac xs) wenzelm@13142: apply(rule allI) wenzelm@13142: apply (case_tac ys) wenzelm@13142: apply simp wenzelm@13142: apply force wenzelm@13142: apply (rule allI) wenzelm@13142: apply (case_tac ys) wenzelm@13142: apply force wenzelm@13114: apply simp wenzelm@13142: done wenzelm@13142: wenzelm@13142: lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)" wenzelm@13142: by simp wenzelm@13142: wenzelm@13142: lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \ x = y)" wenzelm@13142: by simp wenzelm@13114: wenzelm@13142: lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)" wenzelm@13142: by simp wenzelm@13114: wenzelm@13142: lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" wenzelm@13142: using append_same_eq [of _ _ "[]"] by auto nipkow@3507: wenzelm@13142: lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" wenzelm@13142: using append_same_eq [of "[]"] by auto wenzelm@13114: wenzelm@13142: lemma hd_Cons_tl [simp]: "xs \ [] ==> hd xs # tl xs = xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma hd_append2 [simp]: "xs \ [] ==> hd (xs @ ys) = hd xs" wenzelm@13142: by (simp add: hd_append split: list.split) wenzelm@13114: wenzelm@13142: lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" wenzelm@13142: by (simp split: list.split) wenzelm@13114: wenzelm@13142: lemma tl_append2 [simp]: "xs \ [] ==> tl (xs @ ys) = tl xs @ ys" wenzelm@13142: by (simp add: tl_append split: list.split) wenzelm@13114: wenzelm@13114: wenzelm@13142: text {* Trivial rules for solving @{text "@"}-equations automatically. *} wenzelm@13114: wenzelm@13114: lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" wenzelm@13142: by simp wenzelm@13114: wenzelm@13142: lemma Cons_eq_appendI: wenzelm@13142: "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" wenzelm@13142: by (drule sym) simp wenzelm@13114: wenzelm@13142: lemma append_eq_appendI: wenzelm@13142: "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" wenzelm@13142: by (drule sym) simp wenzelm@13114: wenzelm@13114: wenzelm@13142: text {* wenzelm@13142: Simplification procedure for all list equalities. wenzelm@13142: Currently only tries to rearrange @{text "@"} to see if wenzelm@13142: - both lists end in a singleton list, wenzelm@13142: - or both lists end in the same list. wenzelm@13142: *} wenzelm@13142: wenzelm@13142: ML_setup {* nipkow@3507: local nipkow@3507: wenzelm@13122: val append_assoc = thm "append_assoc"; wenzelm@13122: val append_Nil = thm "append_Nil"; wenzelm@13122: val append_Cons = thm "append_Cons"; wenzelm@13122: val append1_eq_conv = thm "append1_eq_conv"; wenzelm@13122: val append_same_eq = thm "append_same_eq"; wenzelm@13122: wenzelm@13114: val list_eq_pattern = wenzelm@13114: Thm.read_cterm (Theory.sign_of (the_context ())) ("(xs::'a list) = ys",HOLogic.boolT) wenzelm@13114: wenzelm@13114: fun last (cons as Const("List.list.Cons",_) $ _ $ xs) = wenzelm@13114: (case xs of Const("List.list.Nil",_) => cons | _ => last xs) wenzelm@13114: | last (Const("List.op @",_) $ _ $ ys) = last ys wenzelm@13114: | last t = t wenzelm@13114: wenzelm@13114: fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true wenzelm@13114: | list1 _ = false wenzelm@13114: wenzelm@13114: fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) = wenzelm@13114: (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs) wenzelm@13114: | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys wenzelm@13114: | butlast xs = Const("List.list.Nil",fastype_of xs) wenzelm@13114: wenzelm@13114: val rearr_tac = wenzelm@13114: simp_tac (HOL_basic_ss addsimps [append_assoc,append_Nil,append_Cons]) wenzelm@13114: wenzelm@13114: fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) = wenzelm@13114: let wenzelm@13114: val lastl = last lhs and lastr = last rhs wenzelm@13114: fun rearr conv = wenzelm@13114: let val lhs1 = butlast lhs and rhs1 = butlast rhs wenzelm@13114: val Type(_,listT::_) = eqT wenzelm@13114: val appT = [listT,listT] ---> listT wenzelm@13114: val app = Const("List.op @",appT) wenzelm@13114: val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) wenzelm@13114: val ct = cterm_of sg (HOLogic.mk_Trueprop(HOLogic.mk_eq(F,F2))) wenzelm@13114: val thm = prove_goalw_cterm [] ct (K [rearr_tac 1]) wenzelm@13114: handle ERROR => wenzelm@13114: error("The error(s) above occurred while trying to prove " ^ wenzelm@13114: string_of_cterm ct) wenzelm@13114: in Some((conv RS (thm RS trans)) RS eq_reflection) end wenzelm@13114: wenzelm@13114: in if list1 lastl andalso list1 lastr wenzelm@13114: then rearr append1_eq_conv wenzelm@13114: else wenzelm@13114: if lastl aconv lastr wenzelm@13114: then rearr append_same_eq wenzelm@13114: else None wenzelm@13114: end wenzelm@13114: in wenzelm@13114: val list_eq_simproc = mk_simproc "list_eq" [list_eq_pattern] list_eq wenzelm@13114: end; wenzelm@13114: wenzelm@13114: Addsimprocs [list_eq_simproc]; wenzelm@13114: *} wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text map} *} wenzelm@13114: wenzelm@13142: lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" wenzelm@13142: by (induct xs) simp_all wenzelm@13114: wenzelm@13142: lemma map_ident [simp]: "map (\x. x) = (\xs. xs)" wenzelm@13142: by (rule ext, induct_tac xs) auto wenzelm@13114: wenzelm@13142: lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma map_compose: "map (f o g) xs = map f (map g xs)" wenzelm@13142: by (induct xs) (auto simp add: o_def) wenzelm@13114: wenzelm@13142: lemma rev_map: "rev (map f xs) = map f (rev xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13114: lemma map_cong: wenzelm@13142: "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" wenzelm@13142: -- {* a congruence rule for @{text map} *} wenzelm@13142: by (clarify, induct ys) auto wenzelm@13114: wenzelm@13142: lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" wenzelm@13142: by (cases xs) auto wenzelm@13114: wenzelm@13142: lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" wenzelm@13142: by (cases xs) auto wenzelm@13114: wenzelm@13114: lemma map_eq_Cons: wenzelm@13142: "(map f xs = y # ys) = (\x xs'. xs = x # xs' \ f x = y \ map f xs' = ys)" wenzelm@13142: by (cases xs) auto wenzelm@13114: wenzelm@13114: lemma map_injective: wenzelm@13142: "!!xs. map f xs = map f ys ==> (\x y. f x = f y --> x = y) ==> xs = ys" wenzelm@13142: by (induct ys) (auto simp add: map_eq_Cons) wenzelm@13114: wenzelm@13114: lemma inj_mapI: "inj f ==> inj (map f)" wenzelm@13142: by (rules dest: map_injective injD intro: injI) wenzelm@13114: wenzelm@13114: lemma inj_mapD: "inj (map f) ==> inj f" wenzelm@13142: apply (unfold inj_on_def) wenzelm@13142: apply clarify wenzelm@13142: apply (erule_tac x = "[x]" in ballE) wenzelm@13142: apply (erule_tac x = "[y]" in ballE) wenzelm@13142: apply simp wenzelm@13142: apply blast wenzelm@13142: apply blast wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma inj_map: "inj (map f) = inj f" wenzelm@13142: by (blast dest: inj_mapD intro: inj_mapI) wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text rev} *} wenzelm@13114: wenzelm@13142: lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma rev_rev_ident [simp]: "rev (rev xs) = xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)" wenzelm@13142: apply (induct xs) wenzelm@13142: apply force wenzelm@13142: apply (case_tac ys) wenzelm@13142: apply simp wenzelm@13142: apply force wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma rev_induct: "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" wenzelm@13142: apply(subst rev_rev_ident[symmetric]) wenzelm@13142: apply(rule_tac list = "rev xs" in list.induct, simp_all) wenzelm@13142: done wenzelm@13114: wenzelm@13142: ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *} -- "compatibility" wenzelm@13114: wenzelm@13142: lemma rev_exhaust: "(xs = [] ==> P) ==> (!!ys y. xs = ys @ [y] ==> P) ==> P" wenzelm@13142: by (induct xs rule: rev_induct) auto wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text set} *} wenzelm@13114: wenzelm@13142: lemma finite_set [iff]: "finite (set xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma set_append [simp]: "set (xs @ ys) = (set xs \ set ys)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma set_subset_Cons: "set xs \ set (x # xs)" wenzelm@13142: by auto wenzelm@13114: wenzelm@13142: lemma set_empty [iff]: "(set xs = {}) = (xs = [])" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma set_rev [simp]: "set (rev xs) = set xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma set_map [simp]: "set (map f xs) = f`(set xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \ P x}" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma set_upt [simp]: "set[i..j(] = {k. i \ k \ k < j}" wenzelm@13142: apply (induct j) wenzelm@13142: apply simp_all wenzelm@13142: apply(erule ssubst) wenzelm@13142: apply auto wenzelm@13142: apply arith wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma in_set_conv_decomp: "(x : set xs) = (\ys zs. xs = ys @ x # zs)" wenzelm@13142: apply (induct xs) wenzelm@13142: apply simp wenzelm@13142: apply simp wenzelm@13142: apply (rule iffI) wenzelm@13142: apply (blast intro: eq_Nil_appendI Cons_eq_appendI) wenzelm@13142: apply (erule exE)+ wenzelm@13142: apply (case_tac ys) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13142: wenzelm@13142: lemma in_lists_conv_set: "(xs : lists A) = (\x \ set xs. x : A)" wenzelm@13142: -- {* eliminate @{text lists} in favour of @{text set} *} wenzelm@13142: by (induct xs) auto wenzelm@13142: wenzelm@13142: lemma in_listsD [dest!]: "xs \ lists A ==> \x\set xs. x \ A" wenzelm@13142: by (rule in_lists_conv_set [THEN iffD1]) wenzelm@13142: wenzelm@13142: lemma in_listsI [intro!]: "\x\set xs. x \ A ==> xs \ lists A" wenzelm@13142: by (rule in_lists_conv_set [THEN iffD2]) wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text mem} *} wenzelm@13114: wenzelm@13114: lemma set_mem_eq: "(x mem xs) = (x : set xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text list_all} *} wenzelm@13114: wenzelm@13142: lemma list_all_conv: "list_all P xs = (\x \ set xs. P x)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma list_all_append [simp]: wenzelm@13142: "list_all P (xs @ ys) = (list_all P xs \ list_all P ys)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text filter} *} wenzelm@13114: wenzelm@13142: lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\x. Q x \ P x) xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma filter_True [simp]: "\x \ set xs. P x ==> filter P xs = xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma filter_False [simp]: "\x \ set xs. \ P x ==> filter P xs = []" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma length_filter [simp]: "length (filter P xs) \ length xs" wenzelm@13142: by (induct xs) (auto simp add: le_SucI) wenzelm@13114: wenzelm@13142: lemma filter_is_subset [simp]: "set (filter P xs) \ set xs" wenzelm@13142: by auto wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text concat} *} wenzelm@13114: wenzelm@13142: lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\xs \ set xss. xs = [])" wenzelm@13142: by (induct xss) auto wenzelm@13114: wenzelm@13142: lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\xs \ set xss. xs = [])" wenzelm@13142: by (induct xss) auto wenzelm@13114: wenzelm@13142: lemma set_concat [simp]: "set (concat xs) = \(set ` set xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text nth} *} wenzelm@13114: wenzelm@13142: lemma nth_Cons_0 [simp]: "(x # xs)!0 = x" wenzelm@13142: by auto wenzelm@13114: wenzelm@13142: lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n" wenzelm@13142: by auto wenzelm@13114: wenzelm@13142: declare nth.simps [simp del] wenzelm@13114: wenzelm@13114: lemma nth_append: wenzelm@13142: "!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" wenzelm@13142: apply(induct "xs") wenzelm@13142: apply simp wenzelm@13142: apply (case_tac n) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)" wenzelm@13142: apply(induct xs) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac n) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}" wenzelm@13142: apply (induct_tac xs) wenzelm@13142: apply simp wenzelm@13114: apply simp wenzelm@13142: apply safe wenzelm@13142: apply (rule_tac x = 0 in exI) wenzelm@13142: apply simp wenzelm@13142: apply (rule_tac x = "Suc i" in exI) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac i) wenzelm@13142: apply simp wenzelm@13142: apply (rename_tac j) wenzelm@13142: apply (rule_tac x = j in exI) wenzelm@13142: apply simp wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma list_ball_nth: "[| n < length xs; !x : set xs. P x |] ==> P(xs!n)" wenzelm@13142: by (auto simp add: set_conv_nth) wenzelm@13114: wenzelm@13142: lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" wenzelm@13142: by (auto simp add: set_conv_nth) wenzelm@13114: wenzelm@13114: lemma all_nth_imp_all_set: wenzelm@13142: "[| !i < length xs. P(xs!i); x : set xs |] ==> P x" wenzelm@13142: by (auto simp add: set_conv_nth) wenzelm@13114: wenzelm@13114: lemma all_set_conv_all_nth: wenzelm@13142: "(\x \ set xs. P x) = (\i. i < length xs --> P (xs ! i))" wenzelm@13142: by (auto simp add: set_conv_nth) wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text list_update} *} wenzelm@13114: wenzelm@13142: lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs" wenzelm@13142: by (induct xs) (auto split: nat.split) wenzelm@13114: wenzelm@13114: lemma nth_list_update: wenzelm@13142: "!!i j. i < length xs ==> (xs[i:=x])!j = (if i = j then x else xs!j)" wenzelm@13142: by (induct xs) (auto simp add: nth_Cons split: nat.split) wenzelm@13114: wenzelm@13142: lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" wenzelm@13142: by (simp add: nth_list_update) wenzelm@13114: wenzelm@13142: lemma nth_list_update_neq [simp]: "!!i j. i \ j ==> xs[i:=x]!j = xs!j" wenzelm@13142: by (induct xs) (auto simp add: nth_Cons split: nat.split) wenzelm@13114: wenzelm@13142: lemma list_update_overwrite [simp]: wenzelm@13142: "!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" wenzelm@13142: by (induct xs) (auto split: nat.split) wenzelm@13114: wenzelm@13114: lemma list_update_same_conv: wenzelm@13142: "!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" wenzelm@13142: by (induct xs) (auto split: nat.split) wenzelm@13114: wenzelm@13114: lemma update_zip: wenzelm@13142: "!!i xy xs. length xs = length ys ==> wenzelm@13114: (zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" wenzelm@13142: by (induct ys) (auto, case_tac xs, auto split: nat.split) wenzelm@13114: wenzelm@13114: lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)" wenzelm@13142: by (induct xs) (auto split: nat.split) wenzelm@13114: wenzelm@13114: lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" wenzelm@13142: by (blast dest!: set_update_subset_insert [THEN subsetD]) wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text last} and @{text butlast} *} wenzelm@13114: wenzelm@13142: lemma last_snoc [simp]: "last (xs @ [x]) = x" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" wenzelm@13142: by (induct xs rule: rev_induct) auto wenzelm@13114: wenzelm@13114: lemma butlast_append: wenzelm@13142: "!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma append_butlast_last_id [simp]: wenzelm@13142: "xs \ [] ==> butlast xs @ [last xs] = xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" wenzelm@13142: by (induct xs) (auto split: split_if_asm) wenzelm@13114: wenzelm@13114: lemma in_set_butlast_appendI: wenzelm@13142: "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" wenzelm@13142: by (auto dest: in_set_butlastD simp add: butlast_append) wenzelm@13114: wenzelm@13142: wenzelm@13142: subsection {* @{text take} and @{text drop} *} wenzelm@13114: wenzelm@13142: lemma take_0 [simp]: "take 0 xs = []" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma drop_0 [simp]: "drop 0 xs = xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" wenzelm@13142: by simp wenzelm@13114: wenzelm@13142: lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" wenzelm@13142: by simp wenzelm@13114: wenzelm@13142: declare take_Cons [simp del] and drop_Cons [simp del] wenzelm@13114: wenzelm@13142: lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n" wenzelm@13142: by (induct n) (auto, case_tac xs, auto) wenzelm@13114: wenzelm@13142: lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)" wenzelm@13142: by (induct n) (auto, case_tac xs, auto) wenzelm@13114: wenzelm@13142: lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs" wenzelm@13142: by (induct n) (auto, case_tac xs, auto) wenzelm@13114: wenzelm@13142: lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []" wenzelm@13142: by (induct n) (auto, case_tac xs, auto) wenzelm@13114: wenzelm@13142: lemma take_append [simp]: wenzelm@13142: "!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" wenzelm@13142: by (induct n) (auto, case_tac xs, auto) wenzelm@13114: wenzelm@13142: lemma drop_append [simp]: wenzelm@13142: "!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" wenzelm@13142: by (induct n) (auto, case_tac xs, auto) wenzelm@13114: wenzelm@13142: lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs" wenzelm@13142: apply (induct m) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac na) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs" wenzelm@13142: apply (induct m) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)" wenzelm@13142: apply (induct m) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs" wenzelm@13142: apply (induct n) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)" wenzelm@13142: apply (induct n) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)" wenzelm@13142: apply (induct n) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)" wenzelm@13142: apply (induct xs) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac i) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)" wenzelm@13142: apply (induct xs) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac i) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i" wenzelm@13142: apply (induct xs) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac n) wenzelm@13142: apply(blast ) wenzelm@13142: apply (case_tac i) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma nth_drop [simp]: wenzelm@13142: "!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" wenzelm@13142: apply (induct n) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: done nipkow@3507: wenzelm@13114: lemma append_eq_conv_conj: wenzelm@13142: "!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \ ys = drop (length xs) zs)" wenzelm@13142: apply(induct xs) wenzelm@13142: apply simp wenzelm@13142: apply clarsimp wenzelm@13142: apply (case_tac zs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13142: wenzelm@13114: wenzelm@13142: subsection {* @{text takeWhile} and @{text dropWhile} *} wenzelm@13114: wenzelm@13142: lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma takeWhile_append1 [simp]: wenzelm@13142: "[| x:set xs; ~P(x) |] ==> takeWhile P (xs @ ys) = takeWhile P xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma takeWhile_append2 [simp]: wenzelm@13142: "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma takeWhile_tail: "\ P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma dropWhile_append1 [simp]: wenzelm@13142: "[| x : set xs; ~P(x) |] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma dropWhile_append2 [simp]: wenzelm@13142: "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \ P x" wenzelm@13142: by (induct xs) (auto split: split_if_asm) wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text zip} *} wenzelm@13114: wenzelm@13142: lemma zip_Nil [simp]: "zip [] ys = []" wenzelm@13142: by (induct ys) auto wenzelm@13114: wenzelm@13142: lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" wenzelm@13142: by simp wenzelm@13114: wenzelm@13142: declare zip_Cons [simp del] wenzelm@13114: wenzelm@13142: lemma length_zip [simp]: wenzelm@13142: "!!xs. length (zip xs ys) = min (length xs) (length ys)" wenzelm@13142: apply(induct ys) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma zip_append1: wenzelm@13142: "!!xs. zip (xs @ ys) zs = wenzelm@13142: zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" wenzelm@13142: apply (induct zs) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply simp_all wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma zip_append2: wenzelm@13142: "!!ys. zip xs (ys @ zs) = wenzelm@13142: zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" wenzelm@13142: apply (induct xs) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac ys) wenzelm@13142: apply simp_all wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma zip_append [simp]: wenzelm@13142: "[| length xs = length us; length ys = length vs |] ==> wenzelm@13142: zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" wenzelm@13142: by (simp add: zip_append1) wenzelm@13114: wenzelm@13114: lemma zip_rev: wenzelm@13142: "!!xs. length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" wenzelm@13142: apply(induct ys) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply simp_all wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma nth_zip [simp]: wenzelm@13142: "!!i xs. [| i < length xs; i < length ys |] ==> (zip xs ys)!i = (xs!i, ys!i)" wenzelm@13142: apply (induct ys) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply (simp_all add: nth.simps split: nat.split) wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma set_zip: wenzelm@13142: "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}" wenzelm@13142: by (simp add: set_conv_nth cong: rev_conj_cong) wenzelm@13114: wenzelm@13114: lemma zip_update: wenzelm@13142: "length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" wenzelm@13142: by (rule sym, simp add: update_zip) wenzelm@13114: wenzelm@13142: lemma zip_replicate [simp]: wenzelm@13142: "!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" wenzelm@13142: apply (induct i) wenzelm@13142: apply auto wenzelm@13142: apply (case_tac j) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13142: wenzelm@13142: subsection {* @{text list_all2} *} wenzelm@13114: wenzelm@13114: lemma list_all2_lengthD: "list_all2 P xs ys ==> length xs = length ys" wenzelm@13142: by (simp add: list_all2_def) wenzelm@13114: wenzelm@13142: lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])" wenzelm@13142: by (simp add: list_all2_def) wenzelm@13114: wenzelm@13142: lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])" wenzelm@13142: by (simp add: list_all2_def) wenzelm@13114: wenzelm@13142: lemma list_all2_Cons [iff]: wenzelm@13142: "list_all2 P (x # xs) (y # ys) = (P x y \ list_all2 P xs ys)" wenzelm@13142: by (auto simp add: list_all2_def) wenzelm@13114: wenzelm@13114: lemma list_all2_Cons1: wenzelm@13142: "list_all2 P (x # xs) ys = (\z zs. ys = z # zs \ P x z \ list_all2 P xs zs)" wenzelm@13142: by (cases ys) auto wenzelm@13114: wenzelm@13114: lemma list_all2_Cons2: wenzelm@13142: "list_all2 P xs (y # ys) = (\z zs. xs = z # zs \ P z y \ list_all2 P zs ys)" wenzelm@13142: by (cases xs) auto wenzelm@13114: wenzelm@13142: lemma list_all2_rev [iff]: wenzelm@13142: "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" wenzelm@13142: by (simp add: list_all2_def zip_rev cong: conj_cong) wenzelm@13114: wenzelm@13114: lemma list_all2_append1: wenzelm@13142: "list_all2 P (xs @ ys) zs = wenzelm@13142: (EX us vs. zs = us @ vs \ length us = length xs \ length vs = length ys \ wenzelm@13142: list_all2 P xs us \ list_all2 P ys vs)" wenzelm@13142: apply (simp add: list_all2_def zip_append1) wenzelm@13142: apply (rule iffI) wenzelm@13142: apply (rule_tac x = "take (length xs) zs" in exI) wenzelm@13142: apply (rule_tac x = "drop (length xs) zs" in exI) wenzelm@13142: apply (force split: nat_diff_split simp add: min_def) wenzelm@13142: apply clarify wenzelm@13142: apply (simp add: ball_Un) wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma list_all2_append2: wenzelm@13142: "list_all2 P xs (ys @ zs) = wenzelm@13142: (EX us vs. xs = us @ vs \ length us = length ys \ length vs = length zs \ wenzelm@13142: list_all2 P us ys \ list_all2 P vs zs)" wenzelm@13142: apply (simp add: list_all2_def zip_append2) wenzelm@13142: apply (rule iffI) wenzelm@13142: apply (rule_tac x = "take (length ys) xs" in exI) wenzelm@13142: apply (rule_tac x = "drop (length ys) xs" in exI) wenzelm@13142: apply (force split: nat_diff_split simp add: min_def) wenzelm@13142: apply clarify wenzelm@13142: apply (simp add: ball_Un) wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma list_all2_conv_all_nth: wenzelm@13114: "list_all2 P xs ys = wenzelm@13142: (length xs = length ys \ (\i < length xs. P (xs!i) (ys!i)))" wenzelm@13142: by (force simp add: list_all2_def set_zip) wenzelm@13114: wenzelm@13114: lemma list_all2_trans[rule_format]: wenzelm@13142: "\a b c. P1 a b --> P2 b c --> P3 a c ==> wenzelm@13142: \bs cs. list_all2 P1 as bs --> list_all2 P2 bs cs --> list_all2 P3 as cs" wenzelm@13142: apply(induct_tac as) wenzelm@13142: apply simp wenzelm@13142: apply(rule allI) wenzelm@13142: apply(induct_tac bs) wenzelm@13142: apply simp wenzelm@13142: apply(rule allI) wenzelm@13142: apply(induct_tac cs) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13142: wenzelm@13142: wenzelm@13142: subsection {* @{text foldl} *} wenzelm@13142: wenzelm@13142: lemma foldl_append [simp]: wenzelm@13142: "!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" wenzelm@13142: by (induct xs) auto wenzelm@13142: wenzelm@13142: text {* wenzelm@13142: Note: @{text "n \ foldl (op +) n ns"} looks simpler, but is more wenzelm@13142: difficult to use because it requires an additional transitivity step. wenzelm@13142: *} wenzelm@13142: wenzelm@13142: lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns" wenzelm@13142: by (induct ns) auto wenzelm@13142: wenzelm@13142: lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns" wenzelm@13142: by (force intro: start_le_sum simp add: in_set_conv_decomp) wenzelm@13142: wenzelm@13142: lemma sum_eq_0_conv [iff]: wenzelm@13142: "!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \ (\n \ set ns. n = 0))" wenzelm@13142: by (induct ns) auto wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text upto} *} wenzelm@13114: wenzelm@13142: lemma upt_rec: "[i..j(] = (if i [i..j(] = []" wenzelm@13142: by (subst upt_rec) simp wenzelm@13114: wenzelm@13142: lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]" wenzelm@13142: -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *} wenzelm@13142: by simp wenzelm@13114: wenzelm@13142: lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]" wenzelm@13142: apply(rule trans) wenzelm@13142: apply(subst upt_rec) wenzelm@13142: prefer 2 apply(rule refl) wenzelm@13142: apply simp wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]" wenzelm@13142: -- {* LOOPS as a simprule, since @{text "j <= j"}. *} wenzelm@13142: by (induct k) auto wenzelm@13114: wenzelm@13142: lemma length_upt [simp]: "length [i..j(] = j - i" wenzelm@13142: by (induct j) (auto simp add: Suc_diff_le) wenzelm@13114: wenzelm@13142: lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k" wenzelm@13142: apply (induct j) wenzelm@13142: apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]" wenzelm@13142: apply (induct m) wenzelm@13142: apply simp wenzelm@13142: apply (subst upt_rec) wenzelm@13142: apply (rule sym) wenzelm@13142: apply (subst upt_rec) wenzelm@13142: apply (simp del: upt.simps) wenzelm@13142: done nipkow@3507: wenzelm@13114: lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13114: lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)" wenzelm@13142: apply (induct n m rule: diff_induct) wenzelm@13142: prefer 3 apply (subst map_Suc_upt[symmetric]) wenzelm@13142: apply (auto simp add: less_diff_conv nth_upt) wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma nth_take_lemma [rule_format]: wenzelm@13142: "ALL xs ys. k <= length xs --> k <= length ys wenzelm@13142: --> (ALL i. i < k --> xs!i = ys!i) wenzelm@13142: --> take k xs = take k ys" wenzelm@13142: apply (induct k) wenzelm@13142: apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib) wenzelm@13142: apply clarify wenzelm@13142: txt {* Both lists must be non-empty *} wenzelm@13142: apply (case_tac xs) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac ys) wenzelm@13142: apply clarify wenzelm@13142: apply (simp (no_asm_use)) wenzelm@13142: apply clarify wenzelm@13142: txt {* prenexing's needed, not miniscoping *} wenzelm@13142: apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) wenzelm@13142: apply blast wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma nth_equalityI: wenzelm@13114: "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" wenzelm@13142: apply (frule nth_take_lemma [OF le_refl eq_imp_le]) wenzelm@13142: apply (simp_all add: take_all) wenzelm@13142: done wenzelm@13142: wenzelm@13142: lemma take_equalityI: "(\i. take i xs = take i ys) ==> xs = ys" wenzelm@13142: -- {* The famous take-lemma. *} wenzelm@13142: apply (drule_tac x = "max (length xs) (length ys)" in spec) wenzelm@13142: apply (simp add: le_max_iff_disj take_all) wenzelm@13142: done wenzelm@13142: wenzelm@13142: wenzelm@13142: subsection {* @{text "distinct"} and @{text remdups} *} wenzelm@13142: wenzelm@13142: lemma distinct_append [simp]: wenzelm@13142: "distinct (xs @ ys) = (distinct xs \ distinct ys \ set xs \ set ys = {})" wenzelm@13142: by (induct xs) auto wenzelm@13142: wenzelm@13142: lemma set_remdups [simp]: "set (remdups xs) = set xs" wenzelm@13142: by (induct xs) (auto simp add: insert_absorb) wenzelm@13142: wenzelm@13142: lemma distinct_remdups [iff]: "distinct (remdups xs)" wenzelm@13142: by (induct xs) auto wenzelm@13142: wenzelm@13142: lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" wenzelm@13142: by (induct xs) auto wenzelm@13114: wenzelm@13142: text {* wenzelm@13142: It is best to avoid this indexed version of distinct, but sometimes wenzelm@13142: it is useful. *} wenzelm@13142: lemma distinct_conv_nth: wenzelm@13142: "distinct xs = (\i j. i < size xs \ j < size xs \ i \ j --> xs!i \ xs!j)" wenzelm@13142: apply (induct_tac xs) wenzelm@13142: apply simp wenzelm@13142: apply simp wenzelm@13142: apply (rule iffI) wenzelm@13142: apply clarsimp wenzelm@13142: apply (case_tac i) wenzelm@13142: apply (case_tac j) wenzelm@13142: apply simp wenzelm@13142: apply (simp add: set_conv_nth) wenzelm@13142: apply (case_tac j) wenzelm@13142: apply (clarsimp simp add: set_conv_nth) wenzelm@13142: apply simp wenzelm@13142: apply (rule conjI) wenzelm@13142: apply (clarsimp simp add: set_conv_nth) wenzelm@13142: apply (erule_tac x = 0 in allE) wenzelm@13142: apply (erule_tac x = "Suc i" in allE) wenzelm@13142: apply simp wenzelm@13142: apply clarsimp wenzelm@13142: apply (erule_tac x = "Suc i" in allE) wenzelm@13142: apply (erule_tac x = "Suc j" in allE) wenzelm@13142: apply simp wenzelm@13142: done wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text replicate} *} wenzelm@13114: wenzelm@13142: lemma length_replicate [simp]: "length (replicate n x) = n" wenzelm@13142: by (induct n) auto nipkow@13124: wenzelm@13142: lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13114: lemma replicate_app_Cons_same: wenzelm@13142: "(replicate n x) @ (x # xs) = x # replicate n x @ xs" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13142: lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" wenzelm@13142: apply(induct n) wenzelm@13142: apply simp wenzelm@13142: apply (simp add: replicate_app_Cons_same) wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13142: lemma hd_replicate [simp]: "n \ 0 ==> hd (replicate n x) = x" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13142: lemma tl_replicate [simp]: "n \ 0 ==> tl (replicate n x) = replicate (n - 1) x" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13142: lemma last_replicate [simp]: "n \ 0 ==> last (replicate n x) = x" wenzelm@13142: by (atomize (full), induct n) auto wenzelm@13114: wenzelm@13142: lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x" wenzelm@13142: apply(induct n) wenzelm@13142: apply simp wenzelm@13142: apply (simp add: nth_Cons split: nat.split) wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13142: lemma set_replicate [simp]: "n \ 0 ==> set (replicate n x) = {x}" wenzelm@13142: by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) wenzelm@13114: wenzelm@13142: lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})" wenzelm@13142: by auto wenzelm@13114: wenzelm@13142: lemma in_set_replicateD: "x : set (replicate n y) ==> x = y" wenzelm@13142: by (simp add: set_replicate_conv_if split: split_if_asm) wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* Lexcicographic orderings on lists *} nipkow@3507: wenzelm@13142: lemma wf_lexn: "wf r ==> wf (lexn r n)" wenzelm@13142: apply (induct_tac n) wenzelm@13142: apply simp wenzelm@13142: apply simp wenzelm@13142: apply(rule wf_subset) wenzelm@13142: prefer 2 apply (rule Int_lower1) wenzelm@13142: apply(rule wf_prod_fun_image) wenzelm@13142: prefer 2 apply (rule injI) wenzelm@13142: apply auto wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma lexn_length: wenzelm@13142: "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \ length ys = n" wenzelm@13142: by (induct n) auto wenzelm@13114: wenzelm@13142: lemma wf_lex [intro!]: "wf r ==> wf (lex r)" wenzelm@13142: apply (unfold lex_def) wenzelm@13142: apply (rule wf_UN) wenzelm@13142: apply (blast intro: wf_lexn) wenzelm@13142: apply clarify wenzelm@13142: apply (rename_tac m n) wenzelm@13142: apply (subgoal_tac "m \ n") wenzelm@13142: prefer 2 apply blast wenzelm@13142: apply (blast dest: lexn_length not_sym) wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma lexn_conv: wenzelm@13142: "lexn r n = wenzelm@13142: {(xs,ys). length xs = n \ length ys = n \ wenzelm@13142: (\xys x y xs' ys'. xs= xys @ x#xs' \ ys= xys @ y # ys' \ (x, y):r)}" wenzelm@13142: apply (induct_tac n) wenzelm@13142: apply simp wenzelm@13142: apply blast wenzelm@13142: apply (simp add: image_Collect lex_prod_def) wenzelm@13142: apply auto wenzelm@13142: apply blast wenzelm@13142: apply (rename_tac a xys x xs' y ys') wenzelm@13142: apply (rule_tac x = "a # xys" in exI) wenzelm@13142: apply simp wenzelm@13142: apply (case_tac xys) wenzelm@13142: apply simp_all wenzelm@13114: apply blast wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma lex_conv: wenzelm@13142: "lex r = wenzelm@13142: {(xs,ys). length xs = length ys \ wenzelm@13142: (\xys x y xs' ys'. xs = xys @ x # xs' \ ys = xys @ y # ys' \ (x, y):r)}" wenzelm@13142: by (force simp add: lex_def lexn_conv) wenzelm@13114: wenzelm@13142: lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)" wenzelm@13142: by (unfold lexico_def) blast wenzelm@13114: wenzelm@13114: lemma lexico_conv: wenzelm@13142: "lexico r = {(xs,ys). length xs < length ys | wenzelm@13142: length xs = length ys \ (xs, ys) : lex r}" wenzelm@13142: by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def) wenzelm@13114: wenzelm@13142: lemma Nil_notin_lex [iff]: "([], ys) \ lex r" wenzelm@13142: by (simp add: lex_conv) wenzelm@13114: wenzelm@13142: lemma Nil2_notin_lex [iff]: "(xs, []) \ lex r" wenzelm@13142: by (simp add:lex_conv) wenzelm@13114: wenzelm@13142: lemma Cons_in_lex [iff]: wenzelm@13142: "((x # xs, y # ys) : lex r) = wenzelm@13142: ((x, y) : r \ length xs = length ys | x = y \ (xs, ys) : lex r)" wenzelm@13142: apply (simp add: lex_conv) wenzelm@13142: apply (rule iffI) wenzelm@13142: prefer 2 apply (blast intro: Cons_eq_appendI) wenzelm@13142: apply clarify wenzelm@13142: apply (case_tac xys) wenzelm@13142: apply simp wenzelm@13142: apply simp wenzelm@13142: apply blast wenzelm@13142: done wenzelm@13114: wenzelm@13114: wenzelm@13142: subsection {* @{text sublist} --- a generalization of @{text nth} to sets *} wenzelm@13114: wenzelm@13142: lemma sublist_empty [simp]: "sublist xs {} = []" wenzelm@13142: by (auto simp add: sublist_def) wenzelm@13114: wenzelm@13142: lemma sublist_nil [simp]: "sublist [] A = []" wenzelm@13142: by (auto simp add: sublist_def) wenzelm@13114: wenzelm@13114: lemma sublist_shift_lemma: wenzelm@13142: "map fst [p:zip xs [i..i + length xs(] . snd p : A] = wenzelm@13142: map fst [p:zip xs [0..length xs(] . snd p + i : A]" wenzelm@13142: by (induct xs rule: rev_induct) (simp_all add: add_commute) wenzelm@13114: wenzelm@13114: lemma sublist_append: wenzelm@13142: "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}" wenzelm@13142: apply (unfold sublist_def) wenzelm@13142: apply (induct l' rule: rev_induct) wenzelm@13142: apply simp wenzelm@13142: apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) wenzelm@13142: apply (simp add: add_commute) wenzelm@13142: done wenzelm@13114: wenzelm@13114: lemma sublist_Cons: wenzelm@13142: "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}" wenzelm@13142: apply (induct l rule: rev_induct) wenzelm@13142: apply (simp add: sublist_def) wenzelm@13142: apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) wenzelm@13142: done wenzelm@13114: wenzelm@13142: lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" wenzelm@13142: by (simp add: sublist_Cons) wenzelm@13114: wenzelm@13142: lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l" wenzelm@13142: apply (induct l rule: rev_induct) wenzelm@13142: apply simp wenzelm@13142: apply (simp split: nat_diff_split add: sublist_append) wenzelm@13142: done wenzelm@13114: wenzelm@13114: wenzelm@13142: lemma take_Cons': wenzelm@13142: "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" wenzelm@13142: by (cases n) simp_all wenzelm@13114: wenzelm@13142: lemma drop_Cons': wenzelm@13142: "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" wenzelm@13142: by (cases n) simp_all wenzelm@13114: wenzelm@13142: lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" wenzelm@13142: by (cases n) simp_all wenzelm@13142: wenzelm@13142: lemmas [of "number_of v", standard, simp] = wenzelm@13142: take_Cons' drop_Cons' nth_Cons' nipkow@3507: wenzelm@13122: end