hoelzl@36648: (* Title: HOL/Library/Convex.thy hoelzl@36648: Author: Armin Heller, TU Muenchen hoelzl@36648: Author: Johannes Hoelzl, TU Muenchen hoelzl@36648: *) hoelzl@36648: hoelzl@36648: header {* Convexity in real vector spaces *} hoelzl@36648: hoelzl@36623: theory Convex hoelzl@36623: imports Product_Vector hoelzl@36623: begin hoelzl@36623: hoelzl@36623: subsection {* Convexity. *} hoelzl@36623: hoelzl@36623: definition hoelzl@36623: convex :: "'a::real_vector set \ bool" where hoelzl@36623: "convex s \ (\x\s. \y\s. \u\0. \v\0. u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s)" hoelzl@36623: hoelzl@36623: lemma convex_alt: hoelzl@36623: "convex s \ (\x\s. \y\s. \u. 0 \ u \ u \ 1 \ ((1 - u) *\<^sub>R x + u *\<^sub>R y) \ s)" hoelzl@36623: (is "_ \ ?alt") hoelzl@36623: proof hoelzl@36623: assume alt[rule_format]: ?alt hoelzl@36623: { fix x y and u v :: real assume mem: "x \ s" "y \ s" hoelzl@36623: assume "0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: moreover hence "u = 1 - v" by auto hoelzl@36623: ultimately have "u *\<^sub>R x + v *\<^sub>R y \ s" using alt[OF mem] by auto } hoelzl@36623: thus "convex s" unfolding convex_def by auto hoelzl@36623: qed (auto simp: convex_def) hoelzl@36623: hoelzl@36623: lemma mem_convex: hoelzl@36623: assumes "convex s" "a \ s" "b \ s" "0 \ u" "u \ 1" hoelzl@36623: shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \ s" hoelzl@36623: using assms unfolding convex_alt by auto hoelzl@36623: hoelzl@36623: lemma convex_empty[intro]: "convex {}" hoelzl@36623: unfolding convex_def by simp hoelzl@36623: hoelzl@36623: lemma convex_singleton[intro]: "convex {a}" hoelzl@36623: unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) hoelzl@36623: hoelzl@36623: lemma convex_UNIV[intro]: "convex UNIV" hoelzl@36623: unfolding convex_def by auto hoelzl@36623: hoelzl@36623: lemma convex_Inter: "(\s\f. convex s) ==> convex(\ f)" hoelzl@36623: unfolding convex_def by auto hoelzl@36623: hoelzl@36623: lemma convex_Int: "convex s \ convex t \ convex (s \ t)" hoelzl@36623: unfolding convex_def by auto hoelzl@36623: hoelzl@36623: lemma convex_halfspace_le: "convex {x. inner a x \ b}" hoelzl@36623: unfolding convex_def huffman@44142: by (auto simp: inner_add intro!: convex_bound_le) hoelzl@36623: hoelzl@36623: lemma convex_halfspace_ge: "convex {x. inner a x \ b}" hoelzl@36623: proof - hoelzl@36623: have *:"{x. inner a x \ b} = {x. inner (-a) x \ -b}" by auto hoelzl@36623: show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_hyperplane: "convex {x. inner a x = b}" hoelzl@36623: proof- hoelzl@36623: have *:"{x. inner a x = b} = {x. inner a x \ b} \ {x. inner a x \ b}" by auto hoelzl@36623: show ?thesis using convex_halfspace_le convex_halfspace_ge hoelzl@36623: by (auto intro!: convex_Int simp: *) hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_halfspace_lt: "convex {x. inner a x < b}" hoelzl@36623: unfolding convex_def hoelzl@36623: by (auto simp: convex_bound_lt inner_add) hoelzl@36623: hoelzl@36623: lemma convex_halfspace_gt: "convex {x. inner a x > b}" hoelzl@36623: using convex_halfspace_lt[of "-a" "-b"] by auto hoelzl@36623: hoelzl@36623: lemma convex_real_interval: hoelzl@36623: fixes a b :: "real" hoelzl@36623: shows "convex {a..}" and "convex {..b}" hoelzl@36623: and "convex {a<..}" and "convex {.. inner 1 x}" by auto hoelzl@36623: thus 1: "convex {a..}" by (simp only: convex_halfspace_ge) hoelzl@36623: have "{..b} = {x. inner 1 x \ b}" by auto hoelzl@36623: thus 2: "convex {..b}" by (simp only: convex_halfspace_le) hoelzl@36623: have "{a<..} = {x. a < inner 1 x}" by auto hoelzl@36623: thus 3: "convex {a<..}" by (simp only: convex_halfspace_gt) hoelzl@36623: have "{.. {..b}" by auto hoelzl@36623: thus "convex {a..b}" by (simp only: convex_Int 1 2) hoelzl@36623: have "{a<..b} = {a<..} \ {..b}" by auto hoelzl@36623: thus "convex {a<..b}" by (simp only: convex_Int 3 2) hoelzl@36623: have "{a.. {.. {.. i \ s. a i) = 1" hoelzl@36623: assumes "\ i. i \ s \ a i \ 0" and "\ i. i \ s \ y i \ C" hoelzl@36623: shows "(\ j \ s. a j *\<^sub>R y j) \ C" hoelzl@36623: using assms hoelzl@36623: proof (induct s arbitrary:a rule:finite_induct) hoelzl@36623: case empty thus ?case by auto hoelzl@36623: next hoelzl@36623: case (insert i s) note asms = this hoelzl@36623: { assume "a i = 1" hoelzl@36623: hence "(\ j \ s. a j) = 0" hoelzl@36623: using asms by auto hoelzl@36623: hence "\ j. j \ s \ a j = 0" nipkow@44890: using setsum_nonneg_0[where 'b=real] asms by fastforce hoelzl@36623: hence ?case using asms by auto } hoelzl@36623: moreover hoelzl@36623: { assume asm: "a i \ 1" hoelzl@36623: from asms have yai: "y i \ C" "a i \ 0" by auto hoelzl@36623: have fis: "finite (insert i s)" using asms by auto hoelzl@36623: hence ai1: "a i \ 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp hoelzl@36623: hence "a i < 1" using asm by auto hoelzl@36623: hence i0: "1 - a i > 0" by auto hoelzl@36623: let "?a j" = "a j / (1 - a i)" hoelzl@36623: { fix j assume "j \ s" hoelzl@36623: hence "?a j \ 0" hoelzl@36623: using i0 asms divide_nonneg_pos nipkow@44890: by fastforce } note a_nonneg = this hoelzl@36623: have "(\ j \ insert i s. a j) = 1" using asms by auto nipkow@44890: hence "(\ j \ s. a j) = 1 - a i" using setsum.insert asms by fastforce hoelzl@36623: hence "(\ j \ s. a j) / (1 - a i) = 1" using i0 by auto huffman@44282: hence a1: "(\ j \ s. ?a j) = 1" unfolding setsum_divide_distrib by simp hoelzl@36623: from this asms nipkow@44890: have "(\j\s. ?a j *\<^sub>R y j) \ C" using a_nonneg by fastforce hoelzl@36623: hence "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\ j \ s. ?a j *\<^sub>R y j) \ C" hoelzl@36623: using asms[unfolded convex_def, rule_format] yai ai1 by auto hoelzl@36623: hence "a i *\<^sub>R y i + (\ j \ s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \ C" hoelzl@36623: using scaleR_right.setsum[of "(1 - a i)" "\ j. ?a j *\<^sub>R y j" s] by auto hoelzl@36623: hence "a i *\<^sub>R y i + (\ j \ s. a j *\<^sub>R y j) \ C" using i0 by auto hoelzl@36623: hence ?case using setsum.insert asms by auto } hoelzl@36623: ultimately show ?case by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex: hoelzl@36623: shows "convex s \ (\(k::nat) u x. (\i. 1\i \ i\k \ 0 \ u i \ x i \s) \ (setsum u {1..k} = 1) hoelzl@36623: \ setsum (\i. u i *\<^sub>R x i) {1..k} \ s)" hoelzl@36623: proof safe hoelzl@36623: fix k :: nat fix u :: "nat \ real" fix x hoelzl@36623: assume "convex s" hoelzl@36623: "\i. 1 \ i \ i \ k \ 0 \ u i \ x i \ s" hoelzl@36623: "setsum u {1..k} = 1" hoelzl@36623: from this convex_setsum[of "{1 .. k}" s] hoelzl@36623: show "(\j\{1 .. k}. u j *\<^sub>R x j) \ s" by auto hoelzl@36623: next hoelzl@36623: assume asm: "\k u x. (\ i :: nat. 1 \ i \ i \ k \ 0 \ u i \ x i \ s) \ setsum u {1..k} = 1 hoelzl@36623: \ (\i = 1..k. u i *\<^sub>R (x i :: 'a)) \ s" hoelzl@36623: { fix \ :: real fix x y :: 'a assume xy: "x \ s" "y \ s" assume mu: "\ \ 0" "\ \ 1" hoelzl@36623: let "?u i" = "if (i :: nat) = 1 then \ else 1 - \" hoelzl@36623: let "?x i" = "if (i :: nat) = 1 then x else y" hoelzl@36623: have "{1 :: nat .. 2} \ - {x. x = 1} = {2}" by auto hoelzl@36623: hence card: "card ({1 :: nat .. 2} \ - {x. x = 1}) = 1" by simp hoelzl@36623: hence "setsum ?u {1 .. 2} = 1" hoelzl@36623: using setsum_cases[of "{(1 :: nat) .. 2}" "\ x. x = 1" "\ x. \" "\ x. 1 - \"] hoelzl@36623: by auto hoelzl@36623: from this asm[rule_format, of "2" ?u ?x] hoelzl@36623: have s: "(\j \ {1..2}. ?u j *\<^sub>R ?x j) \ s" hoelzl@36623: using mu xy by auto hoelzl@36623: have grarr: "(\j \ {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \) *\<^sub>R y" hoelzl@36623: using setsum_head_Suc[of "Suc (Suc 0)" 2 "\ j. (1 - \) *\<^sub>R y"] by auto hoelzl@36623: from setsum_head_Suc[of "Suc 0" 2 "\ j. ?u j *\<^sub>R ?x j", simplified this] hoelzl@36623: have "(\j \ {1..2}. ?u j *\<^sub>R ?x j) = \ *\<^sub>R x + (1 - \) *\<^sub>R y" by auto hoelzl@36623: hence "(1 - \) *\<^sub>R y + \ *\<^sub>R x \ s" using s by (auto simp:add_commute) } hoelzl@36623: thus "convex s" unfolding convex_alt by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: hoelzl@36623: lemma convex_explicit: hoelzl@36623: fixes s :: "'a::real_vector set" hoelzl@36623: shows "convex s \ hoelzl@36623: (\t u. finite t \ t \ s \ (\x\t. 0 \ u x) \ setsum u t = 1 \ setsum (\x. u x *\<^sub>R x) t \ s)" hoelzl@36623: proof safe hoelzl@36623: fix t fix u :: "'a \ real" hoelzl@36623: assume "convex s" "finite t" hoelzl@36623: "t \ s" "\x\t. 0 \ u x" "setsum u t = 1" hoelzl@36623: thus "(\x\t. u x *\<^sub>R x) \ s" hoelzl@36623: using convex_setsum[of t s u "\ x. x"] by auto hoelzl@36623: next hoelzl@36623: assume asm0: "\t. \ u. finite t \ t \ s \ (\x\t. 0 \ u x) hoelzl@36623: \ setsum u t = 1 \ (\x\t. u x *\<^sub>R x) \ s" hoelzl@36623: show "convex s" hoelzl@36623: unfolding convex_alt hoelzl@36623: proof safe hoelzl@36623: fix x y fix \ :: real hoelzl@36623: assume asm: "x \ s" "y \ s" "0 \ \" "\ \ 1" hoelzl@36623: { assume "x \ y" hoelzl@36623: hence "(1 - \) *\<^sub>R x + \ *\<^sub>R y \ s" hoelzl@36623: using asm0[rule_format, of "{x, y}" "\ z. if z = x then 1 - \ else \"] hoelzl@36623: asm by auto } hoelzl@36623: moreover hoelzl@36623: { assume "x = y" hoelzl@36623: hence "(1 - \) *\<^sub>R x + \ *\<^sub>R y \ s" hoelzl@36623: using asm0[rule_format, of "{x, y}" "\ z. 1"] hoelzl@36623: asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) } hoelzl@36623: ultimately show "(1 - \) *\<^sub>R x + \ *\<^sub>R y \ s" by blast hoelzl@36623: qed hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_finite: assumes "finite s" hoelzl@36623: shows "convex s \ (\u. (\x\s. 0 \ u x) \ setsum u s = 1 hoelzl@36623: \ setsum (\x. u x *\<^sub>R x) s \ s)" hoelzl@36623: unfolding convex_explicit huffman@44142: proof (safe) hoelzl@36623: fix t u assume sum: "\u. (\x\s. 0 \ u x) \ setsum u s = 1 \ (\x\s. u x *\<^sub>R x) \ s" hoelzl@36623: and as: "finite t" "t \ s" "\x\t. 0 \ u x" "setsum u t = (1::real)" hoelzl@36623: have *:"s \ t = t" using as(2) by auto hoelzl@36623: have if_distrib_arg: "\P f g x. (if P then f else g) x = (if P then f x else g x)" by simp hoelzl@36623: show "(\x\t. u x *\<^sub>R x) \ s" hoelzl@36623: using sum[THEN spec[where x="\x. if x\t then u x else 0"]] as * hoelzl@36623: by (auto simp: assms setsum_cases if_distrib if_distrib_arg) hoelzl@36623: qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) hoelzl@36623: hoelzl@36623: definition hoelzl@36623: convex_on :: "'a::real_vector set \ ('a \ real) \ bool" where hoelzl@36623: "convex_on s f \ hoelzl@36623: (\x\s. \y\s. \u\0. \v\0. u + v = 1 \ f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y)" hoelzl@36623: hoelzl@36623: lemma convex_on_subset: "convex_on t f \ s \ t \ convex_on s f" hoelzl@36623: unfolding convex_on_def by auto hoelzl@36623: hoelzl@36623: lemma convex_add[intro]: hoelzl@36623: assumes "convex_on s f" "convex_on s g" hoelzl@36623: shows "convex_on s (\x. f x + g x)" hoelzl@36623: proof- hoelzl@36623: { fix x y assume "x\s" "y\s" moreover hoelzl@36623: fix u v ::real assume "0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \ (u * f x + v * f y) + (u * g x + v * g y)" hoelzl@36623: using assms unfolding convex_on_def by (auto simp add:add_mono) hoelzl@36623: hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \ u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps) } hoelzl@36623: thus ?thesis unfolding convex_on_def by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_cmul[intro]: hoelzl@36623: assumes "0 \ (c::real)" "convex_on s f" hoelzl@36623: shows "convex_on s (\x. c * f x)" hoelzl@36623: proof- hoelzl@36623: have *:"\u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: field_simps) haftmann@38642: show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] unfolding convex_on_def and * by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_lower: hoelzl@36623: assumes "convex_on s f" "x\s" "y \ s" "0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: shows "f (u *\<^sub>R x + v *\<^sub>R y) \ max (f x) (f y)" hoelzl@36623: proof- hoelzl@36623: let ?m = "max (f x) (f y)" hoelzl@36623: have "u * f x + v * f y \ u * max (f x) (f y) + v * max (f x) (f y)" haftmann@38642: using assms(4,5) by (auto simp add: mult_left_mono add_mono) hoelzl@36623: also have "\ = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto hoelzl@36623: finally show ?thesis nipkow@44890: using assms unfolding convex_on_def by fastforce hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_distance[intro]: hoelzl@36623: fixes s :: "'a::real_normed_vector set" hoelzl@36623: shows "convex_on s (\x. dist a x)" hoelzl@36623: proof(auto simp add: convex_on_def dist_norm) hoelzl@36623: fix x y assume "x\s" "y\s" hoelzl@36623: fix u v ::real assume "0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp hoelzl@36623: hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" hoelzl@36623: by (auto simp add: algebra_simps) hoelzl@36623: show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \ u * norm (a - x) + v * norm (a - y)" hoelzl@36623: unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] hoelzl@36623: using `0 \ u` `0 \ v` by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: subsection {* Arithmetic operations on sets preserve convexity. *} hoelzl@36623: lemma convex_scaling: hoelzl@36623: assumes "convex s" hoelzl@36623: shows"convex ((\x. c *\<^sub>R x) ` s)" hoelzl@36623: using assms unfolding convex_def image_iff hoelzl@36623: proof safe hoelzl@36623: fix x xa y xb :: "'a::real_vector" fix u v :: real hoelzl@36623: assume asm: "\x\s. \y\s. \u\0. \v\0. u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s" hoelzl@36623: "xa \ s" "xb \ s" "0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: show "\x\s. u *\<^sub>R c *\<^sub>R xa + v *\<^sub>R c *\<^sub>R xb = c *\<^sub>R x" hoelzl@36623: using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by (auto simp add: algebra_simps) hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_negations: "convex s \ convex ((\x. -x)` s)" hoelzl@36623: using assms unfolding convex_def image_iff hoelzl@36623: proof safe hoelzl@36623: fix x xa y xb :: "'a::real_vector" fix u v :: real hoelzl@36623: assume asm: "\x\s. \y\s. \u\0. \v\0. u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s" hoelzl@36623: "xa \ s" "xb \ s" "0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: show "\x\s. u *\<^sub>R - xa + v *\<^sub>R - xb = - x" hoelzl@36623: using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_sums: hoelzl@36623: assumes "convex s" "convex t" hoelzl@36623: shows "convex {x + y| x y. x \ s \ y \ t}" hoelzl@36623: using assms unfolding convex_def image_iff hoelzl@36623: proof safe hoelzl@36623: fix xa xb ya yb assume xy:"xa\s" "xb\s" "ya\t" "yb\t" hoelzl@36623: fix u v ::real assume uv:"0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: show "\x y. u *\<^sub>R (xa + ya) + v *\<^sub>R (xb + yb) = x + y \ x \ s \ y \ t" hoelzl@36623: using exI[of _ "u *\<^sub>R xa + v *\<^sub>R xb"] exI[of _ "u *\<^sub>R ya + v *\<^sub>R yb"] hoelzl@36623: assms[unfolded convex_def] uv xy by (auto simp add:scaleR_right_distrib) hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_differences: hoelzl@36623: assumes "convex s" "convex t" hoelzl@36623: shows "convex {x - y| x y. x \ s \ y \ t}" hoelzl@36623: proof - hoelzl@36623: have "{x - y| x y. x \ s \ y \ t} = {x + y |x y. x \ s \ y \ uminus ` t}" hoelzl@36623: proof safe hoelzl@36623: fix x x' y assume "x' \ s" "y \ t" hoelzl@36623: thus "\x y'. x' - y = x + y' \ x \ s \ y' \ uminus ` t" hoelzl@36623: using exI[of _ x'] exI[of _ "-y"] by auto hoelzl@36623: next hoelzl@36623: fix x x' y y' assume "x' \ s" "y' \ t" hoelzl@36623: thus "\x y. x' + - y' = x - y \ x \ s \ y \ t" hoelzl@36623: using exI[of _ x'] exI[of _ y'] by auto hoelzl@36623: qed hoelzl@36623: thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_translation: assumes "convex s" shows "convex ((\x. a + x) ` s)" hoelzl@36623: proof- have "{a + y |y. y \ s} = (\x. a + x) ` s" by auto hoelzl@36623: thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed hoelzl@36623: hoelzl@36623: lemma convex_affinity: assumes "convex s" shows "convex ((\x. a + c *\<^sub>R x) ` s)" hoelzl@36623: proof- have "(\x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto hoelzl@36623: thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed hoelzl@36623: hoelzl@36623: lemma convex_linear_image: hoelzl@36623: assumes c:"convex s" and l:"bounded_linear f" hoelzl@36623: shows "convex(f ` s)" hoelzl@36623: proof(auto simp add: convex_def) hoelzl@36623: interpret f: bounded_linear f by fact hoelzl@36623: fix x y assume xy:"x \ s" "y \ s" hoelzl@36623: fix u v ::real assume uv:"0 \ u" "0 \ v" "u + v = 1" hoelzl@36623: show "u *\<^sub>R f x + v *\<^sub>R f y \ f ` s" unfolding image_iff hoelzl@36623: using bexI[of _ "u *\<^sub>R x + v *\<^sub>R y"] f.add f.scaleR hoelzl@36623: c[unfolded convex_def] xy uv by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: hoelzl@36623: lemma pos_is_convex: hoelzl@36623: shows "convex {0 :: real <..}" hoelzl@36623: unfolding convex_alt hoelzl@36623: proof safe hoelzl@36623: fix y x \ :: real hoelzl@36623: assume asms: "y > 0" "x > 0" "\ \ 0" "\ \ 1" hoelzl@36623: { assume "\ = 0" hoelzl@36623: hence "\ *\<^sub>R x + (1 - \) *\<^sub>R y = y" by simp hoelzl@36623: hence "\ *\<^sub>R x + (1 - \) *\<^sub>R y > 0" using asms by simp } hoelzl@36623: moreover hoelzl@36623: { assume "\ = 1" hoelzl@36623: hence "\ *\<^sub>R x + (1 - \) *\<^sub>R y > 0" using asms by simp } hoelzl@36623: moreover hoelzl@36623: { assume "\ \ 1" "\ \ 0" hoelzl@36623: hence "\ > 0" "(1 - \) > 0" using asms by auto hoelzl@36623: hence "\ *\<^sub>R x + (1 - \) *\<^sub>R y > 0" using asms huffman@36778: by (auto simp add: add_pos_pos mult_pos_pos) } nipkow@44890: ultimately show "(1 - \) *\<^sub>R y + \ *\<^sub>R x > 0" using assms by fastforce hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_on_setsum: hoelzl@36623: fixes a :: "'a \ real" hoelzl@36623: fixes y :: "'a \ 'b::real_vector" hoelzl@36623: fixes f :: "'b \ real" hoelzl@36623: assumes "finite s" "s \ {}" hoelzl@36623: assumes "convex_on C f" hoelzl@36623: assumes "convex C" hoelzl@36623: assumes "(\ i \ s. a i) = 1" hoelzl@36623: assumes "\ i. i \ s \ a i \ 0" hoelzl@36623: assumes "\ i. i \ s \ y i \ C" hoelzl@36623: shows "f (\ i \ s. a i *\<^sub>R y i) \ (\ i \ s. a i * f (y i))" hoelzl@36623: using assms hoelzl@36623: proof (induct s arbitrary:a rule:finite_ne_induct) hoelzl@36623: case (singleton i) hoelzl@36623: hence ai: "a i = 1" by auto hoelzl@36623: thus ?case by auto hoelzl@36623: next hoelzl@36623: case (insert i s) note asms = this hoelzl@36623: hence "convex_on C f" by simp hoelzl@36623: from this[unfolded convex_on_def, rule_format] hoelzl@36623: have conv: "\ x y \. \x \ C; y \ C; 0 \ \; \ \ 1\ hoelzl@36623: \ f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y" hoelzl@36623: by simp hoelzl@36623: { assume "a i = 1" hoelzl@36623: hence "(\ j \ s. a j) = 0" hoelzl@36623: using asms by auto hoelzl@36623: hence "\ j. j \ s \ a j = 0" nipkow@44890: using setsum_nonneg_0[where 'b=real] asms by fastforce hoelzl@36623: hence ?case using asms by auto } hoelzl@36623: moreover hoelzl@36623: { assume asm: "a i \ 1" hoelzl@36623: from asms have yai: "y i \ C" "a i \ 0" by auto hoelzl@36623: have fis: "finite (insert i s)" using asms by auto hoelzl@36623: hence ai1: "a i \ 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp hoelzl@36623: hence "a i < 1" using asm by auto hoelzl@36623: hence i0: "1 - a i > 0" by auto hoelzl@36623: let "?a j" = "a j / (1 - a i)" hoelzl@36623: { fix j assume "j \ s" hoelzl@36623: hence "?a j \ 0" hoelzl@36623: using i0 asms divide_nonneg_pos nipkow@44890: by fastforce } note a_nonneg = this hoelzl@36623: have "(\ j \ insert i s. a j) = 1" using asms by auto nipkow@44890: hence "(\ j \ s. a j) = 1 - a i" using setsum.insert asms by fastforce hoelzl@36623: hence "(\ j \ s. a j) / (1 - a i) = 1" using i0 by auto huffman@44282: hence a1: "(\ j \ s. ?a j) = 1" unfolding setsum_divide_distrib by simp hoelzl@36623: have "convex C" using asms by auto hoelzl@36623: hence asum: "(\ j \ s. ?a j *\<^sub>R y j) \ C" hoelzl@36623: using asms convex_setsum[OF `finite s` hoelzl@36623: `convex C` a1 a_nonneg] by auto hoelzl@36623: have asum_le: "f (\ j \ s. ?a j *\<^sub>R y j) \ (\ j \ s. ?a j * f (y j))" hoelzl@36623: using a_nonneg a1 asms by blast hoelzl@36623: have "f (\ j \ insert i s. a j *\<^sub>R y j) = f ((\ j \ s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" hoelzl@36623: using setsum.insert[of s i "\ j. a j *\<^sub>R y j", OF `finite s` `i \ s`] asms hoelzl@36623: by (auto simp only:add_commute) hoelzl@36623: also have "\ = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\ j \ s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" hoelzl@36623: using i0 by auto hoelzl@36623: also have "\ = f ((1 - a i) *\<^sub>R (\ j \ s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" hoelzl@36623: using scaleR_right.setsum[of "inverse (1 - a i)" "\ j. a j *\<^sub>R y j" s, symmetric] by (auto simp:algebra_simps) hoelzl@36623: also have "\ = f ((1 - a i) *\<^sub>R (\ j \ s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" huffman@36778: by (auto simp: divide_inverse) hoelzl@36623: also have "\ \ (1 - a i) *\<^sub>R f ((\ j \ s. ?a j *\<^sub>R y j)) + a i * f (y i)" hoelzl@36623: using conv[of "y i" "(\ j \ s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] hoelzl@36623: by (auto simp add:add_commute) hoelzl@36623: also have "\ \ (1 - a i) * (\ j \ s. ?a j * f (y j)) + a i * f (y i)" hoelzl@36623: using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", hoelzl@36623: OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp hoelzl@36623: also have "\ = (\ j \ s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" huffman@44282: unfolding setsum_right_distrib[of "1 - a i" "\ j. ?a j * f (y j)"] using i0 by auto hoelzl@36623: also have "\ = (\ j \ s. a j * f (y j)) + a i * f (y i)" using i0 by auto hoelzl@36623: also have "\ = (\ j \ insert i s. a j * f (y j))" using asms by auto hoelzl@36623: finally have "f (\ j \ insert i s. a j *\<^sub>R y j) \ (\ j \ insert i s. a j * f (y j))" hoelzl@36623: by simp } hoelzl@36623: ultimately show ?case by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_on_alt: hoelzl@36623: fixes C :: "'a::real_vector set" hoelzl@36623: assumes "convex C" hoelzl@36623: shows "convex_on C f = hoelzl@36623: (\ x \ C. \ y \ C. \ \ :: real. \ \ 0 \ \ \ 1 hoelzl@36623: \ f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y)" hoelzl@36623: proof safe hoelzl@36623: fix x y fix \ :: real hoelzl@36623: assume asms: "convex_on C f" "x \ C" "y \ C" "0 \ \" "\ \ 1" hoelzl@36623: from this[unfolded convex_on_def, rule_format] hoelzl@36623: have "\ u v. \0 \ u; 0 \ v; u + v = 1\ \ f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y" by auto hoelzl@36623: from this[of "\" "1 - \", simplified] asms hoelzl@36623: show "f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) hoelzl@36623: \ \ * f x + (1 - \) * f y" by auto hoelzl@36623: next hoelzl@36623: assume asm: "\x\C. \y\C. \\. 0 \ \ \ \ \ 1 \ f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y" hoelzl@36623: {fix x y fix u v :: real hoelzl@36623: assume lasm: "x \ C" "y \ C" "u \ 0" "v \ 0" "u + v = 1" hoelzl@36623: hence[simp]: "1 - u = v" by auto hoelzl@36623: from asm[rule_format, of x y u] hoelzl@36623: have "f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y" using lasm by auto } hoelzl@36623: thus "convex_on C f" unfolding convex_on_def by auto hoelzl@36623: qed hoelzl@36623: hoelzl@43337: lemma convex_on_diff: hoelzl@43337: fixes f :: "real \ real" hoelzl@43337: assumes f: "convex_on I f" and I: "x\I" "y\I" and t: "x < t" "t < y" hoelzl@43337: shows "(f x - f t) / (x - t) \ (f x - f y) / (x - y)" "(f x - f y) / (x - y) \ (f t - f y) / (t - y)" hoelzl@43337: proof - hoelzl@43337: def a \ "(t - y) / (x - y)" hoelzl@43337: with t have "0 \ a" "0 \ 1 - a" by (auto simp: field_simps) hoelzl@43337: with f `x \ I` `y \ I` have cvx: "f (a * x + (1 - a) * y) \ a * f x + (1 - a) * f y" hoelzl@43337: by (auto simp: convex_on_def) hoelzl@43337: have "a * x + (1 - a) * y = a * (x - y) + y" by (simp add: field_simps) hoelzl@43337: also have "\ = t" unfolding a_def using `x < t` `t < y` by simp hoelzl@43337: finally have "f t \ a * f x + (1 - a) * f y" using cvx by simp hoelzl@43337: also have "\ = a * (f x - f y) + f y" by (simp add: field_simps) hoelzl@43337: finally have "f t - f y \ a * (f x - f y)" by simp hoelzl@43337: with t show "(f x - f t) / (x - t) \ (f x - f y) / (x - y)" huffman@44142: by (simp add: le_divide_eq divide_le_eq field_simps a_def) hoelzl@43337: with t show "(f x - f y) / (x - y) \ (f t - f y) / (t - y)" huffman@44142: by (simp add: le_divide_eq divide_le_eq field_simps) hoelzl@43337: qed hoelzl@36623: hoelzl@36623: lemma pos_convex_function: hoelzl@36623: fixes f :: "real \ real" hoelzl@36623: assumes "convex C" hoelzl@36623: assumes leq: "\ x y. \x \ C ; y \ C\ \ f' x * (y - x) \ f y - f x" hoelzl@36623: shows "convex_on C f" hoelzl@36623: unfolding convex_on_alt[OF assms(1)] hoelzl@36623: using assms hoelzl@36623: proof safe hoelzl@36623: fix x y \ :: real hoelzl@36623: let ?x = "\ *\<^sub>R x + (1 - \) *\<^sub>R y" hoelzl@36623: assume asm: "convex C" "x \ C" "y \ C" "\ \ 0" "\ \ 1" hoelzl@36623: hence "1 - \ \ 0" by auto nipkow@44890: hence xpos: "?x \ C" using asm unfolding convex_alt by fastforce hoelzl@36623: have geq: "\ * (f x - f ?x) + (1 - \) * (f y - f ?x) hoelzl@36623: \ \ * f' ?x * (x - ?x) + (1 - \) * f' ?x * (y - ?x)" haftmann@38642: using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\ \ 0`] haftmann@38642: mult_left_mono[OF leq[OF xpos asm(3)] `1 - \ \ 0`]] by auto hoelzl@36623: hence "\ * f x + (1 - \) * f y - f ?x \ 0" hoelzl@36623: by (auto simp add:field_simps) hoelzl@36623: thus "f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y" hoelzl@36623: using convex_on_alt by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma atMostAtLeast_subset_convex: hoelzl@36623: fixes C :: "real set" hoelzl@36623: assumes "convex C" hoelzl@36623: assumes "x \ C" "y \ C" "x < y" hoelzl@36623: shows "{x .. y} \ C" hoelzl@36623: proof safe hoelzl@36623: fix z assume zasm: "z \ {x .. y}" hoelzl@36623: { assume asm: "x < z" "z < y" hoelzl@36623: let "?\" = "(y - z) / (y - x)" hoelzl@36623: have "0 \ ?\" "?\ \ 1" using assms asm by (auto simp add:field_simps) hoelzl@36623: hence comb: "?\ * x + (1 - ?\) * y \ C" hoelzl@36623: using assms iffD1[OF convex_alt, rule_format, of C y x ?\] by (simp add:algebra_simps) hoelzl@36623: have "?\ * x + (1 - ?\) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" hoelzl@36623: by (auto simp add:field_simps) hoelzl@36623: also have "\ = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" hoelzl@36623: using assms unfolding add_divide_distrib by (auto simp:field_simps) hoelzl@36623: also have "\ = z" hoelzl@36623: using assms by (auto simp:field_simps) hoelzl@36623: finally have "z \ C" hoelzl@36623: using comb by auto } note less = this hoelzl@36623: show "z \ C" using zasm less assms hoelzl@36623: unfolding atLeastAtMost_iff le_less by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma f''_imp_f': hoelzl@36623: fixes f :: "real \ real" hoelzl@36623: assumes "convex C" hoelzl@36623: assumes f': "\ x. x \ C \ DERIV f x :> (f' x)" hoelzl@36623: assumes f'': "\ x. x \ C \ DERIV f' x :> (f'' x)" hoelzl@36623: assumes pos: "\ x. x \ C \ f'' x \ 0" hoelzl@36623: assumes "x \ C" "y \ C" hoelzl@36623: shows "f' x * (y - x) \ f y - f x" hoelzl@36623: using assms hoelzl@36623: proof - hoelzl@36623: { fix x y :: real assume asm: "x \ C" "y \ C" "y > x" hoelzl@36623: hence ge: "y - x > 0" "y - x \ 0" by auto hoelzl@36623: from asm have le: "x - y < 0" "x - y \ 0" by auto hoelzl@36623: then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" hoelzl@36623: using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \ C` `y \ C` `x < y`], hoelzl@36623: THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] hoelzl@36623: by auto hoelzl@36623: hence "z1 \ C" using atMostAtLeast_subset_convex nipkow@44890: `convex C` `x \ C` `y \ C` `x < y` by fastforce hoelzl@36623: from z1 have z1': "f x - f y = (x - y) * f' z1" hoelzl@36623: by (simp add:field_simps) hoelzl@36623: obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" hoelzl@36623: using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \ C` `z1 \ C` `x < z1`], hoelzl@36623: THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 hoelzl@36623: by auto hoelzl@36623: obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" hoelzl@36623: using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \ C` `y \ C` `z1 < y`], hoelzl@36623: THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 hoelzl@36623: by auto hoelzl@36623: have "f' y - (f x - f y) / (x - y) = f' y - f' z1" hoelzl@36623: using asm z1' by auto hoelzl@36623: also have "\ = (y - z1) * f'' z3" using z3 by auto hoelzl@36623: finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp hoelzl@36623: have A': "y - z1 \ 0" using z1 by auto hoelzl@36623: have "z3 \ C" using z3 asm atMostAtLeast_subset_convex nipkow@44890: `convex C` `x \ C` `z1 \ C` `x < z1` by fastforce hoelzl@36623: hence B': "f'' z3 \ 0" using assms by auto hoelzl@36623: from A' B' have "(y - z1) * f'' z3 \ 0" using mult_nonneg_nonneg by auto hoelzl@36623: from cool' this have "f' y - (f x - f y) / (x - y) \ 0" by auto hoelzl@36623: from mult_right_mono_neg[OF this le(2)] hoelzl@36623: have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \ 0 * (x - y)" huffman@36778: by (simp add: algebra_simps) hoelzl@36623: hence "f' y * (x - y) - (f x - f y) \ 0" using le by auto hoelzl@36623: hence res: "f' y * (x - y) \ f x - f y" by auto hoelzl@36623: have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" hoelzl@36623: using asm z1 by auto hoelzl@36623: also have "\ = (z1 - x) * f'' z2" using z2 by auto hoelzl@36623: finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp hoelzl@36623: have A: "z1 - x \ 0" using z1 by auto hoelzl@36623: have "z2 \ C" using z2 z1 asm atMostAtLeast_subset_convex nipkow@44890: `convex C` `z1 \ C` `y \ C` `z1 < y` by fastforce hoelzl@36623: hence B: "f'' z2 \ 0" using assms by auto hoelzl@36623: from A B have "(z1 - x) * f'' z2 \ 0" using mult_nonneg_nonneg by auto hoelzl@36623: from cool this have "(f y - f x) / (y - x) - f' x \ 0" by auto hoelzl@36623: from mult_right_mono[OF this ge(2)] hoelzl@36623: have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \ 0 * (y - x)" huffman@36778: by (simp add: algebra_simps) hoelzl@36623: hence "f y - f x - f' x * (y - x) \ 0" using ge by auto hoelzl@36623: hence "f y - f x \ f' x * (y - x)" "f' y * (x - y) \ f x - f y" hoelzl@36623: using res by auto } note less_imp = this hoelzl@36623: { fix x y :: real assume "x \ C" "y \ C" "x \ y" hoelzl@36623: hence"f y - f x \ f' x * (y - x)" hoelzl@36623: unfolding neq_iff using less_imp by auto } note neq_imp = this hoelzl@36623: moreover hoelzl@36623: { fix x y :: real assume asm: "x \ C" "y \ C" "x = y" hoelzl@36623: hence "f y - f x \ f' x * (y - x)" by auto } hoelzl@36623: ultimately show ?thesis using assms by blast hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma f''_ge0_imp_convex: hoelzl@36623: fixes f :: "real \ real" hoelzl@36623: assumes conv: "convex C" hoelzl@36623: assumes f': "\ x. x \ C \ DERIV f x :> (f' x)" hoelzl@36623: assumes f'': "\ x. x \ C \ DERIV f' x :> (f'' x)" hoelzl@36623: assumes pos: "\ x. x \ C \ f'' x \ 0" hoelzl@36623: shows "convex_on C f" nipkow@44890: using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastforce hoelzl@36623: hoelzl@36623: lemma minus_log_convex: hoelzl@36623: fixes b :: real hoelzl@36623: assumes "b > 1" hoelzl@36623: shows "convex_on {0 <..} (\ x. - log b x)" hoelzl@36623: proof - hoelzl@36623: have "\ z. z > 0 \ DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto hoelzl@36623: hence f': "\ z. z > 0 \ DERIV (\ z. - log b z) z :> - 1 / (ln b * z)" hoelzl@36623: using DERIV_minus by auto hoelzl@36623: have "\ z :: real. z > 0 \ DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" hoelzl@36623: using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto hoelzl@36623: from this[THEN DERIV_cmult, of _ "- 1 / ln b"] hoelzl@36623: have "\ z :: real. z > 0 \ DERIV (\ z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" hoelzl@36623: by auto hoelzl@36623: hence f''0: "\ z :: real. z > 0 \ DERIV (\ z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" huffman@36778: unfolding inverse_eq_divide by (auto simp add: mult_assoc) hoelzl@36623: have f''_ge0: "\ z :: real. z > 0 \ 1 / (ln b * z * z) \ 0" huffman@36778: using `b > 1` by (auto intro!:less_imp_le simp add:divide_pos_pos[of 1] mult_pos_pos) hoelzl@36623: from f''_ge0_imp_convex[OF pos_is_convex, hoelzl@36623: unfolded greaterThan_iff, OF f' f''0 f''_ge0] hoelzl@36623: show ?thesis by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: end