obua@14593: (* Title: HOL/Matrix/Matrix.thy obua@14593: ID: $Id$ obua@14593: Author: Steven Obua obua@14593: *) obua@14593: wenzelm@17915: theory Matrix haftmann@27484: imports Main wenzelm@17915: begin obua@14940: haftmann@27484: types 'a infmatrix = "nat \ nat \ 'a" haftmann@27484: haftmann@27484: definition nonzero_positions :: "(nat \ nat \ 'a::zero) \ nat \ nat \ bool" where haftmann@27484: "nonzero_positions A = {pos. A (fst pos) (snd pos) ~= 0}" haftmann@27484: haftmann@27484: typedef 'a matrix = "{(f::(nat \ nat \ 'a::zero)). finite (nonzero_positions f)}" haftmann@27484: proof - haftmann@27484: have "(\j i. 0) \ {(f::(nat \ nat \ 'a::zero)). finite (nonzero_positions f)}" haftmann@27484: by (simp add: nonzero_positions_def) haftmann@27484: then show ?thesis by auto haftmann@27484: qed haftmann@27484: haftmann@27484: declare Rep_matrix_inverse[simp] haftmann@27484: haftmann@27484: lemma finite_nonzero_positions : "finite (nonzero_positions (Rep_matrix A))" haftmann@27484: apply (rule Abs_matrix_induct) haftmann@27484: by (simp add: Abs_matrix_inverse matrix_def) haftmann@27484: haftmann@27484: constdefs haftmann@27484: nrows :: "('a::zero) matrix \ nat" haftmann@27484: "nrows A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image fst) (nonzero_positions (Rep_matrix A))))" haftmann@27484: ncols :: "('a::zero) matrix \ nat" haftmann@27484: "ncols A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image snd) (nonzero_positions (Rep_matrix A))))" haftmann@27484: haftmann@27484: lemma nrows: haftmann@27484: assumes hyp: "nrows A \ m" haftmann@27484: shows "(Rep_matrix A m n) = 0" (is ?concl) haftmann@27484: proof cases haftmann@27484: assume "nonzero_positions(Rep_matrix A) = {}" haftmann@27484: then show "(Rep_matrix A m n) = 0" by (simp add: nonzero_positions_def) haftmann@27484: next haftmann@27484: assume a: "nonzero_positions(Rep_matrix A) \ {}" haftmann@27484: let ?S = "fst`(nonzero_positions(Rep_matrix A))" haftmann@27484: have c: "finite (?S)" by (simp add: finite_nonzero_positions) haftmann@27484: from hyp have d: "Max (?S) < m" by (simp add: a nrows_def) haftmann@27484: have "m \ ?S" haftmann@27484: proof - haftmann@27484: have "m \ ?S \ m <= Max(?S)" by (simp add: Max_ge [OF c]) haftmann@27484: moreover from d have "~(m <= Max ?S)" by (simp) haftmann@27484: ultimately show "m \ ?S" by (auto) haftmann@27484: qed haftmann@27484: thus "Rep_matrix A m n = 0" by (simp add: nonzero_positions_def image_Collect) haftmann@27484: qed haftmann@27484: haftmann@27484: constdefs haftmann@27484: transpose_infmatrix :: "'a infmatrix \ 'a infmatrix" haftmann@27484: "transpose_infmatrix A j i == A i j" haftmann@27484: transpose_matrix :: "('a::zero) matrix \ 'a matrix" haftmann@27484: "transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix" haftmann@27484: haftmann@27484: declare transpose_infmatrix_def[simp] haftmann@27484: haftmann@27484: lemma transpose_infmatrix_twice[simp]: "transpose_infmatrix (transpose_infmatrix A) = A" haftmann@27484: by ((rule ext)+, simp) haftmann@27484: haftmann@27484: lemma transpose_infmatrix: "transpose_infmatrix (% j i. P j i) = (% j i. P i j)" haftmann@27484: apply (rule ext)+ haftmann@27484: by (simp add: transpose_infmatrix_def) haftmann@27484: haftmann@27484: lemma transpose_infmatrix_closed[simp]: "Rep_matrix (Abs_matrix (transpose_infmatrix (Rep_matrix x))) = transpose_infmatrix (Rep_matrix x)" haftmann@27484: apply (rule Abs_matrix_inverse) haftmann@27484: apply (simp add: matrix_def nonzero_positions_def image_def) haftmann@27484: proof - haftmann@27484: let ?A = "{pos. Rep_matrix x (snd pos) (fst pos) \ 0}" haftmann@27484: let ?swap = "% pos. (snd pos, fst pos)" haftmann@27484: let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \ 0}" haftmann@27484: have swap_image: "?swap`?A = ?B" haftmann@27484: apply (simp add: image_def) haftmann@27484: apply (rule set_ext) haftmann@27484: apply (simp) haftmann@27484: proof haftmann@27484: fix y haftmann@27484: assume hyp: "\a b. Rep_matrix x b a \ 0 \ y = (b, a)" haftmann@27484: thus "Rep_matrix x (fst y) (snd y) \ 0" haftmann@27484: proof - haftmann@27484: from hyp obtain a b where "(Rep_matrix x b a \ 0 & y = (b,a))" by blast haftmann@27484: then show "Rep_matrix x (fst y) (snd y) \ 0" by (simp) haftmann@27484: qed haftmann@27484: next haftmann@27484: fix y haftmann@27484: assume hyp: "Rep_matrix x (fst y) (snd y) \ 0" haftmann@27484: show "\ a b. (Rep_matrix x b a \ 0 & y = (b,a))" haftmann@27484: by (rule exI[of _ "snd y"], rule exI[of _ "fst y"]) (simp add: hyp) haftmann@27484: qed haftmann@27484: then have "finite (?swap`?A)" haftmann@27484: proof - haftmann@27484: have "finite (nonzero_positions (Rep_matrix x))" by (simp add: finite_nonzero_positions) haftmann@27484: then have "finite ?B" by (simp add: nonzero_positions_def) haftmann@27484: with swap_image show "finite (?swap`?A)" by (simp) haftmann@27484: qed haftmann@27484: moreover haftmann@27484: have "inj_on ?swap ?A" by (simp add: inj_on_def) haftmann@27484: ultimately show "finite ?A"by (rule finite_imageD[of ?swap ?A]) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma infmatrixforward: "(x::'a infmatrix) = y \ \ a b. x a b = y a b" by auto haftmann@27484: haftmann@27484: lemma transpose_infmatrix_inject: "(transpose_infmatrix A = transpose_infmatrix B) = (A = B)" haftmann@27484: apply (auto) haftmann@27484: apply (rule ext)+ haftmann@27484: apply (simp add: transpose_infmatrix) haftmann@27484: apply (drule infmatrixforward) haftmann@27484: apply (simp) haftmann@27484: done haftmann@27484: haftmann@27484: lemma transpose_matrix_inject: "(transpose_matrix A = transpose_matrix B) = (A = B)" haftmann@27484: apply (simp add: transpose_matrix_def) haftmann@27484: apply (subst Rep_matrix_inject[THEN sym])+ haftmann@27484: apply (simp only: transpose_infmatrix_closed transpose_infmatrix_inject) haftmann@27484: done haftmann@27484: haftmann@27484: lemma transpose_matrix[simp]: "Rep_matrix(transpose_matrix A) j i = Rep_matrix A i j" haftmann@27484: by (simp add: transpose_matrix_def) haftmann@27484: haftmann@27484: lemma transpose_transpose_id[simp]: "transpose_matrix (transpose_matrix A) = A" haftmann@27484: by (simp add: transpose_matrix_def) haftmann@27484: haftmann@27484: lemma nrows_transpose[simp]: "nrows (transpose_matrix A) = ncols A" haftmann@27484: by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def) haftmann@27484: haftmann@27484: lemma ncols_transpose[simp]: "ncols (transpose_matrix A) = nrows A" haftmann@27484: by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def) haftmann@27484: haftmann@27484: lemma ncols: "ncols A <= n \ Rep_matrix A m n = 0" haftmann@27484: proof - haftmann@27484: assume "ncols A <= n" haftmann@27484: then have "nrows (transpose_matrix A) <= n" by (simp) haftmann@27484: then have "Rep_matrix (transpose_matrix A) n m = 0" by (rule nrows) haftmann@27484: thus "Rep_matrix A m n = 0" by (simp add: transpose_matrix_def) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma ncols_le: "(ncols A <= n) = (! j i. n <= i \ (Rep_matrix A j i) = 0)" (is "_ = ?st") haftmann@27484: apply (auto) haftmann@27484: apply (simp add: ncols) haftmann@27484: proof (simp add: ncols_def, auto) haftmann@27484: let ?P = "nonzero_positions (Rep_matrix A)" haftmann@27484: let ?p = "snd`?P" haftmann@27484: have a:"finite ?p" by (simp add: finite_nonzero_positions) haftmann@27484: let ?m = "Max ?p" haftmann@27484: assume "~(Suc (?m) <= n)" haftmann@27484: then have b:"n <= ?m" by (simp) haftmann@27484: fix a b haftmann@27484: assume "(a,b) \ ?P" haftmann@27484: then have "?p \ {}" by (auto) haftmann@27484: with a have "?m \ ?p" by (simp) haftmann@27484: moreover have "!x. (x \ ?p \ (? y. (Rep_matrix A y x) \ 0))" by (simp add: nonzero_positions_def image_def) haftmann@27484: ultimately have "? y. (Rep_matrix A y ?m) \ 0" by (simp) haftmann@27484: moreover assume ?st haftmann@27484: ultimately show "False" using b by (simp) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma less_ncols: "(n < ncols A) = (? j i. n <= i & (Rep_matrix A j i) \ 0)" (is ?concl) haftmann@27484: proof - haftmann@27484: have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith haftmann@27484: show ?concl by (simp add: a ncols_le) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma le_ncols: "(n <= ncols A) = (\ m. (\ j i. m <= i \ (Rep_matrix A j i) = 0) \ n <= m)" (is ?concl) haftmann@27484: apply (auto) haftmann@27484: apply (subgoal_tac "ncols A <= m") haftmann@27484: apply (simp) haftmann@27484: apply (simp add: ncols_le) haftmann@27484: apply (drule_tac x="ncols A" in spec) haftmann@27484: by (simp add: ncols) haftmann@27484: haftmann@27484: lemma nrows_le: "(nrows A <= n) = (! j i. n <= j \ (Rep_matrix A j i) = 0)" (is ?s) haftmann@27484: proof - haftmann@27484: have "(nrows A <= n) = (ncols (transpose_matrix A) <= n)" by (simp) haftmann@27484: also have "\ = (! j i. n <= i \ (Rep_matrix (transpose_matrix A) j i = 0))" by (rule ncols_le) haftmann@27484: also have "\ = (! j i. n <= i \ (Rep_matrix A i j) = 0)" by (simp) haftmann@27484: finally show "(nrows A <= n) = (! j i. n <= j \ (Rep_matrix A j i) = 0)" by (auto) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma less_nrows: "(m < nrows A) = (? j i. m <= j & (Rep_matrix A j i) \ 0)" (is ?concl) haftmann@27484: proof - haftmann@27484: have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith haftmann@27484: show ?concl by (simp add: a nrows_le) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma le_nrows: "(n <= nrows A) = (\ m. (\ j i. m <= j \ (Rep_matrix A j i) = 0) \ n <= m)" (is ?concl) haftmann@27484: apply (auto) haftmann@27484: apply (subgoal_tac "nrows A <= m") haftmann@27484: apply (simp) haftmann@27484: apply (simp add: nrows_le) haftmann@27484: apply (drule_tac x="nrows A" in spec) haftmann@27484: by (simp add: nrows) haftmann@27484: haftmann@27484: lemma nrows_notzero: "Rep_matrix A m n \ 0 \ m < nrows A" haftmann@27484: apply (case_tac "nrows A <= m") haftmann@27484: apply (simp_all add: nrows) haftmann@27484: done haftmann@27484: haftmann@27484: lemma ncols_notzero: "Rep_matrix A m n \ 0 \ n < ncols A" haftmann@27484: apply (case_tac "ncols A <= n") haftmann@27484: apply (simp_all add: ncols) haftmann@27484: done haftmann@27484: haftmann@27484: lemma finite_natarray1: "finite {x. x < (n::nat)}" haftmann@27484: apply (induct n) haftmann@27484: apply (simp) haftmann@27484: proof - haftmann@27484: fix n haftmann@27484: have "{x. x < Suc n} = insert n {x. x < n}" by (rule set_ext, simp, arith) haftmann@27484: moreover assume "finite {x. x < n}" haftmann@27484: ultimately show "finite {x. x < Suc n}" by (simp) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma finite_natarray2: "finite {pos. (fst pos) < (m::nat) & (snd pos) < (n::nat)}" haftmann@27484: apply (induct m) haftmann@27484: apply (simp+) haftmann@27484: proof - haftmann@27484: fix m::nat haftmann@27484: let ?s0 = "{pos. fst pos < m & snd pos < n}" haftmann@27484: let ?s1 = "{pos. fst pos < (Suc m) & snd pos < n}" haftmann@27484: let ?sd = "{pos. fst pos = m & snd pos < n}" haftmann@27484: assume f0: "finite ?s0" haftmann@27484: have f1: "finite ?sd" haftmann@27484: proof - haftmann@27484: let ?f = "% x. (m, x)" haftmann@27484: have "{pos. fst pos = m & snd pos < n} = ?f ` {x. x < n}" by (rule set_ext, simp add: image_def, auto) haftmann@27484: moreover have "finite {x. x < n}" by (simp add: finite_natarray1) haftmann@27484: ultimately show "finite {pos. fst pos = m & snd pos < n}" by (simp) haftmann@27484: qed haftmann@27484: have su: "?s0 \ ?sd = ?s1" by (rule set_ext, simp, arith) haftmann@27484: from f0 f1 have "finite (?s0 \ ?sd)" by (rule finite_UnI) haftmann@27484: with su show "finite ?s1" by (simp) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma RepAbs_matrix: haftmann@27484: assumes aem: "? m. ! j i. m <= j \ x j i = 0" (is ?em) and aen:"? n. ! j i. (n <= i \ x j i = 0)" (is ?en) haftmann@27484: shows "(Rep_matrix (Abs_matrix x)) = x" haftmann@27484: apply (rule Abs_matrix_inverse) haftmann@27484: apply (simp add: matrix_def nonzero_positions_def) haftmann@27484: proof - haftmann@27484: from aem obtain m where a: "! j i. m <= j \ x j i = 0" by (blast) haftmann@27484: from aen obtain n where b: "! j i. n <= i \ x j i = 0" by (blast) haftmann@27484: let ?u = "{pos. x (fst pos) (snd pos) \ 0}" haftmann@27484: let ?v = "{pos. fst pos < m & snd pos < n}" haftmann@27484: have c: "!! (m::nat) a. ~(m <= a) \ a < m" by (arith) haftmann@27484: from a b have "(?u \ (-?v)) = {}" haftmann@27484: apply (simp) haftmann@27484: apply (rule set_ext) haftmann@27484: apply (simp) haftmann@27484: apply auto haftmann@27484: by (rule c, auto)+ haftmann@27484: then have d: "?u \ ?v" by blast haftmann@27484: moreover have "finite ?v" by (simp add: finite_natarray2) haftmann@27484: ultimately show "finite ?u" by (rule finite_subset) haftmann@27484: qed haftmann@27484: haftmann@27484: constdefs haftmann@27484: apply_infmatrix :: "('a \ 'b) \ 'a infmatrix \ 'b infmatrix" haftmann@27484: "apply_infmatrix f == % A. (% j i. f (A j i))" haftmann@27484: apply_matrix :: "('a \ 'b) \ ('a::zero) matrix \ ('b::zero) matrix" haftmann@27484: "apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))" haftmann@27484: combine_infmatrix :: "('a \ 'b \ 'c) \ 'a infmatrix \ 'b infmatrix \ 'c infmatrix" haftmann@27484: "combine_infmatrix f == % A B. (% j i. f (A j i) (B j i))" haftmann@27484: combine_matrix :: "('a \ 'b \ 'c) \ ('a::zero) matrix \ ('b::zero) matrix \ ('c::zero) matrix" haftmann@27484: "combine_matrix f == % A B. Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))" haftmann@27484: haftmann@27484: lemma expand_apply_infmatrix[simp]: "apply_infmatrix f A j i = f (A j i)" haftmann@27484: by (simp add: apply_infmatrix_def) haftmann@27484: haftmann@27484: lemma expand_combine_infmatrix[simp]: "combine_infmatrix f A B j i = f (A j i) (B j i)" haftmann@27484: by (simp add: combine_infmatrix_def) haftmann@27484: haftmann@27484: constdefs haftmann@27484: commutative :: "('a \ 'a \ 'b) \ bool" haftmann@27484: "commutative f == ! x y. f x y = f y x" haftmann@27484: associative :: "('a \ 'a \ 'a) \ bool" haftmann@27484: "associative f == ! x y z. f (f x y) z = f x (f y z)" haftmann@27484: haftmann@27484: text{* haftmann@27484: To reason about associativity and commutativity of operations on matrices, haftmann@27484: let's take a step back and look at the general situtation: Assume that we have haftmann@27484: sets $A$ and $B$ with $B \subset A$ and an abstraction $u: A \rightarrow B$. This abstraction has to fulfill $u(b) = b$ for all $b \in B$, but is arbitrary otherwise. haftmann@27484: Each function $f: A \times A \rightarrow A$ now induces a function $f': B \times B \rightarrow B$ by $f' = u \circ f$. haftmann@27484: It is obvious that commutativity of $f$ implies commutativity of $f'$: $f' x y = u (f x y) = u (f y x) = f' y x.$ haftmann@27484: *} haftmann@27484: haftmann@27484: lemma combine_infmatrix_commute: haftmann@27484: "commutative f \ commutative (combine_infmatrix f)" haftmann@27484: by (simp add: commutative_def combine_infmatrix_def) haftmann@27484: haftmann@27484: lemma combine_matrix_commute: haftmann@27484: "commutative f \ commutative (combine_matrix f)" haftmann@27484: by (simp add: combine_matrix_def commutative_def combine_infmatrix_def) haftmann@27484: haftmann@27484: text{* haftmann@27484: On the contrary, given an associative function $f$ we cannot expect $f'$ to be associative. A counterexample is given by $A=\ganz$, $B=\{-1, 0, 1\}$, haftmann@27484: as $f$ we take addition on $\ganz$, which is clearly associative. The abstraction is given by $u(a) = 0$ for $a \notin B$. Then we have haftmann@27484: \[ f' (f' 1 1) -1 = u(f (u (f 1 1)) -1) = u(f (u 2) -1) = u (f 0 -1) = -1, \] haftmann@27484: but on the other hand we have haftmann@27484: \[ f' 1 (f' 1 -1) = u (f 1 (u (f 1 -1))) = u (f 1 0) = 1.\] haftmann@27484: A way out of this problem is to assume that $f(A\times A)\subset A$ holds, and this is what we are going to do: haftmann@27484: *} haftmann@27484: haftmann@27484: lemma nonzero_positions_combine_infmatrix[simp]: "f 0 0 = 0 \ nonzero_positions (combine_infmatrix f A B) \ (nonzero_positions A) \ (nonzero_positions B)" haftmann@27484: by (rule subsetI, simp add: nonzero_positions_def combine_infmatrix_def, auto) haftmann@27484: haftmann@27484: lemma finite_nonzero_positions_Rep[simp]: "finite (nonzero_positions (Rep_matrix A))" haftmann@27484: by (insert Rep_matrix [of A], simp add: matrix_def) haftmann@27484: haftmann@27484: lemma combine_infmatrix_closed [simp]: haftmann@27484: "f 0 0 = 0 \ Rep_matrix (Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))) = combine_infmatrix f (Rep_matrix A) (Rep_matrix B)" haftmann@27484: apply (rule Abs_matrix_inverse) haftmann@27484: apply (simp add: matrix_def) haftmann@27484: apply (rule finite_subset[of _ "(nonzero_positions (Rep_matrix A)) \ (nonzero_positions (Rep_matrix B))"]) haftmann@27484: by (simp_all) haftmann@27484: haftmann@27484: text {* We need the next two lemmas only later, but it is analog to the above one, so we prove them now: *} haftmann@27484: lemma nonzero_positions_apply_infmatrix[simp]: "f 0 = 0 \ nonzero_positions (apply_infmatrix f A) \ nonzero_positions A" haftmann@27484: by (rule subsetI, simp add: nonzero_positions_def apply_infmatrix_def, auto) haftmann@27484: haftmann@27484: lemma apply_infmatrix_closed [simp]: haftmann@27484: "f 0 = 0 \ Rep_matrix (Abs_matrix (apply_infmatrix f (Rep_matrix A))) = apply_infmatrix f (Rep_matrix A)" haftmann@27484: apply (rule Abs_matrix_inverse) haftmann@27484: apply (simp add: matrix_def) haftmann@27484: apply (rule finite_subset[of _ "nonzero_positions (Rep_matrix A)"]) haftmann@27484: by (simp_all) haftmann@27484: haftmann@27484: lemma combine_infmatrix_assoc[simp]: "f 0 0 = 0 \ associative f \ associative (combine_infmatrix f)" haftmann@27484: by (simp add: associative_def combine_infmatrix_def) haftmann@27484: haftmann@27484: lemma comb: "f = g \ x = y \ f x = g y" haftmann@27484: by (auto) haftmann@27484: haftmann@27484: lemma combine_matrix_assoc: "f 0 0 = 0 \ associative f \ associative (combine_matrix f)" haftmann@27484: apply (simp(no_asm) add: associative_def combine_matrix_def, auto) haftmann@27484: apply (rule comb [of Abs_matrix Abs_matrix]) haftmann@27484: by (auto, insert combine_infmatrix_assoc[of f], simp add: associative_def) haftmann@27484: haftmann@27484: lemma Rep_apply_matrix[simp]: "f 0 = 0 \ Rep_matrix (apply_matrix f A) j i = f (Rep_matrix A j i)" haftmann@27484: by (simp add: apply_matrix_def) haftmann@27484: haftmann@27484: lemma Rep_combine_matrix[simp]: "f 0 0 = 0 \ Rep_matrix (combine_matrix f A B) j i = f (Rep_matrix A j i) (Rep_matrix B j i)" haftmann@27484: by(simp add: combine_matrix_def) haftmann@27484: haftmann@27484: lemma combine_nrows_max: "f 0 0 = 0 \ nrows (combine_matrix f A B) <= max (nrows A) (nrows B)" haftmann@27484: by (simp add: nrows_le) haftmann@27484: haftmann@27484: lemma combine_ncols_max: "f 0 0 = 0 \ ncols (combine_matrix f A B) <= max (ncols A) (ncols B)" haftmann@27484: by (simp add: ncols_le) haftmann@27484: haftmann@27484: lemma combine_nrows: "f 0 0 = 0 \ nrows A <= q \ nrows B <= q \ nrows(combine_matrix f A B) <= q" haftmann@27484: by (simp add: nrows_le) haftmann@27484: haftmann@27484: lemma combine_ncols: "f 0 0 = 0 \ ncols A <= q \ ncols B <= q \ ncols(combine_matrix f A B) <= q" haftmann@27484: by (simp add: ncols_le) haftmann@27484: haftmann@27484: constdefs haftmann@27484: zero_r_neutral :: "('a \ 'b::zero \ 'a) \ bool" haftmann@27484: "zero_r_neutral f == ! a. f a 0 = a" haftmann@27484: zero_l_neutral :: "('a::zero \ 'b \ 'b) \ bool" haftmann@27484: "zero_l_neutral f == ! a. f 0 a = a" haftmann@27484: zero_closed :: "(('a::zero) \ ('b::zero) \ ('c::zero)) \ bool" haftmann@27484: "zero_closed f == (!x. f x 0 = 0) & (!y. f 0 y = 0)" haftmann@27484: haftmann@27484: consts foldseq :: "('a \ 'a \ 'a) \ (nat \ 'a) \ nat \ 'a" haftmann@27484: primrec haftmann@27484: "foldseq f s 0 = s 0" haftmann@27484: "foldseq f s (Suc n) = f (s 0) (foldseq f (% k. s(Suc k)) n)" haftmann@27484: haftmann@27484: consts foldseq_transposed :: "('a \ 'a \ 'a) \ (nat \ 'a) \ nat \ 'a" haftmann@27484: primrec haftmann@27484: "foldseq_transposed f s 0 = s 0" haftmann@27484: "foldseq_transposed f s (Suc n) = f (foldseq_transposed f s n) (s (Suc n))" haftmann@27484: haftmann@27484: lemma foldseq_assoc : "associative f \ foldseq f = foldseq_transposed f" haftmann@27484: proof - haftmann@27484: assume a:"associative f" haftmann@27484: then have sublemma: "!! n. ! N s. N <= n \ foldseq f s N = foldseq_transposed f s N" haftmann@27484: proof - haftmann@27484: fix n haftmann@27484: show "!N s. N <= n \ foldseq f s N = foldseq_transposed f s N" haftmann@27484: proof (induct n) haftmann@27484: show "!N s. N <= 0 \ foldseq f s N = foldseq_transposed f s N" by simp haftmann@27484: next haftmann@27484: fix n haftmann@27484: assume b:"! N s. N <= n \ foldseq f s N = foldseq_transposed f s N" haftmann@27484: have c:"!!N s. N <= n \ foldseq f s N = foldseq_transposed f s N" by (simp add: b) haftmann@27484: show "! N t. N <= Suc n \ foldseq f t N = foldseq_transposed f t N" haftmann@27484: proof (auto) haftmann@27484: fix N t haftmann@27484: assume Nsuc: "N <= Suc n" haftmann@27484: show "foldseq f t N = foldseq_transposed f t N" haftmann@27484: proof cases haftmann@27484: assume "N <= n" haftmann@27484: then show "foldseq f t N = foldseq_transposed f t N" by (simp add: b) haftmann@27484: next haftmann@27484: assume "~(N <= n)" haftmann@27484: with Nsuc have Nsuceq: "N = Suc n" by simp haftmann@27484: have neqz: "n \ 0 \ ? m. n = Suc m & Suc m <= n" by arith haftmann@27484: have assocf: "!! x y z. f x (f y z) = f (f x y) z" by (insert a, simp add: associative_def) haftmann@27484: show "foldseq f t N = foldseq_transposed f t N" haftmann@27484: apply (simp add: Nsuceq) haftmann@27484: apply (subst c) haftmann@27484: apply (simp) haftmann@27484: apply (case_tac "n = 0") haftmann@27484: apply (simp) haftmann@27484: apply (drule neqz) haftmann@27484: apply (erule exE) haftmann@27484: apply (simp) haftmann@27484: apply (subst assocf) haftmann@27484: proof - haftmann@27484: fix m haftmann@27484: assume "n = Suc m & Suc m <= n" haftmann@27484: then have mless: "Suc m <= n" by arith haftmann@27484: then have step1: "foldseq_transposed f (% k. t (Suc k)) m = foldseq f (% k. t (Suc k)) m" (is "?T1 = ?T2") haftmann@27484: apply (subst c) haftmann@27484: by simp+ haftmann@27484: have step2: "f (t 0) ?T2 = foldseq f t (Suc m)" (is "_ = ?T3") by simp haftmann@27484: have step3: "?T3 = foldseq_transposed f t (Suc m)" (is "_ = ?T4") haftmann@27484: apply (subst c) haftmann@27484: by (simp add: mless)+ haftmann@27484: have step4: "?T4 = f (foldseq_transposed f t m) (t (Suc m))" (is "_=?T5") by simp haftmann@27484: from step1 step2 step3 step4 show sowhat: "f (f (t 0) ?T1) (t (Suc (Suc m))) = f ?T5 (t (Suc (Suc m)))" by simp haftmann@27484: qed haftmann@27484: qed haftmann@27484: qed haftmann@27484: qed haftmann@27484: qed haftmann@27484: show "foldseq f = foldseq_transposed f" by ((rule ext)+, insert sublemma, auto) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_distr: "\associative f; commutative f\ \ foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" haftmann@27484: proof - haftmann@27484: assume assoc: "associative f" haftmann@27484: assume comm: "commutative f" haftmann@27484: from assoc have a:"!! x y z. f (f x y) z = f x (f y z)" by (simp add: associative_def) haftmann@27484: from comm have b: "!! x y. f x y = f y x" by (simp add: commutative_def) haftmann@27484: from assoc comm have c: "!! x y z. f x (f y z) = f y (f x z)" by (simp add: commutative_def associative_def) haftmann@27484: have "!! n. (! u v. foldseq f (%k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n))" haftmann@27484: apply (induct_tac n) haftmann@27484: apply (simp+, auto) haftmann@27484: by (simp add: a b c) haftmann@27484: then show "foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" by simp haftmann@27484: qed haftmann@27484: haftmann@27484: theorem "\associative f; associative g; \a b c d. g (f a b) (f c d) = f (g a c) (g b d); ? x y. (f x) \ (f y); ? x y. (g x) \ (g y); f x x = x; g x x = x\ \ f=g | (! y. f y x = y) | (! y. g y x = y)" haftmann@27484: oops haftmann@27484: (* Model found haftmann@27484: haftmann@27484: Trying to find a model that refutes: \associative f; associative g; haftmann@27484: \a b c d. g (f a b) (f c d) = f (g a c) (g b d); \x y. f x \ f y; haftmann@27484: \x y. g x \ g y; f x x = x; g x x = x\ haftmann@27484: \ f = g \ (\y. f y x = y) \ (\y. g y x = y) haftmann@27484: Searching for a model of size 1, translating term... invoking SAT solver... no model found. haftmann@27484: Searching for a model of size 2, translating term... invoking SAT solver... no model found. haftmann@27484: Searching for a model of size 3, translating term... invoking SAT solver... haftmann@27484: Model found: haftmann@27484: Size of types: 'a: 3 haftmann@27484: x: a1 haftmann@27484: g: (a0\(a0\a1, a1\a0, a2\a1), a1\(a0\a0, a1\a1, a2\a0), a2\(a0\a1, a1\a0, a2\a1)) haftmann@27484: f: (a0\(a0\a0, a1\a0, a2\a0), a1\(a0\a1, a1\a1, a2\a1), a2\(a0\a0, a1\a0, a2\a0)) haftmann@27484: *) haftmann@27484: haftmann@27484: lemma foldseq_zero: haftmann@27484: assumes fz: "f 0 0 = 0" and sz: "! i. i <= n \ s i = 0" haftmann@27484: shows "foldseq f s n = 0" haftmann@27484: proof - haftmann@27484: have "!! n. ! s. (! i. i <= n \ s i = 0) \ foldseq f s n = 0" haftmann@27484: apply (induct_tac n) haftmann@27484: apply (simp) haftmann@27484: by (simp add: fz) haftmann@27484: then show "foldseq f s n = 0" by (simp add: sz) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_significant_positions: haftmann@27484: assumes p: "! i. i <= N \ S i = T i" haftmann@27484: shows "foldseq f S N = foldseq f T N" (is ?concl) haftmann@27484: proof - haftmann@27484: have "!! m . ! s t. (! i. i<=m \ s i = t i) \ foldseq f s m = foldseq f t m" haftmann@27484: apply (induct_tac m) haftmann@27484: apply (simp) haftmann@27484: apply (simp) haftmann@27484: apply (auto) haftmann@27484: proof - haftmann@27484: fix n haftmann@27484: fix s::"nat\'a" haftmann@27484: fix t::"nat\'a" haftmann@27484: assume a: "\s t. (\i\n. s i = t i) \ foldseq f s n = foldseq f t n" haftmann@27484: assume b: "\i\Suc n. s i = t i" haftmann@27484: have c:"!! a b. a = b \ f (t 0) a = f (t 0) b" by blast haftmann@27484: have d:"!! s t. (\i\n. s i = t i) \ foldseq f s n = foldseq f t n" by (simp add: a) haftmann@27484: show "f (t 0) (foldseq f (\k. s (Suc k)) n) = f (t 0) (foldseq f (\k. t (Suc k)) n)" by (rule c, simp add: d b) haftmann@27484: qed haftmann@27484: with p show ?concl by simp haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_tail: "M <= N \ foldseq f S N = foldseq f (% k. (if k < M then (S k) else (foldseq f (% k. S(k+M)) (N-M)))) M" (is "?p \ ?concl") haftmann@27484: proof - haftmann@27484: have suc: "!! a b. \a <= Suc b; a \ Suc b\ \ a <= b" by arith haftmann@27484: have a:"!! a b c . a = b \ f c a = f c b" by blast haftmann@27484: have "!! n. ! m s. m <= n \ foldseq f s n = foldseq f (% k. (if k < m then (s k) else (foldseq f (% k. s(k+m)) (n-m)))) m" haftmann@27484: apply (induct_tac n) haftmann@27484: apply (simp) haftmann@27484: apply (simp) haftmann@27484: apply (auto) haftmann@27484: apply (case_tac "m = Suc na") haftmann@27484: apply (simp) haftmann@27484: apply (rule a) haftmann@27484: apply (rule foldseq_significant_positions) haftmann@27484: apply (auto) haftmann@27484: apply (drule suc, simp+) haftmann@27484: proof - haftmann@27484: fix na m s haftmann@27484: assume suba:"\m\na. \s. foldseq f s na = foldseq f (\k. if k < m then s k else foldseq f (\k. s (k + m)) (na - m))m" haftmann@27484: assume subb:"m <= na" haftmann@27484: from suba have subc:"!! m s. m <= na \foldseq f s na = foldseq f (\k. if k < m then s k else foldseq f (\k. s (k + m)) (na - m))m" by simp haftmann@27484: have subd: "foldseq f (\k. if k < m then s (Suc k) else foldseq f (\k. s (Suc (k + m))) (na - m)) m = haftmann@27484: foldseq f (% k. s(Suc k)) na" haftmann@27484: by (rule subc[of m "% k. s(Suc k)", THEN sym], simp add: subb) haftmann@27484: from subb have sube: "m \ 0 \ ? mm. m = Suc mm & mm <= na" by arith haftmann@27484: show "f (s 0) (foldseq f (\k. if k < m then s (Suc k) else foldseq f (\k. s (Suc (k + m))) (na - m)) m) = haftmann@27484: foldseq f (\k. if k < m then s k else foldseq f (\k. s (k + m)) (Suc na - m)) m" haftmann@27484: apply (simp add: subd) haftmann@27484: apply (case_tac "m=0") haftmann@27484: apply (simp) haftmann@27484: apply (drule sube) haftmann@27484: apply (auto) haftmann@27484: apply (rule a) haftmann@27484: by (simp add: subc if_def) haftmann@27484: qed haftmann@27484: then show "?p \ ?concl" by simp haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_zerotail: haftmann@27484: assumes haftmann@27484: fz: "f 0 0 = 0" haftmann@27484: and sz: "! i. n <= i \ s i = 0" haftmann@27484: and nm: "n <= m" haftmann@27484: shows haftmann@27484: "foldseq f s n = foldseq f s m" haftmann@27484: proof - haftmann@27484: show "foldseq f s n = foldseq f s m" haftmann@27484: apply (simp add: foldseq_tail[OF nm, of f s]) haftmann@27484: apply (rule foldseq_significant_positions) haftmann@27484: apply (auto) haftmann@27484: apply (subst foldseq_zero) haftmann@27484: by (simp add: fz sz)+ haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_zerotail2: haftmann@27484: assumes "! x. f x 0 = x" haftmann@27484: and "! i. n < i \ s i = 0" haftmann@27484: and nm: "n <= m" haftmann@27484: shows haftmann@27484: "foldseq f s n = foldseq f s m" (is ?concl) haftmann@27484: proof - haftmann@27484: have "f 0 0 = 0" by (simp add: prems) haftmann@27484: have b:"!! m n. n <= m \ m \ n \ ? k. m-n = Suc k" by arith haftmann@27484: have c: "0 <= m" by simp haftmann@27484: have d: "!! k. k \ 0 \ ? l. k = Suc l" by arith haftmann@27484: show ?concl haftmann@27484: apply (subst foldseq_tail[OF nm]) haftmann@27484: apply (rule foldseq_significant_positions) haftmann@27484: apply (auto) haftmann@27484: apply (case_tac "m=n") haftmann@27484: apply (simp+) haftmann@27484: apply (drule b[OF nm]) haftmann@27484: apply (auto) haftmann@27484: apply (case_tac "k=0") haftmann@27484: apply (simp add: prems) haftmann@27484: apply (drule d) haftmann@27484: apply (auto) haftmann@27484: by (simp add: prems foldseq_zero) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_zerostart: haftmann@27484: "! x. f 0 (f 0 x) = f 0 x \ ! i. i <= n \ s i = 0 \ foldseq f s (Suc n) = f 0 (s (Suc n))" haftmann@27484: proof - haftmann@27484: assume f00x: "! x. f 0 (f 0 x) = f 0 x" haftmann@27484: have "! s. (! i. i<=n \ s i = 0) \ foldseq f s (Suc n) = f 0 (s (Suc n))" haftmann@27484: apply (induct n) haftmann@27484: apply (simp) haftmann@27484: apply (rule allI, rule impI) haftmann@27484: proof - haftmann@27484: fix n haftmann@27484: fix s haftmann@27484: have a:"foldseq f s (Suc (Suc n)) = f (s 0) (foldseq f (% k. s(Suc k)) (Suc n))" by simp haftmann@27484: assume b: "! s. ((\i\n. s i = 0) \ foldseq f s (Suc n) = f 0 (s (Suc n)))" haftmann@27484: from b have c:"!! s. (\i\n. s i = 0) \ foldseq f s (Suc n) = f 0 (s (Suc n))" by simp haftmann@27484: assume d: "! i. i <= Suc n \ s i = 0" haftmann@27484: show "foldseq f s (Suc (Suc n)) = f 0 (s (Suc (Suc n)))" haftmann@27484: apply (subst a) haftmann@27484: apply (subst c) haftmann@27484: by (simp add: d f00x)+ haftmann@27484: qed haftmann@27484: then show "! i. i <= n \ s i = 0 \ foldseq f s (Suc n) = f 0 (s (Suc n))" by simp haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_zerostart2: haftmann@27484: "! x. f 0 x = x \ ! i. i < n \ s i = 0 \ foldseq f s n = s n" haftmann@27484: proof - haftmann@27484: assume a:"! i. i s i = 0" haftmann@27484: assume x:"! x. f 0 x = x" haftmann@27484: from x have f00x: "! x. f 0 (f 0 x) = f 0 x" by blast haftmann@27484: have b: "!! i l. i < Suc l = (i <= l)" by arith haftmann@27484: have d: "!! k. k \ 0 \ ? l. k = Suc l" by arith haftmann@27484: show "foldseq f s n = s n" haftmann@27484: apply (case_tac "n=0") haftmann@27484: apply (simp) haftmann@27484: apply (insert a) haftmann@27484: apply (drule d) haftmann@27484: apply (auto) haftmann@27484: apply (simp add: b) haftmann@27484: apply (insert f00x) haftmann@27484: apply (drule foldseq_zerostart) haftmann@27484: by (simp add: x)+ haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_almostzero: haftmann@27484: assumes f0x:"! x. f 0 x = x" and fx0: "! x. f x 0 = x" and s0:"! i. i \ j \ s i = 0" haftmann@27484: shows "foldseq f s n = (if (j <= n) then (s j) else 0)" (is ?concl) haftmann@27484: proof - haftmann@27484: from s0 have a: "! i. i < j \ s i = 0" by simp haftmann@27484: from s0 have b: "! i. j < i \ s i = 0" by simp haftmann@27484: show ?concl haftmann@27484: apply auto haftmann@27484: apply (subst foldseq_zerotail2[of f, OF fx0, of j, OF b, of n, THEN sym]) haftmann@27484: apply simp haftmann@27484: apply (subst foldseq_zerostart2) haftmann@27484: apply (simp add: f0x a)+ haftmann@27484: apply (subst foldseq_zero) haftmann@27484: by (simp add: s0 f0x)+ haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_distr_unary: haftmann@27484: assumes "!! a b. g (f a b) = f (g a) (g b)" haftmann@27484: shows "g(foldseq f s n) = foldseq f (% x. g(s x)) n" (is ?concl) haftmann@27484: proof - haftmann@27484: have "! s. g(foldseq f s n) = foldseq f (% x. g(s x)) n" haftmann@27484: apply (induct_tac n) haftmann@27484: apply (simp) haftmann@27484: apply (simp) haftmann@27484: apply (auto) haftmann@27484: apply (drule_tac x="% k. s (Suc k)" in spec) haftmann@27484: by (simp add: prems) haftmann@27484: then show ?concl by simp haftmann@27484: qed haftmann@27484: haftmann@27484: constdefs haftmann@27484: mult_matrix_n :: "nat \ (('a::zero) \ ('b::zero) \ ('c::zero)) \ ('c \ 'c \ 'c) \ 'a matrix \ 'b matrix \ 'c matrix" haftmann@27484: "mult_matrix_n n fmul fadd A B == Abs_matrix(% j i. foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) n)" haftmann@27484: mult_matrix :: "(('a::zero) \ ('b::zero) \ ('c::zero)) \ ('c \ 'c \ 'c) \ 'a matrix \ 'b matrix \ 'c matrix" haftmann@27484: "mult_matrix fmul fadd A B == mult_matrix_n (max (ncols A) (nrows B)) fmul fadd A B" haftmann@27484: haftmann@27484: lemma mult_matrix_n: haftmann@27484: assumes prems: "ncols A \ n" (is ?An) "nrows B \ n" (is ?Bn) "fadd 0 0 = 0" "fmul 0 0 = 0" haftmann@27484: shows c:"mult_matrix fmul fadd A B = mult_matrix_n n fmul fadd A B" (is ?concl) haftmann@27484: proof - haftmann@27484: show ?concl using prems haftmann@27484: apply (simp add: mult_matrix_def mult_matrix_n_def) haftmann@27484: apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) haftmann@27484: by (rule foldseq_zerotail, simp_all add: nrows_le ncols_le prems) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma mult_matrix_nm: haftmann@27484: assumes prems: "ncols A <= n" "nrows B <= n" "ncols A <= m" "nrows B <= m" "fadd 0 0 = 0" "fmul 0 0 = 0" haftmann@27484: shows "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" haftmann@27484: proof - haftmann@27484: from prems have "mult_matrix_n n fmul fadd A B = mult_matrix fmul fadd A B" by (simp add: mult_matrix_n) haftmann@27484: also from prems have "\ = mult_matrix_n m fmul fadd A B" by (simp add: mult_matrix_n[THEN sym]) haftmann@27484: finally show "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" by simp haftmann@27484: qed haftmann@27484: haftmann@27484: constdefs haftmann@27484: r_distributive :: "('a \ 'b \ 'b) \ ('b \ 'b \ 'b) \ bool" haftmann@27484: "r_distributive fmul fadd == ! a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a v)" haftmann@27484: l_distributive :: "('a \ 'b \ 'a) \ ('a \ 'a \ 'a) \ bool" haftmann@27484: "l_distributive fmul fadd == ! a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v a)" haftmann@27484: distributive :: "('a \ 'a \ 'a) \ ('a \ 'a \ 'a) \ bool" haftmann@27484: "distributive fmul fadd == l_distributive fmul fadd & r_distributive fmul fadd" haftmann@27484: haftmann@27484: lemma max1: "!! a x y. (a::nat) <= x \ a <= max x y" by (arith) haftmann@27484: lemma max2: "!! b x y. (b::nat) <= y \ b <= max x y" by (arith) haftmann@27484: haftmann@27484: lemma r_distributive_matrix: haftmann@27484: assumes prems: haftmann@27484: "r_distributive fmul fadd" haftmann@27484: "associative fadd" haftmann@27484: "commutative fadd" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: shows "r_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl) haftmann@27484: proof - haftmann@27484: from prems show ?concl haftmann@27484: apply (simp add: r_distributive_def mult_matrix_def, auto) haftmann@27484: proof - haftmann@27484: fix a::"'a matrix" haftmann@27484: fix u::"'b matrix" haftmann@27484: fix v::"'b matrix" haftmann@27484: let ?mx = "max (ncols a) (max (nrows u) (nrows v))" haftmann@27484: from prems show "mult_matrix_n (max (ncols a) (nrows (combine_matrix fadd u v))) fmul fadd a (combine_matrix fadd u v) = haftmann@27484: combine_matrix fadd (mult_matrix_n (max (ncols a) (nrows u)) fmul fadd a u) (mult_matrix_n (max (ncols a) (nrows v)) fmul fadd a v)" haftmann@27484: apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) haftmann@27484: apply (simp add: max1 max2 combine_nrows combine_ncols)+ haftmann@27484: apply (subst mult_matrix_nm[of _ _ v ?mx fadd fmul]) haftmann@27484: apply (simp add: max1 max2 combine_nrows combine_ncols)+ haftmann@27484: apply (subst mult_matrix_nm[of _ _ u ?mx fadd fmul]) haftmann@27484: apply (simp add: max1 max2 combine_nrows combine_ncols)+ haftmann@27484: apply (simp add: mult_matrix_n_def r_distributive_def foldseq_distr[of fadd]) haftmann@27484: apply (simp add: combine_matrix_def combine_infmatrix_def) haftmann@27484: apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) haftmann@27484: apply (simplesubst RepAbs_matrix) haftmann@27484: apply (simp, auto) haftmann@27484: apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero) haftmann@27484: apply (rule exI[of _ "ncols v"], simp add: ncols_le foldseq_zero) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (simp, auto) haftmann@27484: apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero) haftmann@27484: apply (rule exI[of _ "ncols u"], simp add: ncols_le foldseq_zero) haftmann@27484: done haftmann@27484: qed haftmann@27484: qed haftmann@27484: haftmann@27484: lemma l_distributive_matrix: haftmann@27484: assumes prems: haftmann@27484: "l_distributive fmul fadd" haftmann@27484: "associative fadd" haftmann@27484: "commutative fadd" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: shows "l_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl) haftmann@27484: proof - haftmann@27484: from prems show ?concl haftmann@27484: apply (simp add: l_distributive_def mult_matrix_def, auto) haftmann@27484: proof - haftmann@27484: fix a::"'b matrix" haftmann@27484: fix u::"'a matrix" haftmann@27484: fix v::"'a matrix" haftmann@27484: let ?mx = "max (nrows a) (max (ncols u) (ncols v))" haftmann@27484: from prems show "mult_matrix_n (max (ncols (combine_matrix fadd u v)) (nrows a)) fmul fadd (combine_matrix fadd u v) a = haftmann@27484: combine_matrix fadd (mult_matrix_n (max (ncols u) (nrows a)) fmul fadd u a) (mult_matrix_n (max (ncols v) (nrows a)) fmul fadd v a)" haftmann@27484: apply (subst mult_matrix_nm[of v _ _ ?mx fadd fmul]) haftmann@27484: apply (simp add: max1 max2 combine_nrows combine_ncols)+ haftmann@27484: apply (subst mult_matrix_nm[of u _ _ ?mx fadd fmul]) haftmann@27484: apply (simp add: max1 max2 combine_nrows combine_ncols)+ haftmann@27484: apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) haftmann@27484: apply (simp add: max1 max2 combine_nrows combine_ncols)+ haftmann@27484: apply (simp add: mult_matrix_n_def l_distributive_def foldseq_distr[of fadd]) haftmann@27484: apply (simp add: combine_matrix_def combine_infmatrix_def) haftmann@27484: apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) haftmann@27484: apply (simplesubst RepAbs_matrix) haftmann@27484: apply (simp, auto) haftmann@27484: apply (rule exI[of _ "nrows v"], simp add: nrows_le foldseq_zero) haftmann@27484: apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (simp, auto) haftmann@27484: apply (rule exI[of _ "nrows u"], simp add: nrows_le foldseq_zero) haftmann@27484: apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero) haftmann@27484: done haftmann@27484: qed haftmann@27484: qed haftmann@27484: haftmann@27484: instantiation matrix :: (zero) zero haftmann@27484: begin haftmann@27484: haftmann@28562: definition zero_matrix_def [code del]: "0 = Abs_matrix (\j i. 0)" haftmann@27484: haftmann@27484: instance .. haftmann@27484: haftmann@27484: end haftmann@27484: haftmann@27484: lemma Rep_zero_matrix_def[simp]: "Rep_matrix 0 j i = 0" haftmann@27484: apply (simp add: zero_matrix_def) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: by (auto) haftmann@27484: haftmann@27484: lemma zero_matrix_def_nrows[simp]: "nrows 0 = 0" haftmann@27484: proof - haftmann@27484: have a:"!! (x::nat). x <= 0 \ x = 0" by (arith) haftmann@27484: show "nrows 0 = 0" by (rule a, subst nrows_le, simp) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma zero_matrix_def_ncols[simp]: "ncols 0 = 0" haftmann@27484: proof - haftmann@27484: have a:"!! (x::nat). x <= 0 \ x = 0" by (arith) haftmann@27484: show "ncols 0 = 0" by (rule a, subst ncols_le, simp) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma combine_matrix_zero_l_neutral: "zero_l_neutral f \ zero_l_neutral (combine_matrix f)" haftmann@27484: by (simp add: zero_l_neutral_def combine_matrix_def combine_infmatrix_def) haftmann@27484: haftmann@27484: lemma combine_matrix_zero_r_neutral: "zero_r_neutral f \ zero_r_neutral (combine_matrix f)" haftmann@27484: by (simp add: zero_r_neutral_def combine_matrix_def combine_infmatrix_def) haftmann@27484: haftmann@27484: lemma mult_matrix_zero_closed: "\fadd 0 0 = 0; zero_closed fmul\ \ zero_closed (mult_matrix fmul fadd)" haftmann@27484: apply (simp add: zero_closed_def mult_matrix_def mult_matrix_n_def) haftmann@27484: apply (auto) haftmann@27484: by (subst foldseq_zero, (simp add: zero_matrix_def)+)+ haftmann@27484: haftmann@27484: lemma mult_matrix_n_zero_right[simp]: "\fadd 0 0 = 0; !a. fmul a 0 = 0\ \ mult_matrix_n n fmul fadd A 0 = 0" haftmann@27484: apply (simp add: mult_matrix_n_def) haftmann@27484: apply (subst foldseq_zero) haftmann@27484: by (simp_all add: zero_matrix_def) haftmann@27484: haftmann@27484: lemma mult_matrix_n_zero_left[simp]: "\fadd 0 0 = 0; !a. fmul 0 a = 0\ \ mult_matrix_n n fmul fadd 0 A = 0" haftmann@27484: apply (simp add: mult_matrix_n_def) haftmann@27484: apply (subst foldseq_zero) haftmann@27484: by (simp_all add: zero_matrix_def) haftmann@27484: haftmann@27484: lemma mult_matrix_zero_left[simp]: "\fadd 0 0 = 0; !a. fmul 0 a = 0\ \ mult_matrix fmul fadd 0 A = 0" haftmann@27484: by (simp add: mult_matrix_def) haftmann@27484: haftmann@27484: lemma mult_matrix_zero_right[simp]: "\fadd 0 0 = 0; !a. fmul a 0 = 0\ \ mult_matrix fmul fadd A 0 = 0" haftmann@27484: by (simp add: mult_matrix_def) haftmann@27484: haftmann@27484: lemma apply_matrix_zero[simp]: "f 0 = 0 \ apply_matrix f 0 = 0" haftmann@27484: apply (simp add: apply_matrix_def apply_infmatrix_def) haftmann@27484: by (simp add: zero_matrix_def) haftmann@27484: haftmann@27484: lemma combine_matrix_zero: "f 0 0 = 0 \ combine_matrix f 0 0 = 0" haftmann@27484: apply (simp add: combine_matrix_def combine_infmatrix_def) haftmann@27484: by (simp add: zero_matrix_def) haftmann@27484: haftmann@27484: lemma transpose_matrix_zero[simp]: "transpose_matrix 0 = 0" haftmann@27484: apply (simp add: transpose_matrix_def transpose_infmatrix_def zero_matrix_def RepAbs_matrix) haftmann@27484: apply (subst Rep_matrix_inject[symmetric], (rule ext)+) haftmann@27484: apply (simp add: RepAbs_matrix) haftmann@27484: done haftmann@27484: haftmann@27484: lemma apply_zero_matrix_def[simp]: "apply_matrix (% x. 0) A = 0" haftmann@27484: apply (simp add: apply_matrix_def apply_infmatrix_def) haftmann@27484: by (simp add: zero_matrix_def) haftmann@27484: haftmann@27484: constdefs haftmann@27484: singleton_matrix :: "nat \ nat \ ('a::zero) \ 'a matrix" haftmann@27484: "singleton_matrix j i a == Abs_matrix(% m n. if j = m & i = n then a else 0)" haftmann@27484: move_matrix :: "('a::zero) matrix \ int \ int \ 'a matrix" haftmann@27484: "move_matrix A y x == Abs_matrix(% j i. if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))" haftmann@27484: take_rows :: "('a::zero) matrix \ nat \ 'a matrix" haftmann@27484: "take_rows A r == Abs_matrix(% j i. if (j < r) then (Rep_matrix A j i) else 0)" haftmann@27484: take_columns :: "('a::zero) matrix \ nat \ 'a matrix" haftmann@27484: "take_columns A c == Abs_matrix(% j i. if (i < c) then (Rep_matrix A j i) else 0)" haftmann@27484: haftmann@27484: constdefs haftmann@27484: column_of_matrix :: "('a::zero) matrix \ nat \ 'a matrix" haftmann@27484: "column_of_matrix A n == take_columns (move_matrix A 0 (- int n)) 1" haftmann@27484: row_of_matrix :: "('a::zero) matrix \ nat \ 'a matrix" haftmann@27484: "row_of_matrix A m == take_rows (move_matrix A (- int m) 0) 1" haftmann@27484: haftmann@27484: lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m & i = n then e else 0)" haftmann@27484: apply (simp add: singleton_matrix_def) haftmann@27484: apply (auto) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "Suc m"], simp) haftmann@27484: apply (rule exI[of _ "Suc n"], simp+) haftmann@27484: by (subst RepAbs_matrix, rule exI[of _ "Suc j"], simp, rule exI[of _ "Suc i"], simp+)+ haftmann@27484: haftmann@27484: lemma apply_singleton_matrix[simp]: "f 0 = 0 \ apply_matrix f (singleton_matrix j i x) = (singleton_matrix j i (f x))" haftmann@27484: apply (subst Rep_matrix_inject[symmetric]) haftmann@27484: apply (rule ext)+ haftmann@27484: apply (simp) haftmann@27484: done haftmann@27484: haftmann@27484: lemma singleton_matrix_zero[simp]: "singleton_matrix j i 0 = 0" haftmann@27484: by (simp add: singleton_matrix_def zero_matrix_def) haftmann@27484: haftmann@27484: lemma nrows_singleton[simp]: "nrows(singleton_matrix j i e) = (if e = 0 then 0 else Suc j)" haftmann@27484: proof- haftmann@27484: have th: "\ (\m. m \ j)" "\n. \ n \ i" by arith+ haftmann@27484: from th show ?thesis haftmann@27484: apply (auto) haftmann@27484: apply (rule le_anti_sym) haftmann@27484: apply (subst nrows_le) haftmann@27484: apply (simp add: singleton_matrix_def, auto) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply auto haftmann@27484: apply (simp add: Suc_le_eq) haftmann@27484: apply (rule not_leE) haftmann@27484: apply (subst nrows_le) haftmann@27484: by simp haftmann@27484: qed haftmann@27484: haftmann@27484: lemma ncols_singleton[simp]: "ncols(singleton_matrix j i e) = (if e = 0 then 0 else Suc i)" haftmann@27484: proof- haftmann@27484: have th: "\ (\m. m \ j)" "\n. \ n \ i" by arith+ haftmann@27484: from th show ?thesis haftmann@27484: apply (auto) haftmann@27484: apply (rule le_anti_sym) haftmann@27484: apply (subst ncols_le) haftmann@27484: apply (simp add: singleton_matrix_def, auto) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply auto haftmann@27484: apply (simp add: Suc_le_eq) haftmann@27484: apply (rule not_leE) haftmann@27484: apply (subst ncols_le) haftmann@27484: by simp haftmann@27484: qed haftmann@27484: haftmann@27484: lemma combine_singleton: "f 0 0 = 0 \ combine_matrix f (singleton_matrix j i a) (singleton_matrix j i b) = singleton_matrix j i (f a b)" haftmann@27484: apply (simp add: singleton_matrix_def combine_matrix_def combine_infmatrix_def) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "Suc j"], simp) haftmann@27484: apply (rule exI[of _ "Suc i"], simp) haftmann@27484: apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "Suc j"], simp) haftmann@27484: apply (rule exI[of _ "Suc i"], simp) haftmann@27484: by simp haftmann@27484: haftmann@27484: lemma transpose_singleton[simp]: "transpose_matrix (singleton_matrix j i a) = singleton_matrix i j a" haftmann@27484: apply (subst Rep_matrix_inject[symmetric], (rule ext)+) haftmann@27484: apply (simp) haftmann@27484: done haftmann@27484: haftmann@27484: lemma Rep_move_matrix[simp]: haftmann@27484: "Rep_matrix (move_matrix A y x) j i = haftmann@27484: (if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))" haftmann@27484: apply (simp add: move_matrix_def) haftmann@27484: apply (auto) haftmann@27484: by (subst RepAbs_matrix, haftmann@27484: rule exI[of _ "(nrows A)+(nat (abs y))"], auto, rule nrows, arith, haftmann@27484: rule exI[of _ "(ncols A)+(nat (abs x))"], auto, rule ncols, arith)+ haftmann@27484: haftmann@27484: lemma move_matrix_0_0[simp]: "move_matrix A 0 0 = A" haftmann@27484: by (simp add: move_matrix_def) haftmann@27484: haftmann@27484: lemma move_matrix_ortho: "move_matrix A j i = move_matrix (move_matrix A j 0) 0 i" haftmann@27484: apply (subst Rep_matrix_inject[symmetric]) haftmann@27484: apply (rule ext)+ haftmann@27484: apply (simp) haftmann@27484: done haftmann@27484: haftmann@27484: lemma transpose_move_matrix[simp]: haftmann@27484: "transpose_matrix (move_matrix A x y) = move_matrix (transpose_matrix A) y x" haftmann@27484: apply (subst Rep_matrix_inject[symmetric], (rule ext)+) haftmann@27484: apply (simp) haftmann@27484: done haftmann@27484: haftmann@27484: lemma move_matrix_singleton[simp]: "move_matrix (singleton_matrix u v x) j i = haftmann@27484: (if (j + int u < 0) | (i + int v < 0) then 0 else (singleton_matrix (nat (j + int u)) (nat (i + int v)) x))" haftmann@27484: apply (subst Rep_matrix_inject[symmetric]) haftmann@27484: apply (rule ext)+ haftmann@27484: apply (case_tac "j + int u < 0") haftmann@27484: apply (simp, arith) haftmann@27484: apply (case_tac "i + int v < 0") haftmann@27484: apply (simp add: neg_def, arith) haftmann@27484: apply (simp add: neg_def) haftmann@27484: apply arith haftmann@27484: done haftmann@27484: haftmann@27484: lemma Rep_take_columns[simp]: haftmann@27484: "Rep_matrix (take_columns A c) j i = haftmann@27484: (if i < c then (Rep_matrix A j i) else 0)" haftmann@27484: apply (simp add: take_columns_def) haftmann@27484: apply (simplesubst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le) haftmann@27484: apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le) haftmann@27484: done haftmann@27484: haftmann@27484: lemma Rep_take_rows[simp]: haftmann@27484: "Rep_matrix (take_rows A r) j i = haftmann@27484: (if j < r then (Rep_matrix A j i) else 0)" haftmann@27484: apply (simp add: take_rows_def) haftmann@27484: apply (simplesubst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le) haftmann@27484: apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le) haftmann@27484: done haftmann@27484: haftmann@27484: lemma Rep_column_of_matrix[simp]: haftmann@27484: "Rep_matrix (column_of_matrix A c) j i = (if i = 0 then (Rep_matrix A j c) else 0)" haftmann@27484: by (simp add: column_of_matrix_def) haftmann@27484: haftmann@27484: lemma Rep_row_of_matrix[simp]: haftmann@27484: "Rep_matrix (row_of_matrix A r) j i = (if j = 0 then (Rep_matrix A r i) else 0)" haftmann@27484: by (simp add: row_of_matrix_def) haftmann@27484: haftmann@27484: lemma column_of_matrix: "ncols A <= n \ column_of_matrix A n = 0" haftmann@27484: apply (subst Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: by (simp add: ncols) haftmann@27484: haftmann@27484: lemma row_of_matrix: "nrows A <= n \ row_of_matrix A n = 0" haftmann@27484: apply (subst Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: by (simp add: nrows) haftmann@27484: haftmann@27484: lemma mult_matrix_singleton_right[simp]: haftmann@27484: assumes prems: haftmann@27484: "! x. fmul x 0 = 0" haftmann@27484: "! x. fmul 0 x = 0" haftmann@27484: "! x. fadd 0 x = x" haftmann@27484: "! x. fadd x 0 = x" haftmann@27484: shows "(mult_matrix fmul fadd A (singleton_matrix j i e)) = apply_matrix (% x. fmul x e) (move_matrix (column_of_matrix A j) 0 (int i))" haftmann@27484: apply (simp add: mult_matrix_def) haftmann@27484: apply (subst mult_matrix_nm[of _ _ _ "max (ncols A) (Suc j)"]) haftmann@27484: apply (auto) haftmann@27484: apply (simp add: prems)+ haftmann@27484: apply (simp add: mult_matrix_n_def apply_matrix_def apply_infmatrix_def) haftmann@27484: apply (rule comb[of "Abs_matrix" "Abs_matrix"], auto, (rule ext)+) haftmann@27484: apply (subst foldseq_almostzero[of _ j]) haftmann@27484: apply (simp add: prems)+ haftmann@27484: apply (auto) nipkow@29700: apply (metis comm_monoid_add.mult_1 le_anti_sym le_diff_eq not_neg_nat zero_le_imp_of_nat zle_int) nipkow@29700: done haftmann@27484: haftmann@27484: lemma mult_matrix_ext: haftmann@27484: assumes haftmann@27484: eprem: haftmann@27484: "? e. (! a b. a \ b \ fmul a e \ fmul b e)" haftmann@27484: and fprems: haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "! a. fadd a 0 = a" haftmann@27484: "! a. fadd 0 a = a" haftmann@27484: and contraprems: haftmann@27484: "mult_matrix fmul fadd A = mult_matrix fmul fadd B" haftmann@27484: shows haftmann@27484: "A = B" haftmann@27484: proof(rule contrapos_np[of "False"], simp) haftmann@27484: assume a: "A \ B" haftmann@27484: have b: "!! f g. (! x y. f x y = g x y) \ f = g" by ((rule ext)+, auto) haftmann@27484: have "? j i. (Rep_matrix A j i) \ (Rep_matrix B j i)" haftmann@27484: apply (rule contrapos_np[of "False"], simp+) haftmann@27484: apply (insert b[of "Rep_matrix A" "Rep_matrix B"], simp) haftmann@27484: by (simp add: Rep_matrix_inject a) haftmann@27484: then obtain J I where c:"(Rep_matrix A J I) \ (Rep_matrix B J I)" by blast haftmann@27484: from eprem obtain e where eprops:"(! a b. a \ b \ fmul a e \ fmul b e)" by blast haftmann@27484: let ?S = "singleton_matrix I 0 e" haftmann@27484: let ?comp = "mult_matrix fmul fadd" haftmann@27484: have d: "!!x f g. f = g \ f x = g x" by blast haftmann@27484: have e: "(% x. fmul x e) 0 = 0" by (simp add: prems) haftmann@27484: have "~(?comp A ?S = ?comp B ?S)" haftmann@27484: apply (rule notI) haftmann@27484: apply (simp add: fprems eprops) haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (drule d[of _ _ "J"], drule d[of _ _ "0"]) haftmann@27484: by (simp add: e c eprops) haftmann@27484: with contraprems show "False" by simp haftmann@27484: qed haftmann@27484: haftmann@27484: constdefs haftmann@27484: foldmatrix :: "('a \ 'a \ 'a) \ ('a \ 'a \ 'a) \ ('a infmatrix) \ nat \ nat \ 'a" haftmann@27484: "foldmatrix f g A m n == foldseq_transposed g (% j. foldseq f (A j) n) m" haftmann@27484: foldmatrix_transposed :: "('a \ 'a \ 'a) \ ('a \ 'a \ 'a) \ ('a infmatrix) \ nat \ nat \ 'a" haftmann@27484: "foldmatrix_transposed f g A m n == foldseq g (% j. foldseq_transposed f (A j) n) m" haftmann@27484: haftmann@27484: lemma foldmatrix_transpose: haftmann@27484: assumes haftmann@27484: "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)" haftmann@27484: shows haftmann@27484: "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" (is ?concl) haftmann@27484: proof - haftmann@27484: have forall:"!! P x. (! x. P x) \ P x" by auto haftmann@27484: have tworows:"! A. foldmatrix f g A 1 n = foldmatrix_transposed g f (transpose_infmatrix A) n 1" haftmann@27484: apply (induct n) haftmann@27484: apply (simp add: foldmatrix_def foldmatrix_transposed_def prems)+ haftmann@27484: apply (auto) haftmann@27484: by (drule_tac x="(% j i. A j (Suc i))" in forall, simp) haftmann@27484: show "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" haftmann@27484: apply (simp add: foldmatrix_def foldmatrix_transposed_def) haftmann@27484: apply (induct m, simp) haftmann@27484: apply (simp) haftmann@27484: apply (insert tworows) haftmann@27484: apply (drule_tac x="% j i. (if j = 0 then (foldseq_transposed g (\u. A u i) m) else (A (Suc m) i))" in spec) haftmann@27484: by (simp add: foldmatrix_def foldmatrix_transposed_def) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma foldseq_foldseq: haftmann@27484: assumes haftmann@27484: "associative f" haftmann@27484: "associative g" haftmann@27484: "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)" haftmann@27484: shows haftmann@27484: "foldseq g (% j. foldseq f (A j) n) m = foldseq f (% j. foldseq g ((transpose_infmatrix A) j) m) n" haftmann@27484: apply (insert foldmatrix_transpose[of g f A m n]) haftmann@27484: by (simp add: foldmatrix_def foldmatrix_transposed_def foldseq_assoc[THEN sym] prems) haftmann@27484: haftmann@27484: lemma mult_n_nrows: haftmann@27484: assumes haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: shows "nrows (mult_matrix_n n fmul fadd A B) \ nrows A" haftmann@27484: apply (subst nrows_le) haftmann@27484: apply (simp add: mult_matrix_n_def) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (rule_tac x="nrows A" in exI) haftmann@27484: apply (simp add: nrows prems foldseq_zero) haftmann@27484: apply (rule_tac x="ncols B" in exI) haftmann@27484: apply (simp add: ncols prems foldseq_zero) haftmann@27484: by (simp add: nrows prems foldseq_zero) haftmann@27484: haftmann@27484: lemma mult_n_ncols: haftmann@27484: assumes haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: shows "ncols (mult_matrix_n n fmul fadd A B) \ ncols B" haftmann@27484: apply (subst ncols_le) haftmann@27484: apply (simp add: mult_matrix_n_def) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (rule_tac x="nrows A" in exI) haftmann@27484: apply (simp add: nrows prems foldseq_zero) haftmann@27484: apply (rule_tac x="ncols B" in exI) haftmann@27484: apply (simp add: ncols prems foldseq_zero) haftmann@27484: by (simp add: ncols prems foldseq_zero) haftmann@27484: haftmann@27484: lemma mult_nrows: haftmann@27484: assumes haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: shows "nrows (mult_matrix fmul fadd A B) \ nrows A" haftmann@27484: by (simp add: mult_matrix_def mult_n_nrows prems) haftmann@27484: haftmann@27484: lemma mult_ncols: haftmann@27484: assumes haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: shows "ncols (mult_matrix fmul fadd A B) \ ncols B" haftmann@27484: by (simp add: mult_matrix_def mult_n_ncols prems) haftmann@27484: haftmann@27484: lemma nrows_move_matrix_le: "nrows (move_matrix A j i) <= nat((int (nrows A)) + j)" haftmann@27484: apply (auto simp add: nrows_le) haftmann@27484: apply (rule nrows) haftmann@27484: apply (arith) haftmann@27484: done haftmann@27484: haftmann@27484: lemma ncols_move_matrix_le: "ncols (move_matrix A j i) <= nat((int (ncols A)) + i)" haftmann@27484: apply (auto simp add: ncols_le) haftmann@27484: apply (rule ncols) haftmann@27484: apply (arith) haftmann@27484: done haftmann@27484: haftmann@27484: lemma mult_matrix_assoc: haftmann@27484: assumes prems: haftmann@27484: "! a. fmul1 0 a = 0" haftmann@27484: "! a. fmul1 a 0 = 0" haftmann@27484: "! a. fmul2 0 a = 0" haftmann@27484: "! a. fmul2 a 0 = 0" haftmann@27484: "fadd1 0 0 = 0" haftmann@27484: "fadd2 0 0 = 0" haftmann@27484: "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)" haftmann@27484: "associative fadd1" haftmann@27484: "associative fadd2" haftmann@27484: "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)" haftmann@27484: "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)" haftmann@27484: "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)" haftmann@27484: shows "mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B) C = mult_matrix fmul1 fadd1 A (mult_matrix fmul2 fadd2 B C)" (is ?concl) haftmann@27484: proof - haftmann@27484: have comb_left: "!! A B x y. A = B \ (Rep_matrix (Abs_matrix A)) x y = (Rep_matrix(Abs_matrix B)) x y" by blast haftmann@27484: have fmul2fadd1fold: "!! x s n. fmul2 (foldseq fadd1 s n) x = foldseq fadd1 (% k. fmul2 (s k) x) n" haftmann@27484: by (rule_tac g1 = "% y. fmul2 y x" in ssubst [OF foldseq_distr_unary], simp_all!) haftmann@27484: have fmul1fadd2fold: "!! x s n. fmul1 x (foldseq fadd2 s n) = foldseq fadd2 (% k. fmul1 x (s k)) n" haftmann@27484: by (rule_tac g1 = "% y. fmul1 x y" in ssubst [OF foldseq_distr_unary], simp_all!) haftmann@27484: let ?N = "max (ncols A) (max (ncols B) (max (nrows B) (nrows C)))" haftmann@27484: show ?concl haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: apply (simp add: mult_matrix_def) haftmann@27484: apply (simplesubst mult_matrix_nm[of _ "max (ncols (mult_matrix_n (max (ncols A) (nrows B)) fmul1 fadd1 A B)) (nrows C)" _ "max (ncols B) (nrows C)"]) haftmann@27484: apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ haftmann@27484: apply (simplesubst mult_matrix_nm[of _ "max (ncols A) (nrows (mult_matrix_n (max (ncols B) (nrows C)) fmul2 fadd2 B C))" _ "max (ncols A) (nrows B)"]) apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ haftmann@27484: apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) haftmann@27484: apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ haftmann@27484: apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) haftmann@27484: apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ haftmann@27484: apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) haftmann@27484: apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ haftmann@27484: apply (simplesubst mult_matrix_nm[of _ _ _ "?N"]) haftmann@27484: apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ haftmann@27484: apply (simp add: mult_matrix_n_def) haftmann@27484: apply (rule comb_left) haftmann@27484: apply ((rule ext)+, simp) haftmann@27484: apply (simplesubst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "nrows B"]) haftmann@27484: apply (simp add: nrows prems foldseq_zero) haftmann@27484: apply (rule exI[of _ "ncols C"]) haftmann@27484: apply (simp add: prems ncols foldseq_zero) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "nrows A"]) haftmann@27484: apply (simp add: nrows prems foldseq_zero) haftmann@27484: apply (rule exI[of _ "ncols B"]) haftmann@27484: apply (simp add: prems ncols foldseq_zero) haftmann@27484: apply (simp add: fmul2fadd1fold fmul1fadd2fold prems) haftmann@27484: apply (subst foldseq_foldseq) haftmann@27484: apply (simp add: prems)+ haftmann@27484: by (simp add: transpose_infmatrix) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma haftmann@27484: assumes prems: haftmann@27484: "! a. fmul1 0 a = 0" haftmann@27484: "! a. fmul1 a 0 = 0" haftmann@27484: "! a. fmul2 0 a = 0" haftmann@27484: "! a. fmul2 a 0 = 0" haftmann@27484: "fadd1 0 0 = 0" haftmann@27484: "fadd2 0 0 = 0" haftmann@27484: "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)" haftmann@27484: "associative fadd1" haftmann@27484: "associative fadd2" haftmann@27484: "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)" haftmann@27484: "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)" haftmann@27484: "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)" haftmann@27484: shows haftmann@27484: "(mult_matrix fmul1 fadd1 A) o (mult_matrix fmul2 fadd2 B) = mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B)" haftmann@27484: apply (rule ext)+ haftmann@27484: apply (simp add: comp_def ) haftmann@27484: by (simp add: mult_matrix_assoc prems) haftmann@27484: haftmann@27484: lemma mult_matrix_assoc_simple: haftmann@27484: assumes prems: haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: "associative fadd" haftmann@27484: "commutative fadd" haftmann@27484: "associative fmul" haftmann@27484: "distributive fmul fadd" haftmann@27484: shows "mult_matrix fmul fadd (mult_matrix fmul fadd A B) C = mult_matrix fmul fadd A (mult_matrix fmul fadd B C)" (is ?concl) haftmann@27484: proof - haftmann@27484: have "!! a b c d. fadd (fadd a b) (fadd c d) = fadd (fadd a c) (fadd b d)" haftmann@27484: by (simp! add: associative_def commutative_def) haftmann@27484: then show ?concl haftmann@27484: apply (subst mult_matrix_assoc) haftmann@27484: apply (simp_all!) haftmann@27484: by (simp add: associative_def distributive_def l_distributive_def r_distributive_def)+ haftmann@27484: qed haftmann@27484: haftmann@27484: lemma transpose_apply_matrix: "f 0 = 0 \ transpose_matrix (apply_matrix f A) = apply_matrix f (transpose_matrix A)" haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: by simp haftmann@27484: haftmann@27484: lemma transpose_combine_matrix: "f 0 0 = 0 \ transpose_matrix (combine_matrix f A B) = combine_matrix f (transpose_matrix A) (transpose_matrix B)" haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: by simp haftmann@27484: haftmann@27484: lemma Rep_mult_matrix: haftmann@27484: assumes haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: shows haftmann@27484: "Rep_matrix(mult_matrix fmul fadd A B) j i = haftmann@27484: foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) (max (ncols A) (nrows B))" haftmann@27484: apply (simp add: mult_matrix_def mult_matrix_n_def) haftmann@27484: apply (subst RepAbs_matrix) haftmann@27484: apply (rule exI[of _ "nrows A"], simp! add: nrows foldseq_zero) haftmann@27484: apply (rule exI[of _ "ncols B"], simp! add: ncols foldseq_zero) haftmann@27484: by simp haftmann@27484: haftmann@27484: lemma transpose_mult_matrix: haftmann@27484: assumes haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: "! x y. fmul y x = fmul x y" haftmann@27484: shows haftmann@27484: "transpose_matrix (mult_matrix fmul fadd A B) = mult_matrix fmul fadd (transpose_matrix B) (transpose_matrix A)" haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: by (simp! add: Rep_mult_matrix max_ac) haftmann@27484: haftmann@27484: lemma column_transpose_matrix: "column_of_matrix (transpose_matrix A) n = transpose_matrix (row_of_matrix A n)" haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: by simp haftmann@27484: haftmann@27484: lemma take_columns_transpose_matrix: "take_columns (transpose_matrix A) n = transpose_matrix (take_rows A n)" haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: by simp haftmann@27484: haftmann@27580: instantiation matrix :: ("{zero, ord}") ord haftmann@27484: begin haftmann@27484: haftmann@27484: definition haftmann@27484: le_matrix_def: "A \ B \ (\j i. Rep_matrix A j i \ Rep_matrix B j i)" haftmann@27484: haftmann@27484: definition wenzelm@28637: less_def: "A < (B\'a matrix) \ A \ B \ \ B \ A" haftmann@27484: haftmann@27484: instance .. haftmann@27484: haftmann@27484: end haftmann@27484: haftmann@27580: instance matrix :: ("{zero, order}") order haftmann@27484: apply intro_classes haftmann@27484: apply (simp_all add: le_matrix_def less_def) haftmann@27484: apply (auto) haftmann@27484: apply (drule_tac x=j in spec, drule_tac x=j in spec) haftmann@27484: apply (drule_tac x=i in spec, drule_tac x=i in spec) haftmann@27484: apply (simp) haftmann@27484: apply (simp add: Rep_matrix_inject[THEN sym]) haftmann@27484: apply (rule ext)+ haftmann@27484: apply (drule_tac x=xa in spec, drule_tac x=xa in spec) haftmann@27484: apply (drule_tac x=xb in spec, drule_tac x=xb in spec) wenzelm@28637: apply simp wenzelm@28637: done haftmann@27484: haftmann@27484: lemma le_apply_matrix: haftmann@27484: assumes haftmann@27484: "f 0 = 0" haftmann@27484: "! x y. x <= y \ f x <= f y" haftmann@27484: "(a::('a::{ord, zero}) matrix) <= b" haftmann@27484: shows haftmann@27484: "apply_matrix f a <= apply_matrix f b" haftmann@27484: by (simp! add: le_matrix_def) haftmann@27484: haftmann@27484: lemma le_combine_matrix: haftmann@27484: assumes haftmann@27484: "f 0 0 = 0" haftmann@27484: "! a b c d. a <= b & c <= d \ f a c <= f b d" haftmann@27484: "A <= B" haftmann@27484: "C <= D" haftmann@27484: shows haftmann@27484: "combine_matrix f A C <= combine_matrix f B D" haftmann@27484: by (simp! add: le_matrix_def) haftmann@27484: haftmann@27484: lemma le_left_combine_matrix: haftmann@27484: assumes haftmann@27484: "f 0 0 = 0" haftmann@27484: "! a b c. a <= b \ f c a <= f c b" haftmann@27484: "A <= B" haftmann@27484: shows haftmann@27484: "combine_matrix f C A <= combine_matrix f C B" haftmann@27484: by (simp! add: le_matrix_def) haftmann@27484: haftmann@27484: lemma le_right_combine_matrix: haftmann@27484: assumes haftmann@27484: "f 0 0 = 0" haftmann@27484: "! a b c. a <= b \ f a c <= f b c" haftmann@27484: "A <= B" haftmann@27484: shows haftmann@27484: "combine_matrix f A C <= combine_matrix f B C" haftmann@27484: by (simp! add: le_matrix_def) haftmann@27484: haftmann@27484: lemma le_transpose_matrix: "(A <= B) = (transpose_matrix A <= transpose_matrix B)" haftmann@27484: by (simp add: le_matrix_def, auto) haftmann@27484: haftmann@27484: lemma le_foldseq: haftmann@27484: assumes haftmann@27484: "! a b c d . a <= b & c <= d \ f a c <= f b d" haftmann@27484: "! i. i <= n \ s i <= t i" haftmann@27484: shows haftmann@27484: "foldseq f s n <= foldseq f t n" haftmann@27484: proof - haftmann@27484: have "! s t. (! i. i<=n \ s i <= t i) \ foldseq f s n <= foldseq f t n" by (induct_tac n, simp_all!) haftmann@27484: then show "foldseq f s n <= foldseq f t n" by (simp!) haftmann@27484: qed haftmann@27484: haftmann@27484: lemma le_left_mult: haftmann@27484: assumes haftmann@27484: "! a b c d. a <= b & c <= d \ fadd a c <= fadd b d" haftmann@27484: "! c a b. 0 <= c & a <= b \ fmul c a <= fmul c b" haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: "0 <= C" haftmann@27484: "A <= B" haftmann@27484: shows haftmann@27484: "mult_matrix fmul fadd C A <= mult_matrix fmul fadd C B" haftmann@27484: apply (simp! add: le_matrix_def Rep_mult_matrix) haftmann@27484: apply (auto) haftmann@27484: apply (simplesubst foldseq_zerotail[of _ _ _ "max (ncols C) (max (nrows A) (nrows B))"], simp_all add: nrows ncols max1 max2)+ haftmann@27484: apply (rule le_foldseq) haftmann@27484: by (auto) haftmann@27484: haftmann@27484: lemma le_right_mult: haftmann@27484: assumes haftmann@27484: "! a b c d. a <= b & c <= d \ fadd a c <= fadd b d" haftmann@27484: "! c a b. 0 <= c & a <= b \ fmul a c <= fmul b c" haftmann@27484: "! a. fmul 0 a = 0" haftmann@27484: "! a. fmul a 0 = 0" haftmann@27484: "fadd 0 0 = 0" haftmann@27484: "0 <= C" haftmann@27484: "A <= B" haftmann@27484: shows haftmann@27484: "mult_matrix fmul fadd A C <= mult_matrix fmul fadd B C" haftmann@27484: apply (simp! add: le_matrix_def Rep_mult_matrix) haftmann@27484: apply (auto) haftmann@27484: apply (simplesubst foldseq_zerotail[of _ _ _ "max (nrows C) (max (ncols A) (ncols B))"], simp_all add: nrows ncols max1 max2)+ haftmann@27484: apply (rule le_foldseq) haftmann@27484: by (auto) haftmann@27484: haftmann@27484: lemma spec2: "! j i. P j i \ P j i" by blast haftmann@27484: lemma neg_imp: "(\ Q \ \ P) \ P \ Q" by blast haftmann@27484: haftmann@27484: lemma singleton_matrix_le[simp]: "(singleton_matrix j i a <= singleton_matrix j i b) = (a <= (b::_::order))" haftmann@27484: by (auto simp add: le_matrix_def) haftmann@27484: haftmann@27484: lemma singleton_le_zero[simp]: "(singleton_matrix j i x <= 0) = (x <= (0::'a::{order,zero}))" haftmann@27484: apply (auto) haftmann@27484: apply (simp add: le_matrix_def) haftmann@27484: apply (drule_tac j=j and i=i in spec2) haftmann@27484: apply (simp) haftmann@27484: apply (simp add: le_matrix_def) haftmann@27484: done haftmann@27484: haftmann@27484: lemma singleton_ge_zero[simp]: "(0 <= singleton_matrix j i x) = ((0::'a::{order,zero}) <= x)" haftmann@27484: apply (auto) haftmann@27484: apply (simp add: le_matrix_def) haftmann@27484: apply (drule_tac j=j and i=i in spec2) haftmann@27484: apply (simp) haftmann@27484: apply (simp add: le_matrix_def) haftmann@27484: done haftmann@27484: haftmann@27484: lemma move_matrix_le_zero[simp]: "0 <= j \ 0 <= i \ (move_matrix A j i <= 0) = (A <= (0::('a::{order,zero}) matrix))" haftmann@27484: apply (auto simp add: le_matrix_def neg_def) haftmann@27484: apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) haftmann@27484: apply (auto) haftmann@27484: done haftmann@27484: haftmann@27484: lemma move_matrix_zero_le[simp]: "0 <= j \ 0 <= i \ (0 <= move_matrix A j i) = ((0::('a::{order,zero}) matrix) <= A)" haftmann@27484: apply (auto simp add: le_matrix_def neg_def) haftmann@27484: apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) haftmann@27484: apply (auto) haftmann@27484: done haftmann@27484: haftmann@27484: lemma move_matrix_le_move_matrix_iff[simp]: "0 <= j \ 0 <= i \ (move_matrix A j i <= move_matrix B j i) = (A <= (B::('a::{order,zero}) matrix))" haftmann@27484: apply (auto simp add: le_matrix_def neg_def) haftmann@27484: apply (drule_tac j="ja+(nat j)" and i="ia+(nat i)" in spec2) haftmann@27484: apply (auto) haftmann@27484: done haftmann@27484: haftmann@27580: instantiation matrix :: ("{lattice, zero}") lattice haftmann@25764: begin haftmann@25764: haftmann@28562: definition [code del]: "inf = combine_matrix inf" haftmann@25764: haftmann@28562: definition [code del]: "sup = combine_matrix sup" haftmann@25764: haftmann@25764: instance haftmann@22452: by default (auto simp add: inf_le1 inf_le2 le_infI le_matrix_def inf_matrix_def sup_matrix_def) haftmann@22452: haftmann@25764: end haftmann@25764: haftmann@25764: instantiation matrix :: ("{plus, zero}") plus haftmann@25764: begin haftmann@25764: haftmann@25764: definition haftmann@28562: plus_matrix_def [code del]: "A + B = combine_matrix (op +) A B" haftmann@25764: haftmann@25764: instance .. haftmann@25764: haftmann@25764: end haftmann@25764: haftmann@25764: instantiation matrix :: ("{uminus, zero}") uminus haftmann@25764: begin haftmann@25764: haftmann@25764: definition haftmann@28562: minus_matrix_def [code del]: "- A = apply_matrix uminus A" haftmann@25764: haftmann@25764: instance .. haftmann@25764: haftmann@25764: end haftmann@25764: haftmann@25764: instantiation matrix :: ("{minus, zero}") minus haftmann@25764: begin obua@14593: haftmann@25764: definition haftmann@28562: diff_matrix_def [code del]: "A - B = combine_matrix (op -) A B" haftmann@25764: haftmann@25764: instance .. haftmann@25764: haftmann@25764: end haftmann@25764: haftmann@25764: instantiation matrix :: ("{plus, times, zero}") times haftmann@25764: begin haftmann@25764: haftmann@25764: definition haftmann@28562: times_matrix_def [code del]: "A * B = mult_matrix (op *) (op +) A B" obua@14940: haftmann@25764: instance .. haftmann@25764: haftmann@25764: end haftmann@25764: haftmann@27653: instantiation matrix :: ("{lattice, uminus, zero}") abs haftmann@25764: begin obua@14940: haftmann@25764: definition haftmann@28562: abs_matrix_def [code del]: "abs (A \ 'a matrix) = sup A (- A)" haftmann@25764: haftmann@25764: instance .. haftmann@25764: haftmann@25764: end haftmann@23879: haftmann@27653: instance matrix :: (monoid_add) monoid_add haftmann@27653: proof haftmann@27653: fix A B C :: "'a matrix" obua@14940: show "A + B + C = A + (B + C)" obua@14940: apply (simp add: plus_matrix_def) obua@14940: apply (rule combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec]) obua@14940: apply (simp_all add: add_assoc) obua@14940: done haftmann@27653: show "0 + A = A" haftmann@27653: apply (simp add: plus_matrix_def) haftmann@27653: apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec]) haftmann@27653: apply (simp) haftmann@27653: done haftmann@27653: show "A + 0 = A" haftmann@27653: apply (simp add: plus_matrix_def) haftmann@27653: apply (rule combine_matrix_zero_r_neutral [simplified zero_r_neutral_def, THEN spec]) haftmann@27653: apply (simp) haftmann@27653: done haftmann@27653: qed haftmann@27653: haftmann@27653: instance matrix :: (comm_monoid_add) comm_monoid_add haftmann@27653: proof haftmann@27653: fix A B :: "'a matrix" obua@14940: show "A + B = B + A" obua@14940: apply (simp add: plus_matrix_def) obua@14940: apply (rule combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec]) obua@14940: apply (simp_all add: add_commute) obua@14940: done obua@14940: show "0 + A = A" obua@14940: apply (simp add: plus_matrix_def) obua@14940: apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec]) obua@14940: apply (simp) obua@14940: done haftmann@27653: qed haftmann@27653: haftmann@27653: instance matrix :: (group_add) group_add haftmann@27653: proof haftmann@27653: fix A B :: "'a matrix" haftmann@27653: show "- A + A = 0" haftmann@27653: by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) haftmann@27653: show "A - B = A + - B" haftmann@27653: by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject [symmetric] ext diff_minus) haftmann@27653: qed haftmann@27653: haftmann@27653: instance matrix :: (ab_group_add) ab_group_add haftmann@27653: proof haftmann@27653: fix A B :: "'a matrix" obua@14940: show "- A + A = 0" obua@14940: by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) obua@14940: show "A - B = A + - B" obua@14940: by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext) haftmann@27653: qed haftmann@27653: haftmann@27653: instance matrix :: (pordered_ab_group_add) pordered_ab_group_add haftmann@27653: proof haftmann@27653: fix A B C :: "'a matrix" obua@14940: assume "A <= B" obua@14940: then show "C + A <= C + B" obua@14940: apply (simp add: plus_matrix_def) obua@14940: apply (rule le_left_combine_matrix) obua@14940: apply (simp_all) obua@14940: done obua@14940: qed haftmann@27653: haftmann@27653: instance matrix :: (lordered_ab_group_add) lordered_ab_group_add_meet .. haftmann@27653: instance matrix :: (lordered_ab_group_add) lordered_ab_group_add_join .. obua@14593: haftmann@27653: instance matrix :: (ring) ring obua@14940: proof haftmann@27653: fix A B C :: "'a matrix" obua@14940: show "A * B * C = A * (B * C)" obua@14940: apply (simp add: times_matrix_def) obua@14940: apply (rule mult_matrix_assoc) nipkow@29667: apply (simp_all add: associative_def algebra_simps) obua@14940: done obua@14940: show "(A + B) * C = A * C + B * C" obua@14940: apply (simp add: times_matrix_def plus_matrix_def) obua@14940: apply (rule l_distributive_matrix[simplified l_distributive_def, THEN spec, THEN spec, THEN spec]) nipkow@29667: apply (simp_all add: associative_def commutative_def algebra_simps) obua@14940: done obua@14940: show "A * (B + C) = A * B + A * C" obua@14940: apply (simp add: times_matrix_def plus_matrix_def) obua@14940: apply (rule r_distributive_matrix[simplified r_distributive_def, THEN spec, THEN spec, THEN spec]) nipkow@29667: apply (simp_all add: associative_def commutative_def algebra_simps) haftmann@27653: done haftmann@27653: qed haftmann@27653: haftmann@27653: instance matrix :: (pordered_ring) pordered_ring haftmann@27653: proof haftmann@27653: fix A B C :: "'a matrix" obua@14940: assume a: "A \ B" obua@14940: assume b: "0 \ C" obua@14940: from a b show "C * A \ C * B" obua@14940: apply (simp add: times_matrix_def) obua@14940: apply (rule le_left_mult) obua@14940: apply (simp_all add: add_mono mult_left_mono) obua@14940: done obua@14940: from a b show "A * C \ B * C" obua@14940: apply (simp add: times_matrix_def) obua@14940: apply (rule le_right_mult) obua@14940: apply (simp_all add: add_mono mult_right_mono) obua@14940: done haftmann@27653: qed haftmann@27653: haftmann@27653: instance matrix :: (lordered_ring) lordered_ring haftmann@27653: proof haftmann@27653: fix A B C :: "('a :: lordered_ring) matrix" haftmann@27653: show "abs A = sup A (-A)" haftmann@27653: by (simp add: abs_matrix_def) haftmann@27653: qed obua@14593: haftmann@25303: lemma Rep_matrix_add[simp]: haftmann@27653: "Rep_matrix ((a::('a::monoid_add)matrix)+b) j i = (Rep_matrix a j i) + (Rep_matrix b j i)" haftmann@27653: by (simp add: plus_matrix_def) obua@14593: haftmann@27653: lemma Rep_matrix_mult: "Rep_matrix ((a::('a::ring) matrix) * b) j i = obua@14940: foldseq (op +) (% k. (Rep_matrix a j k) * (Rep_matrix b k i)) (max (ncols a) (nrows b))" obua@14940: apply (simp add: times_matrix_def) obua@14940: apply (simp add: Rep_mult_matrix) obua@14940: done obua@14593: haftmann@27653: lemma apply_matrix_add: "! x y. f (x+y) = (f x) + (f y) \ f 0 = (0::'a) haftmann@27653: \ apply_matrix f ((a::('a::monoid_add) matrix) + b) = (apply_matrix f a) + (apply_matrix f b)" obua@14940: apply (subst Rep_matrix_inject[symmetric]) obua@14593: apply (rule ext)+ obua@14940: apply (simp) obua@14940: done obua@14593: haftmann@27653: lemma singleton_matrix_add: "singleton_matrix j i ((a::_::monoid_add)+b) = (singleton_matrix j i a) + (singleton_matrix j i b)" obua@14940: apply (subst Rep_matrix_inject[symmetric]) obua@14940: apply (rule ext)+ obua@14940: apply (simp) obua@14940: done obua@14593: haftmann@27653: lemma nrows_mult: "nrows ((A::('a::ring) matrix) * B) <= nrows A" obua@14593: by (simp add: times_matrix_def mult_nrows) obua@14593: haftmann@27653: lemma ncols_mult: "ncols ((A::('a::ring) matrix) * B) <= ncols B" obua@14593: by (simp add: times_matrix_def mult_ncols) obua@14593: haftmann@22422: definition haftmann@22422: one_matrix :: "nat \ ('a::{zero,one}) matrix" where haftmann@22422: "one_matrix n = Abs_matrix (% j i. if j = i & j < n then 1 else 0)" obua@14593: obua@14593: lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)" obua@14593: apply (simp add: one_matrix_def) paulson@15481: apply (simplesubst RepAbs_matrix) obua@14593: apply (rule exI[of _ n], simp add: split_if)+ nipkow@16733: by (simp add: split_if) obua@14593: wenzelm@20633: lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") obua@14593: proof - obua@14593: have "?r <= n" by (simp add: nrows_le) obua@14940: moreover have "n <= ?r" by (simp add:le_nrows, arith) obua@14593: ultimately show "?r = n" by simp obua@14593: qed obua@14593: wenzelm@20633: lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::zero_neq_one)matrix) = n" (is "?r = _") obua@14593: proof - obua@14593: have "?r <= n" by (simp add: ncols_le) obua@14593: moreover have "n <= ?r" by (simp add: le_ncols, arith) obua@14593: ultimately show "?r = n" by simp obua@14593: qed obua@14593: haftmann@27653: lemma one_matrix_mult_right[simp]: "ncols A <= n \ (A::('a::{ring_1}) matrix) * (one_matrix n) = A" obua@14593: apply (subst Rep_matrix_inject[THEN sym]) obua@14593: apply (rule ext)+ obua@14593: apply (simp add: times_matrix_def Rep_mult_matrix) obua@14593: apply (rule_tac j1="xa" in ssubst[OF foldseq_almostzero]) obua@14593: apply (simp_all) obua@14593: by (simp add: max_def ncols) obua@14593: haftmann@27653: lemma one_matrix_mult_left[simp]: "nrows A <= n \ (one_matrix n) * A = (A::('a::ring_1) matrix)" obua@14593: apply (subst Rep_matrix_inject[THEN sym]) obua@14593: apply (rule ext)+ obua@14593: apply (simp add: times_matrix_def Rep_mult_matrix) obua@14593: apply (rule_tac j1="x" in ssubst[OF foldseq_almostzero]) obua@14593: apply (simp_all) obua@14593: by (simp add: max_def nrows) obua@14593: haftmann@27653: lemma transpose_matrix_mult: "transpose_matrix ((A::('a::comm_ring) matrix)*B) = (transpose_matrix B) * (transpose_matrix A)" obua@14940: apply (simp add: times_matrix_def) obua@14940: apply (subst transpose_mult_matrix) obua@14940: apply (simp_all add: mult_commute) obua@14940: done obua@14940: haftmann@27653: lemma transpose_matrix_add: "transpose_matrix ((A::('a::monoid_add) matrix)+B) = transpose_matrix A + transpose_matrix B" obua@14940: by (simp add: plus_matrix_def transpose_combine_matrix) obua@14940: haftmann@27653: lemma transpose_matrix_diff: "transpose_matrix ((A::('a::group_add) matrix)-B) = transpose_matrix A - transpose_matrix B" obua@14940: by (simp add: diff_matrix_def transpose_combine_matrix) obua@14940: haftmann@27653: lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::group_add) matrix)) = - transpose_matrix (A::'a matrix)" obua@14940: by (simp add: minus_matrix_def transpose_apply_matrix) obua@14940: obua@14940: constdefs haftmann@27653: right_inverse_matrix :: "('a::{ring_1}) matrix \ 'a matrix \ bool" obua@14940: "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) \ nrows X \ ncols A" haftmann@27653: left_inverse_matrix :: "('a::{ring_1}) matrix \ 'a matrix \ bool" obua@14940: "left_inverse_matrix A X == (X * A = one_matrix (max(nrows X) (ncols A))) \ ncols X \ nrows A" haftmann@27653: inverse_matrix :: "('a::{ring_1}) matrix \ 'a matrix \ bool" obua@14940: "inverse_matrix A X == (right_inverse_matrix A X) \ (left_inverse_matrix A X)" obua@14593: obua@14593: lemma right_inverse_matrix_dim: "right_inverse_matrix A X \ nrows A = ncols X" obua@14593: apply (insert ncols_mult[of A X], insert nrows_mult[of A X]) obua@14593: by (simp add: right_inverse_matrix_def) obua@14593: obua@14940: lemma left_inverse_matrix_dim: "left_inverse_matrix A Y \ ncols A = nrows Y" obua@14940: apply (insert ncols_mult[of Y A], insert nrows_mult[of Y A]) obua@14940: by (simp add: left_inverse_matrix_def) obua@14940: obua@14940: lemma left_right_inverse_matrix_unique: obua@14940: assumes "left_inverse_matrix A Y" "right_inverse_matrix A X" obua@14940: shows "X = Y" obua@14940: proof - obua@14940: have "Y = Y * one_matrix (nrows A)" obua@14940: apply (subst one_matrix_mult_right) obua@14940: apply (insert prems) obua@14940: by (simp_all add: left_inverse_matrix_def) obua@14940: also have "\ = Y * (A * X)" obua@14940: apply (insert prems) obua@14940: apply (frule right_inverse_matrix_dim) obua@14940: by (simp add: right_inverse_matrix_def) obua@14940: also have "\ = (Y * A) * X" by (simp add: mult_assoc) obua@14940: also have "\ = X" obua@14940: apply (insert prems) obua@14940: apply (frule left_inverse_matrix_dim) obua@14940: apply (simp_all add: left_inverse_matrix_def right_inverse_matrix_def one_matrix_mult_left) obua@14940: done obua@14940: ultimately show "X = Y" by (simp) obua@14940: qed obua@14940: obua@14940: lemma inverse_matrix_inject: "\ inverse_matrix A X; inverse_matrix A Y \ \ X = Y" obua@14940: by (auto simp add: inverse_matrix_def left_right_inverse_matrix_unique) obua@14940: obua@14940: lemma one_matrix_inverse: "inverse_matrix (one_matrix n) (one_matrix n)" obua@14940: by (simp add: inverse_matrix_def left_inverse_matrix_def right_inverse_matrix_def) obua@14940: obua@14940: lemma zero_imp_mult_zero: "(a::'a::ring) = 0 | b = 0 \ a * b = 0" obua@14940: by auto obua@14940: obua@14940: lemma Rep_matrix_zero_imp_mult_zero: obua@14940: "! j i k. (Rep_matrix A j k = 0) | (Rep_matrix B k i) = 0 \ A * B = (0::('a::lordered_ring) matrix)" obua@14940: apply (subst Rep_matrix_inject[symmetric]) obua@14940: apply (rule ext)+ obua@14940: apply (auto simp add: Rep_matrix_mult foldseq_zero zero_imp_mult_zero) obua@14940: done obua@14940: haftmann@27653: lemma add_nrows: "nrows (A::('a::monoid_add) matrix) <= u \ nrows B <= u \ nrows (A + B) <= u" obua@14940: apply (simp add: plus_matrix_def) obua@14940: apply (rule combine_nrows) obua@14940: apply (simp_all) obua@14940: done obua@14940: haftmann@27653: lemma move_matrix_row_mult: "move_matrix ((A::('a::ring) matrix) * B) j 0 = (move_matrix A j 0) * B" obua@14940: apply (subst Rep_matrix_inject[symmetric]) obua@14940: apply (rule ext)+ obua@14940: apply (auto simp add: Rep_matrix_mult foldseq_zero) obua@14940: apply (rule_tac foldseq_zerotail[symmetric]) obua@14940: apply (auto simp add: nrows zero_imp_mult_zero max2) obua@14940: apply (rule order_trans) obua@14940: apply (rule ncols_move_matrix_le) obua@14940: apply (simp add: max1) obua@14940: done obua@14940: haftmann@27653: lemma move_matrix_col_mult: "move_matrix ((A::('a::ring) matrix) * B) 0 i = A * (move_matrix B 0 i)" obua@14940: apply (subst Rep_matrix_inject[symmetric]) obua@14940: apply (rule ext)+ obua@14940: apply (auto simp add: Rep_matrix_mult foldseq_zero) obua@14940: apply (rule_tac foldseq_zerotail[symmetric]) obua@14940: apply (auto simp add: ncols zero_imp_mult_zero max1) obua@14940: apply (rule order_trans) obua@14940: apply (rule nrows_move_matrix_le) obua@14940: apply (simp add: max2) obua@14940: done obua@14940: haftmann@27653: lemma move_matrix_add: "((move_matrix (A + B) j i)::(('a::monoid_add) matrix)) = (move_matrix A j i) + (move_matrix B j i)" obua@14940: apply (subst Rep_matrix_inject[symmetric]) obua@14940: apply (rule ext)+ obua@14940: apply (simp) obua@14940: done obua@14940: haftmann@27653: lemma move_matrix_mult: "move_matrix ((A::('a::ring) matrix)*B) j i = (move_matrix A j 0) * (move_matrix B 0 i)" obua@14940: by (simp add: move_matrix_ortho[of "A*B"] move_matrix_col_mult move_matrix_row_mult) obua@14940: obua@14940: constdefs haftmann@27653: scalar_mult :: "('a::ring) \ 'a matrix \ 'a matrix" obua@14940: "scalar_mult a m == apply_matrix (op * a) m" obua@14940: obua@14940: lemma scalar_mult_zero[simp]: "scalar_mult y 0 = 0" nipkow@23477: by (simp add: scalar_mult_def) obua@14940: obua@14940: lemma scalar_mult_add: "scalar_mult y (a+b) = (scalar_mult y a) + (scalar_mult y b)" nipkow@29667: by (simp add: scalar_mult_def apply_matrix_add algebra_simps) obua@14940: obua@14940: lemma Rep_scalar_mult[simp]: "Rep_matrix (scalar_mult y a) j i = y * (Rep_matrix a j i)" nipkow@23477: by (simp add: scalar_mult_def) obua@14940: obua@14940: lemma scalar_mult_singleton[simp]: "scalar_mult y (singleton_matrix j i x) = singleton_matrix j i (y * x)" nipkow@23477: apply (subst Rep_matrix_inject[symmetric]) nipkow@23477: apply (rule ext)+ nipkow@23477: apply (auto) nipkow@23477: done obua@14940: haftmann@27653: lemma Rep_minus[simp]: "Rep_matrix (-(A::_::group_add)) x y = - (Rep_matrix A x y)" nipkow@23477: by (simp add: minus_matrix_def) obua@14940: haftmann@27653: lemma Rep_abs[simp]: "Rep_matrix (abs (A::_::lordered_ab_group_add)) x y = abs (Rep_matrix A x y)" nipkow@23477: by (simp add: abs_lattice sup_matrix_def) obua@14940: obua@14593: end