wenzelm@11024: (* Title: HOL/ex/Primrec.thy paulson@3335: ID: $Id$ paulson@3335: Author: Lawrence C Paulson, Cambridge University Computer Laboratory paulson@3335: Copyright 1997 University of Cambridge paulson@3335: wenzelm@11024: Primitive Recursive Functions. Demonstrates recursive definitions, wenzelm@11024: the TFL package. paulson@3335: *) paulson@3335: wenzelm@11024: header {* Primitive Recursive Functions *} wenzelm@11024: wenzelm@11024: theory Primrec = Main: wenzelm@11024: wenzelm@11024: text {* wenzelm@11024: Proof adopted from wenzelm@11024: wenzelm@11024: Nora Szasz, A Machine Checked Proof that Ackermann's Function is not wenzelm@11024: Primitive Recursive, In: Huet \& Plotkin, eds., Logical Environments wenzelm@11024: (CUP, 1993), 317-338. wenzelm@11024: wenzelm@11024: See also E. Mendelson, Introduction to Mathematical Logic. (Van wenzelm@11024: Nostrand, 1964), page 250, exercise 11. wenzelm@11024: \medskip wenzelm@11024: *} wenzelm@11024: wenzelm@11024: consts ack :: "nat * nat => nat" wenzelm@11024: recdef ack "less_than <*lex*> less_than" wenzelm@11024: "ack (0, n) = Suc n" wenzelm@11024: "ack (Suc m, 0) = ack (m, 1)" wenzelm@11024: "ack (Suc m, Suc n) = ack (m, ack (Suc m, n))" wenzelm@11024: wenzelm@11024: consts list_add :: "nat list => nat" wenzelm@11024: primrec wenzelm@11024: "list_add [] = 0" wenzelm@11024: "list_add (m # ms) = m + list_add ms" wenzelm@11024: wenzelm@11024: consts zeroHd :: "nat list => nat" wenzelm@11024: primrec wenzelm@11024: "zeroHd [] = 0" wenzelm@11024: "zeroHd (m # ms) = m" wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* The set of primitive recursive functions of type @{typ "nat list => nat"}. *} wenzelm@11024: wenzelm@11024: constdefs wenzelm@11024: SC :: "nat list => nat" wenzelm@11024: "SC l == Suc (zeroHd l)" paulson@3335: wenzelm@11024: CONST :: "nat => nat list => nat" wenzelm@11024: "CONST k l == k" wenzelm@11024: wenzelm@11024: PROJ :: "nat => nat list => nat" wenzelm@11024: "PROJ i l == zeroHd (drop i l)" wenzelm@11024: wenzelm@11024: COMP :: "(nat list => nat) => (nat list => nat) list => nat list => nat" wenzelm@11024: "COMP g fs l == g (map (\f. f l) fs)" wenzelm@11024: wenzelm@11024: PREC :: "(nat list => nat) => (nat list => nat) => nat list => nat" wenzelm@11024: "PREC f g l == wenzelm@11024: case l of wenzelm@11024: [] => 0 wenzelm@11024: | x # l' => nat_rec (f l') (\y r. g (r # y # l')) x" wenzelm@11024: -- {* Note that @{term g} is applied first to @{term "PREC f g y"} and then to @{term y}! *} wenzelm@11024: wenzelm@11024: consts PRIMREC :: "(nat list => nat) set" wenzelm@11024: inductive PRIMREC wenzelm@11024: intros wenzelm@11024: SC: "SC \ PRIMREC" wenzelm@11024: CONST: "CONST k \ PRIMREC" wenzelm@11024: PROJ: "PROJ i \ PRIMREC" wenzelm@11024: COMP: "g \ PRIMREC ==> fs \ lists PRIMREC ==> COMP g fs \ PRIMREC" wenzelm@11024: PREC: "f \ PRIMREC ==> g \ PRIMREC ==> PREC f g \ PRIMREC" wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* Useful special cases of evaluation *} wenzelm@11024: wenzelm@11024: lemma SC [simp]: "SC (x # l) = Suc x" wenzelm@11024: apply (simp add: SC_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma CONST [simp]: "CONST k l = k" wenzelm@11024: apply (simp add: CONST_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma PROJ_0 [simp]: "PROJ 0 (x # l) = x" wenzelm@11024: apply (simp add: PROJ_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma COMP_1 [simp]: "COMP g [f] l = g [f l]" wenzelm@11024: apply (simp add: COMP_def) wenzelm@11024: done paulson@3335: wenzelm@11024: lemma PREC_0 [simp]: "PREC f g (0 # l) = f l" wenzelm@11024: apply (simp add: PREC_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma PREC_Suc [simp]: "PREC f g (Suc x # l) = g (PREC f g (x # l) # x # l)" wenzelm@11024: apply (simp add: PREC_def) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 4 *} wenzelm@11024: wenzelm@11024: lemma less_ack2 [iff]: "j < ack (i, j)" wenzelm@11024: apply (induct i j rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 5-, the single-step lemma *} wenzelm@11024: wenzelm@11024: lemma ack_less_ack_Suc2 [iff]: "ack(i, j) < ack (i, Suc j)" wenzelm@11024: apply (induct i j rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 5, monotonicity for @{text "<"} *} wenzelm@11024: wenzelm@11024: lemma ack_less_mono2: "j < k ==> ack (i, j) < ack (i, k)" wenzelm@11024: apply (induct i k rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast elim!: less_SucE intro: less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 5', monotonicity for @{text \} *} wenzelm@11024: wenzelm@11024: lemma ack_le_mono2: "j \ k ==> ack (i, j) \ ack (i, k)" wenzelm@11024: apply (simp add: order_le_less) wenzelm@11024: apply (blast intro: ack_less_mono2) wenzelm@11024: done paulson@3335: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 6 *} wenzelm@11024: wenzelm@11024: lemma ack2_le_ack1 [iff]: "ack (i, Suc j) \ ack (Suc i, j)" wenzelm@11024: apply (induct j) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast intro: ack_le_mono2 less_ack2 [THEN Suc_leI] le_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 7-, the single-step lemma *} wenzelm@11024: wenzelm@11024: lemma ack_less_ack_Suc1 [iff]: "ack (i, j) < ack (Suc i, j)" wenzelm@11024: apply (blast intro: ack_less_mono2 less_le_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 4'? Extra lemma needed for @{term CONST} case, constant functions *} wenzelm@11024: wenzelm@11024: lemma less_ack1 [iff]: "i < ack (i, j)" wenzelm@11024: apply (induct i) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast intro: Suc_leI le_less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 8 *} wenzelm@11024: wenzelm@11024: lemma ack_1 [simp]: "ack (1, j) = j + #2" wenzelm@11024: apply (induct j) wenzelm@11024: apply simp_all wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 9. The unary @{term 1} and @{term 2} in @{term wenzelm@11024: ack} is essential for the rewriting. *} wenzelm@11024: wenzelm@11024: lemma ack_2 [simp]: "ack (2, j) = #2 * j + #3" wenzelm@11024: apply (induct j) wenzelm@11024: apply simp_all wenzelm@11024: done paulson@3335: paulson@3335: wenzelm@11024: text {* PROPERTY A 7, monotonicity for @{text "<"} [not clear why wenzelm@11024: @{thm [source] ack_1} is now needed first!] *} wenzelm@11024: wenzelm@11024: lemma ack_less_mono1_aux: "ack (i, k) < ack (Suc (i +i'), k)" wenzelm@11024: apply (induct i k rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: prefer 2 wenzelm@11024: apply (blast intro: less_trans ack_less_mono2) wenzelm@11024: apply (induct_tac i' n rule: ack.induct) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast intro: Suc_leI [THEN le_less_trans] ack_less_mono2) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma ack_less_mono1: "i < j ==> ack (i, k) < ack (j, k)" wenzelm@11024: apply (drule less_imp_Suc_add) wenzelm@11024: apply (blast intro!: ack_less_mono1_aux) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 7', monotonicity for @{text "\"} *} wenzelm@11024: wenzelm@11024: lemma ack_le_mono1: "i \ j ==> ack (i, k) \ ack (j, k)" wenzelm@11024: apply (simp add: order_le_less) wenzelm@11024: apply (blast intro: ack_less_mono1) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 10 *} wenzelm@11024: wenzelm@11024: lemma ack_nest_bound: "ack(i1, ack (i2, j)) < ack (#2 + (i1 + i2), j)" wenzelm@11024: apply (simp add: numerals) wenzelm@11024: apply (rule ack2_le_ack1 [THEN [2] less_le_trans]) wenzelm@11024: apply simp wenzelm@11024: apply (rule le_add1 [THEN ack_le_mono1, THEN le_less_trans]) wenzelm@11024: apply (rule ack_less_mono1 [THEN ack_less_mono2]) wenzelm@11024: apply (simp add: le_imp_less_Suc le_add2) wenzelm@11024: done wenzelm@11024: paulson@3335: wenzelm@11024: text {* PROPERTY A 11 *} paulson@3335: wenzelm@11024: lemma ack_add_bound: "ack (i1, j) + ack (i2, j) < ack (#4 + (i1 + i2), j)" wenzelm@11024: apply (rule_tac j = "ack (2, ack (i1 + i2, j))" in less_trans) wenzelm@11024: prefer 2 wenzelm@11024: apply (rule ack_nest_bound [THEN less_le_trans]) wenzelm@11024: apply (simp add: Suc3_eq_add_3) wenzelm@11024: apply simp wenzelm@11024: apply (cut_tac i = i1 and m1 = i2 and k = j in le_add1 [THEN ack_le_mono1]) wenzelm@11024: apply (cut_tac i = "i2" and m1 = i1 and k = j in le_add2 [THEN ack_le_mono1]) wenzelm@11024: apply auto wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* PROPERTY A 12. Article uses existential quantifier but the ALF proof wenzelm@11024: used @{text "k + 4"}. Quantified version must be nested @{text wenzelm@11024: "\k'. \i j. ..."} *} paulson@3335: wenzelm@11024: lemma ack_add_bound2: "i < ack (k, j) ==> i + j < ack (#4 + k, j)" wenzelm@11024: apply (rule_tac j = "ack (k, j) + ack (0, j)" in less_trans) wenzelm@11024: prefer 2 wenzelm@11024: apply (rule ack_add_bound [THEN less_le_trans]) wenzelm@11024: apply simp wenzelm@11024: apply (rule add_less_mono less_ack2 | assumption)+ wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* Inductive definition of the @{term PR} functions *} paulson@3335: wenzelm@11024: text {* MAIN RESULT *} wenzelm@11024: wenzelm@11024: lemma SC_case: "SC l < ack (1, list_add l)" wenzelm@11024: apply (unfold SC_def) wenzelm@11024: apply (induct l) wenzelm@11024: apply (simp_all add: le_add1 le_imp_less_Suc) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma CONST_case: "CONST k l < ack (k, list_add l)" wenzelm@11024: apply simp wenzelm@11024: done paulson@3335: wenzelm@11024: lemma PROJ_case [rule_format]: "\i. PROJ i l < ack (0, list_add l)" wenzelm@11024: apply (simp add: PROJ_def) wenzelm@11024: apply (induct l) wenzelm@11024: apply simp_all wenzelm@11024: apply (rule allI) wenzelm@11024: apply (case_tac i) wenzelm@11024: apply (simp (no_asm_simp) add: le_add1 le_imp_less_Suc) wenzelm@11024: apply (simp (no_asm_simp)) wenzelm@11024: apply (blast intro: less_le_trans intro!: le_add2) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* @{term COMP} case *} paulson@3335: wenzelm@11024: lemma COMP_map_aux: "fs \ lists (PRIMREC \ {f. \kf. \l. f l < ack (kf, list_add l)}) wenzelm@11024: ==> \k. \l. list_add (map (\f. f l) fs) < ack (k, list_add l)" wenzelm@11024: apply (erule lists.induct) wenzelm@11024: apply (rule_tac x = 0 in exI) wenzelm@11024: apply simp wenzelm@11024: apply safe wenzelm@11024: apply simp wenzelm@11024: apply (rule exI) wenzelm@11024: apply (blast intro: add_less_mono ack_add_bound less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma COMP_case: wenzelm@11024: "\l. g l < ack (kg, list_add l) ==> wenzelm@11024: fs \ lists(PRIMREC Int {f. \kf. \l. f l < ack(kf, list_add l)}) wenzelm@11024: ==> \k. \l. COMP g fs l < ack(k, list_add l)" wenzelm@11024: apply (unfold COMP_def) wenzelm@11024: apply (frule Int_lower1 [THEN lists_mono, THEN subsetD]) wenzelm@11024: apply (erule COMP_map_aux [THEN exE]) wenzelm@11024: apply (rule exI) wenzelm@11024: apply (rule allI) wenzelm@11024: apply (drule spec)+ wenzelm@11024: apply (erule less_trans) wenzelm@11024: apply (blast intro: ack_less_mono2 ack_nest_bound less_trans) wenzelm@11024: done wenzelm@11024: wenzelm@11024: wenzelm@11024: text {* @{term PREC} case *} paulson@3335: wenzelm@11024: lemma PREC_case_aux: wenzelm@11024: "\l. f l + list_add l < ack (kf, list_add l) ==> wenzelm@11024: \l. g l + list_add l < ack (kg, list_add l) ==> wenzelm@11024: PREC f g l + list_add l < ack (Suc (kf + kg), list_add l)" wenzelm@11024: apply (unfold PREC_def) wenzelm@11024: apply (case_tac l) wenzelm@11024: apply simp_all wenzelm@11024: apply (blast intro: less_trans) wenzelm@11024: apply (erule ssubst) -- {* get rid of the needless assumption *} wenzelm@11024: apply (induct_tac a) wenzelm@11024: apply simp_all wenzelm@11024: txt {* base case *} wenzelm@11024: apply (blast intro: le_add1 [THEN le_imp_less_Suc, THEN ack_less_mono1] less_trans) wenzelm@11024: txt {* induction step *} wenzelm@11024: apply (rule Suc_leI [THEN le_less_trans]) wenzelm@11024: apply (rule le_refl [THEN add_le_mono, THEN le_less_trans]) wenzelm@11024: prefer 2 wenzelm@11024: apply (erule spec) wenzelm@11024: apply (simp add: le_add2) wenzelm@11024: txt {* final part of the simplification *} wenzelm@11024: apply simp wenzelm@11024: apply (rule le_add2 [THEN ack_le_mono1, THEN le_less_trans]) wenzelm@11024: apply (erule ack_less_mono2) wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma PREC_case: wenzelm@11024: "\l. f l < ack (kf, list_add l) ==> wenzelm@11024: \l. g l < ack (kg, list_add l) ==> wenzelm@11024: \k. \l. PREC f g l < ack (k, list_add l)" wenzelm@11024: apply (rule exI) wenzelm@11024: apply (rule allI) wenzelm@11024: apply (rule le_less_trans [OF le_add1 PREC_case_aux]) wenzelm@11024: apply (blast intro: ack_add_bound2)+ wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma ack_bounds_PRIMREC: "f \ PRIMREC ==> \k. \l. f l < ack (k, list_add l)" wenzelm@11024: apply (erule PRIMREC.induct) wenzelm@11024: apply (blast intro: SC_case CONST_case PROJ_case COMP_case PREC_case)+ wenzelm@11024: done wenzelm@11024: wenzelm@11024: lemma ack_not_PRIMREC: "(\l. case l of [] => 0 | x # l' => ack (x, x)) \ PRIMREC" wenzelm@11024: apply (rule notI) wenzelm@11024: apply (erule ack_bounds_PRIMREC [THEN exE]) wenzelm@11024: apply (rule less_irrefl) wenzelm@11024: apply (drule_tac x = "[x]" in spec) wenzelm@11024: apply simp wenzelm@11024: done paulson@3335: paulson@3335: end