bulwahn@46238: (* Title: HOL/Library/AList.thy haftmann@34975: Author: Norbert Schirmer, Tobias Nipkow, Martin Wildmoser, TU Muenchen schirmer@19234: *) schirmer@19234: bulwahn@44897: header {* Implementation of Association Lists *} schirmer@19234: bulwahn@46238: theory AList haftmann@45990: imports Main schirmer@19234: begin schirmer@19234: haftmann@22740: text {* wenzelm@56327: The operations preserve distinctness of keys and wenzelm@56327: function @{term "clearjunk"} distributes over them. Since haftmann@22740: @{term clearjunk} enforces distinctness of keys it can be used haftmann@22740: to establish the invariant, e.g. for inductive proofs. haftmann@22740: *} schirmer@19234: haftmann@34975: subsection {* @{text update} and @{text updates} *} nipkow@19323: wenzelm@56327: primrec update :: "'key \ 'val \ ('key \ 'val) list \ ('key \ 'val) list" wenzelm@56327: where wenzelm@56327: "update k v [] = [(k, v)]" wenzelm@56327: | "update k v (p # ps) = (if fst p = k then (k, v) # ps else p # update k v ps)" schirmer@19234: haftmann@34975: lemma update_conv': "map_of (update k v al) = (map_of al)(k\v)" nipkow@39302: by (induct al) (auto simp add: fun_eq_iff) wenzelm@23373: haftmann@34975: corollary update_conv: "map_of (update k v al) k' = ((map_of al)(k\v)) k'" haftmann@34975: by (simp add: update_conv') schirmer@19234: schirmer@19234: lemma dom_update: "fst ` set (update k v al) = {k} \ fst ` set al" schirmer@19234: by (induct al) auto schirmer@19234: haftmann@34975: lemma update_keys: haftmann@34975: "map fst (update k v al) = haftmann@34975: (if k \ set (map fst al) then map fst al else map fst al @ [k])" haftmann@34975: by (induct al) simp_all haftmann@34975: schirmer@19234: lemma distinct_update: wenzelm@56327: assumes "distinct (map fst al)" schirmer@19234: shows "distinct (map fst (update k v al))" haftmann@34975: using assms by (simp add: update_keys) schirmer@19234: wenzelm@56327: lemma update_filter: wenzelm@56327: "a \ k \ update k v [q\ps. fst q \ a] = [q\update k v ps. fst q \ a]" schirmer@19234: by (induct ps) auto schirmer@19234: schirmer@19234: lemma update_triv: "map_of al k = Some v \ update k v al = al" schirmer@19234: by (induct al) auto schirmer@19234: schirmer@19234: lemma update_nonempty [simp]: "update k v al \ []" schirmer@19234: by (induct al) auto schirmer@19234: haftmann@34975: lemma update_eqD: "update k v al = update k v' al' \ v = v'" wenzelm@56327: proof (induct al arbitrary: al') wenzelm@56327: case Nil wenzelm@56327: then show ?case schirmer@19234: by (cases al') (auto split: split_if_asm) schirmer@19234: next wenzelm@56327: case Cons wenzelm@56327: then show ?case schirmer@19234: by (cases al') (auto split: split_if_asm) schirmer@19234: qed schirmer@19234: schirmer@19234: lemma update_last [simp]: "update k v (update k v' al) = update k v al" schirmer@19234: by (induct al) auto schirmer@19234: schirmer@19234: text {* Note that the lists are not necessarily the same: wenzelm@56327: @{term "update k v (update k' v' []) = [(k', v'), (k, v)]"} and haftmann@34975: @{term "update k' v' (update k v []) = [(k, v), (k', v')]"}.*} wenzelm@56327: wenzelm@56327: lemma update_swap: wenzelm@56327: "k \ k' \ wenzelm@56327: map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))" nipkow@39302: by (simp add: update_conv' fun_eq_iff) schirmer@19234: wenzelm@56327: lemma update_Some_unfold: haftmann@34975: "map_of (update k v al) x = Some y \ haftmann@34975: x = k \ v = y \ x \ k \ map_of al x = Some y" schirmer@19234: by (simp add: update_conv' map_upd_Some_unfold) schirmer@19234: haftmann@34975: lemma image_update [simp]: haftmann@34975: "x \ A \ map_of (update x y al) ` A = map_of al ` A" haftmann@46133: by (simp add: update_conv') schirmer@19234: wenzelm@56327: definition updates :: "'key list \ 'val list \ ('key \ 'val) list \ ('key \ 'val) list" wenzelm@56327: where "updates ks vs = fold (case_prod update) (zip ks vs)" schirmer@19234: haftmann@34975: lemma updates_simps [simp]: haftmann@34975: "updates [] vs ps = ps" haftmann@34975: "updates ks [] ps = ps" haftmann@34975: "updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)" haftmann@34975: by (simp_all add: updates_def) haftmann@34975: haftmann@34975: lemma updates_key_simp [simp]: haftmann@34975: "updates (k # ks) vs ps = haftmann@34975: (case vs of [] \ ps | v # vs \ updates ks vs (update k v ps))" haftmann@34975: by (cases vs) simp_all haftmann@34975: haftmann@34975: lemma updates_conv': "map_of (updates ks vs al) = (map_of al)(ks[\]vs)" haftmann@34975: proof - blanchet@55414: have "map_of \ fold (case_prod update) (zip ks vs) = wenzelm@56327: fold (\(k, v) f. f(k \ v)) (zip ks vs) \ map_of" haftmann@39921: by (rule fold_commute) (auto simp add: fun_eq_iff update_conv') wenzelm@56327: then show ?thesis wenzelm@56327: by (auto simp add: updates_def fun_eq_iff map_upds_fold_map_upd foldl_conv_fold split_def) haftmann@34975: qed schirmer@19234: schirmer@19234: lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\]vs)) k" haftmann@34975: by (simp add: updates_conv') schirmer@19234: schirmer@19234: lemma distinct_updates: schirmer@19234: assumes "distinct (map fst al)" schirmer@19234: shows "distinct (map fst (updates ks vs al))" haftmann@34975: proof - haftmann@46133: have "distinct (fold haftmann@37458: (\(k, v) al. if k \ set al then al else al @ [k]) haftmann@37458: (zip ks vs) (map fst al))" haftmann@37458: by (rule fold_invariant [of "zip ks vs" "\_. True"]) (auto intro: assms) blanchet@55414: moreover have "map fst \ fold (case_prod update) (zip ks vs) = wenzelm@56327: fold (\(k, v) al. if k \ set al then al else al @ [k]) (zip ks vs) \ map fst" blanchet@55414: by (rule fold_commute) (simp add: update_keys split_def case_prod_beta comp_def) wenzelm@56327: ultimately show ?thesis wenzelm@56327: by (simp add: updates_def fun_eq_iff) haftmann@34975: qed schirmer@19234: schirmer@19234: lemma updates_append1[simp]: "size ks < size vs \ wenzelm@56327: updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)" wenzelm@20503: by (induct ks arbitrary: vs al) (auto split: list.splits) schirmer@19234: schirmer@19234: lemma updates_list_update_drop[simp]: wenzelm@56327: "size ks \ i \ i < size vs \ wenzelm@56327: updates ks (vs[i:=v]) al = updates ks vs al" wenzelm@56327: by (induct ks arbitrary: al vs i) (auto split: list.splits nat.splits) schirmer@19234: wenzelm@56327: lemma update_updates_conv_if: wenzelm@56327: "map_of (updates xs ys (update x y al)) = wenzelm@56327: map_of wenzelm@56327: (if x \ set (take (length ys) xs) wenzelm@56327: then updates xs ys al wenzelm@56327: else (update x y (updates xs ys al)))" schirmer@19234: by (simp add: updates_conv' update_conv' map_upd_upds_conv_if) schirmer@19234: schirmer@19234: lemma updates_twist [simp]: wenzelm@56327: "k \ set ks \ wenzelm@56327: map_of (updates ks vs (update k v al)) = map_of (update k v (updates ks vs al))" wenzelm@46507: by (simp add: updates_conv' update_conv') schirmer@19234: wenzelm@56327: lemma updates_apply_notin [simp]: wenzelm@56327: "k \ set ks \ map_of (updates ks vs al) k = map_of al k" schirmer@19234: by (simp add: updates_conv) schirmer@19234: wenzelm@56327: lemma updates_append_drop [simp]: wenzelm@56327: "size xs = size ys \ updates (xs @ zs) ys al = updates xs ys al" wenzelm@20503: by (induct xs arbitrary: ys al) (auto split: list.splits) schirmer@19234: wenzelm@56327: lemma updates_append2_drop [simp]: wenzelm@56327: "size xs = size ys \ updates xs (ys @ zs) al = updates xs ys al" wenzelm@20503: by (induct xs arbitrary: ys al) (auto split: list.splits) schirmer@19234: wenzelm@23373: haftmann@34975: subsection {* @{text delete} *} haftmann@34975: wenzelm@56327: definition delete :: "'key \ ('key \ 'val) list \ ('key \ 'val) list" wenzelm@56327: where delete_eq: "delete k = filter (\(k', _). k \ k')" haftmann@34975: haftmann@34975: lemma delete_simps [simp]: haftmann@34975: "delete k [] = []" wenzelm@56327: "delete k (p # ps) = (if fst p = k then delete k ps else p # delete k ps)" haftmann@34975: by (auto simp add: delete_eq) haftmann@34975: haftmann@34975: lemma delete_conv': "map_of (delete k al) = (map_of al)(k := None)" nipkow@39302: by (induct al) (auto simp add: fun_eq_iff) haftmann@34975: haftmann@34975: corollary delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'" haftmann@34975: by (simp add: delete_conv') haftmann@34975: wenzelm@56327: lemma delete_keys: "map fst (delete k al) = removeAll k (map fst al)" haftmann@34975: by (simp add: delete_eq removeAll_filter_not_eq filter_map split_def comp_def) haftmann@34975: haftmann@34975: lemma distinct_delete: wenzelm@56327: assumes "distinct (map fst al)" haftmann@34975: shows "distinct (map fst (delete k al))" haftmann@34975: using assms by (simp add: delete_keys distinct_removeAll) haftmann@34975: haftmann@34975: lemma delete_id [simp]: "k \ fst ` set al \ delete k al = al" haftmann@34975: by (auto simp add: image_iff delete_eq filter_id_conv) haftmann@34975: haftmann@34975: lemma delete_idem: "delete k (delete k al) = delete k al" haftmann@34975: by (simp add: delete_eq) haftmann@34975: wenzelm@56327: lemma map_of_delete [simp]: "k' \ k \ map_of (delete k al) k' = map_of al k'" haftmann@34975: by (simp add: delete_conv') haftmann@34975: haftmann@34975: lemma delete_notin_dom: "k \ fst ` set (delete k al)" haftmann@34975: by (auto simp add: delete_eq) haftmann@34975: haftmann@34975: lemma dom_delete_subset: "fst ` set (delete k al) \ fst ` set al" haftmann@34975: by (auto simp add: delete_eq) haftmann@34975: wenzelm@56327: lemma delete_update_same: "delete k (update k v al) = delete k al" haftmann@34975: by (induct al) simp_all haftmann@34975: wenzelm@56327: lemma delete_update: "k \ l \ delete l (update k v al) = update k v (delete l al)" haftmann@34975: by (induct al) simp_all haftmann@34975: haftmann@34975: lemma delete_twist: "delete x (delete y al) = delete y (delete x al)" haftmann@34975: by (simp add: delete_eq conj_commute) haftmann@34975: haftmann@34975: lemma length_delete_le: "length (delete k al) \ length al" haftmann@34975: by (simp add: delete_eq) haftmann@34975: haftmann@34975: haftmann@34975: subsection {* @{text restrict} *} haftmann@34975: wenzelm@56327: definition restrict :: "'key set \ ('key \ 'val) list \ ('key \ 'val) list" wenzelm@56327: where restrict_eq: "restrict A = filter (\(k, v). k \ A)" haftmann@34975: haftmann@34975: lemma restr_simps [simp]: haftmann@34975: "restrict A [] = []" haftmann@34975: "restrict A (p#ps) = (if fst p \ A then p # restrict A ps else restrict A ps)" haftmann@34975: by (auto simp add: restrict_eq) haftmann@34975: haftmann@34975: lemma restr_conv': "map_of (restrict A al) = ((map_of al)|` A)" haftmann@34975: proof haftmann@34975: fix k haftmann@34975: show "map_of (restrict A al) k = ((map_of al)|` A) k" haftmann@34975: by (induct al) (simp, cases "k \ A", auto) haftmann@34975: qed haftmann@34975: haftmann@34975: corollary restr_conv: "map_of (restrict A al) k = ((map_of al)|` A) k" haftmann@34975: by (simp add: restr_conv') haftmann@34975: haftmann@34975: lemma distinct_restr: haftmann@34975: "distinct (map fst al) \ distinct (map fst (restrict A al))" haftmann@34975: by (induct al) (auto simp add: restrict_eq) haftmann@34975: wenzelm@56327: lemma restr_empty [simp]: wenzelm@56327: "restrict {} al = []" haftmann@34975: "restrict A [] = []" haftmann@34975: by (induct al) (auto simp add: restrict_eq) haftmann@34975: haftmann@34975: lemma restr_in [simp]: "x \ A \ map_of (restrict A al) x = map_of al x" haftmann@34975: by (simp add: restr_conv') haftmann@34975: haftmann@34975: lemma restr_out [simp]: "x \ A \ map_of (restrict A al) x = None" haftmann@34975: by (simp add: restr_conv') haftmann@34975: haftmann@34975: lemma dom_restr [simp]: "fst ` set (restrict A al) = fst ` set al \ A" haftmann@34975: by (induct al) (auto simp add: restrict_eq) haftmann@34975: haftmann@34975: lemma restr_upd_same [simp]: "restrict (-{x}) (update x y al) = restrict (-{x}) al" haftmann@34975: by (induct al) (auto simp add: restrict_eq) haftmann@34975: haftmann@34975: lemma restr_restr [simp]: "restrict A (restrict B al) = restrict (A\B) al" haftmann@34975: by (induct al) (auto simp add: restrict_eq) haftmann@34975: haftmann@34975: lemma restr_update[simp]: wenzelm@56327: "map_of (restrict D (update x y al)) = haftmann@34975: map_of ((if x \ D then (update x y (restrict (D-{x}) al)) else restrict D al))" haftmann@34975: by (simp add: restr_conv' update_conv') haftmann@34975: haftmann@34975: lemma restr_delete [simp]: wenzelm@56327: "delete x (restrict D al) = (if x \ D then restrict (D - {x}) al else restrict D al)" wenzelm@56327: apply (simp add: delete_eq restrict_eq) wenzelm@56327: apply (auto simp add: split_def) haftmann@34975: proof - wenzelm@56327: have "\y. y \ x \ x \ y" wenzelm@56327: by auto haftmann@34975: then show "[p \ al. fst p \ D \ x \ fst p] = [p \ al. fst p \ D \ fst p \ x]" haftmann@34975: by simp haftmann@34975: assume "x \ D" wenzelm@56327: then have "\y. y \ D \ y \ D \ x \ y" wenzelm@56327: by auto haftmann@34975: then show "[p \ al . fst p \ D \ x \ fst p] = [p \ al . fst p \ D]" haftmann@34975: by simp haftmann@34975: qed haftmann@34975: haftmann@34975: lemma update_restr: wenzelm@56327: "map_of (update x y (restrict D al)) = map_of (update x y (restrict (D - {x}) al))" haftmann@34975: by (simp add: update_conv' restr_conv') (rule fun_upd_restrict) schirmer@19234: bulwahn@45867: lemma update_restr_conv [simp]: wenzelm@56327: "x \ D \ wenzelm@56327: map_of (update x y (restrict D al)) = map_of (update x y (restrict (D - {x}) al))" haftmann@34975: by (simp add: update_conv' restr_conv') haftmann@34975: wenzelm@56327: lemma restr_updates [simp]: wenzelm@56327: "length xs = length ys \ set xs \ D \ wenzelm@56327: map_of (restrict D (updates xs ys al)) = wenzelm@56327: map_of (updates xs ys (restrict (D - set xs) al))" haftmann@34975: by (simp add: updates_conv' restr_conv') haftmann@34975: haftmann@34975: lemma restr_delete_twist: "(restrict A (delete a ps)) = delete a (restrict A ps)" haftmann@34975: by (induct ps) auto haftmann@34975: haftmann@34975: haftmann@34975: subsection {* @{text clearjunk} *} haftmann@34975: wenzelm@56327: function clearjunk :: "('key \ 'val) list \ ('key \ 'val) list" wenzelm@56327: where wenzelm@56327: "clearjunk [] = []" wenzelm@56327: | "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)" haftmann@34975: by pat_completeness auto wenzelm@56327: termination wenzelm@56327: by (relation "measure length") (simp_all add: less_Suc_eq_le length_delete_le) haftmann@34975: wenzelm@56327: lemma map_of_clearjunk: "map_of (clearjunk al) = map_of al" wenzelm@56327: by (induct al rule: clearjunk.induct) (simp_all add: fun_eq_iff) haftmann@34975: wenzelm@56327: lemma clearjunk_keys_set: "set (map fst (clearjunk al)) = set (map fst al)" wenzelm@56327: by (induct al rule: clearjunk.induct) (simp_all add: delete_keys) haftmann@34975: wenzelm@56327: lemma dom_clearjunk: "fst ` set (clearjunk al) = fst ` set al" haftmann@34975: using clearjunk_keys_set by simp haftmann@34975: wenzelm@56327: lemma distinct_clearjunk [simp]: "distinct (map fst (clearjunk al))" wenzelm@56327: by (induct al rule: clearjunk.induct) (simp_all del: set_map add: clearjunk_keys_set delete_keys) haftmann@34975: wenzelm@56327: lemma ran_clearjunk: "ran (map_of (clearjunk al)) = ran (map_of al)" haftmann@34975: by (simp add: map_of_clearjunk) haftmann@34975: wenzelm@56327: lemma ran_map_of: "ran (map_of al) = snd ` set (clearjunk al)" haftmann@34975: proof - haftmann@34975: have "ran (map_of al) = ran (map_of (clearjunk al))" haftmann@34975: by (simp add: ran_clearjunk) haftmann@34975: also have "\ = snd ` set (clearjunk al)" haftmann@34975: by (simp add: ran_distinct) haftmann@34975: finally show ?thesis . haftmann@34975: qed haftmann@34975: wenzelm@56327: lemma clearjunk_update: "clearjunk (update k v al) = update k v (clearjunk al)" wenzelm@56327: by (induct al rule: clearjunk.induct) (simp_all add: delete_update) schirmer@19234: wenzelm@56327: lemma clearjunk_updates: "clearjunk (updates ks vs al) = updates ks vs (clearjunk al)" haftmann@34975: proof - blanchet@55414: have "clearjunk \ fold (case_prod update) (zip ks vs) = blanchet@55414: fold (case_prod update) (zip ks vs) \ clearjunk" blanchet@55414: by (rule fold_commute) (simp add: clearjunk_update case_prod_beta o_def) wenzelm@56327: then show ?thesis wenzelm@56327: by (simp add: updates_def fun_eq_iff) haftmann@34975: qed haftmann@34975: wenzelm@56327: lemma clearjunk_delete: "clearjunk (delete x al) = delete x (clearjunk al)" haftmann@34975: by (induct al rule: clearjunk.induct) (auto simp add: delete_idem delete_twist) haftmann@34975: wenzelm@56327: lemma clearjunk_restrict: "clearjunk (restrict A al) = restrict A (clearjunk al)" haftmann@34975: by (induct al rule: clearjunk.induct) (auto simp add: restr_delete_twist) haftmann@34975: wenzelm@56327: lemma distinct_clearjunk_id [simp]: "distinct (map fst al) \ clearjunk al = al" haftmann@34975: by (induct al rule: clearjunk.induct) auto haftmann@34975: wenzelm@56327: lemma clearjunk_idem: "clearjunk (clearjunk al) = clearjunk al" haftmann@34975: by simp haftmann@34975: wenzelm@56327: lemma length_clearjunk: "length (clearjunk al) \ length al" haftmann@34975: proof (induct al rule: clearjunk.induct [case_names Nil Cons]) wenzelm@56327: case Nil wenzelm@56327: then show ?case by simp haftmann@34975: next haftmann@34975: case (Cons kv al) wenzelm@56327: moreover have "length (delete (fst kv) al) \ length al" wenzelm@56327: by (fact length_delete_le) wenzelm@56327: ultimately have "length (clearjunk (delete (fst kv) al)) \ length al" wenzelm@56327: by (rule order_trans) wenzelm@56327: then show ?case wenzelm@56327: by simp haftmann@34975: qed haftmann@34975: haftmann@34975: lemma delete_map: haftmann@34975: assumes "\kv. fst (f kv) = fst kv" haftmann@34975: shows "delete k (map f ps) = map f (delete k ps)" haftmann@34975: by (simp add: delete_eq filter_map comp_def split_def assms) haftmann@34975: haftmann@34975: lemma clearjunk_map: haftmann@34975: assumes "\kv. fst (f kv) = fst kv" haftmann@34975: shows "clearjunk (map f ps) = map f (clearjunk ps)" haftmann@34975: by (induct ps rule: clearjunk.induct [case_names Nil Cons]) haftmann@34975: (simp_all add: clearjunk_delete delete_map assms) haftmann@34975: haftmann@34975: haftmann@34975: subsection {* @{text map_ran} *} haftmann@34975: wenzelm@56327: definition map_ran :: "('key \ 'val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" wenzelm@56327: where "map_ran f = map (\(k, v). (k, f k v))" haftmann@34975: haftmann@34975: lemma map_ran_simps [simp]: haftmann@34975: "map_ran f [] = []" haftmann@34975: "map_ran f ((k, v) # ps) = (k, f k v) # map_ran f ps" haftmann@34975: by (simp_all add: map_ran_def) haftmann@34975: wenzelm@56327: lemma dom_map_ran: "fst ` set (map_ran f al) = fst ` set al" haftmann@34975: by (simp add: map_ran_def image_image split_def) wenzelm@56327: wenzelm@56327: lemma map_ran_conv: "map_of (map_ran f al) k = map_option (f k) (map_of al k)" schirmer@19234: by (induct al) auto schirmer@19234: wenzelm@56327: lemma distinct_map_ran: "distinct (map fst al) \ distinct (map fst (map_ran f al))" haftmann@34975: by (simp add: map_ran_def split_def comp_def) schirmer@19234: wenzelm@56327: lemma map_ran_filter: "map_ran f [p\ps. fst p \ a] = [p\map_ran f ps. fst p \ a]" haftmann@34975: by (simp add: map_ran_def filter_map split_def comp_def) schirmer@19234: wenzelm@56327: lemma clearjunk_map_ran: "clearjunk (map_ran f al) = map_ran f (clearjunk al)" haftmann@34975: by (simp add: map_ran_def split_def clearjunk_map) schirmer@19234: wenzelm@23373: haftmann@34975: subsection {* @{text merge} *} haftmann@34975: wenzelm@56327: definition merge :: "('key \ 'val) list \ ('key \ 'val) list \ ('key \ 'val) list" wenzelm@56327: where "merge qs ps = foldr (\(k, v). update k v) ps qs" haftmann@34975: haftmann@34975: lemma merge_simps [simp]: haftmann@34975: "merge qs [] = qs" haftmann@34975: "merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)" haftmann@34975: by (simp_all add: merge_def split_def) haftmann@34975: wenzelm@56327: lemma merge_updates: "merge qs ps = updates (rev (map fst ps)) (rev (map snd ps)) qs" haftmann@47397: by (simp add: merge_def updates_def foldr_conv_fold zip_rev zip_map_fst_snd) schirmer@19234: schirmer@19234: lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \ fst ` set ys" wenzelm@20503: by (induct ys arbitrary: xs) (auto simp add: dom_update) schirmer@19234: schirmer@19234: lemma distinct_merge: schirmer@19234: assumes "distinct (map fst xs)" schirmer@19234: shows "distinct (map fst (merge xs ys))" wenzelm@56327: using assms by (simp add: merge_updates distinct_updates) schirmer@19234: wenzelm@56327: lemma clearjunk_merge: "clearjunk (merge xs ys) = merge (clearjunk xs) ys" haftmann@34975: by (simp add: merge_updates clearjunk_updates) schirmer@19234: wenzelm@56327: lemma merge_conv': "map_of (merge xs ys) = map_of xs ++ map_of ys" haftmann@34975: proof - blanchet@55414: have "map_of \ fold (case_prod update) (rev ys) = wenzelm@56327: fold (\(k, v) m. m(k \ v)) (rev ys) \ map_of" blanchet@55414: by (rule fold_commute) (simp add: update_conv' case_prod_beta split_def fun_eq_iff) haftmann@34975: then show ?thesis haftmann@47397: by (simp add: merge_def map_add_map_of_foldr foldr_conv_fold fun_eq_iff) schirmer@19234: qed schirmer@19234: wenzelm@56327: corollary merge_conv: "map_of (merge xs ys) k = (map_of xs ++ map_of ys) k" haftmann@34975: by (simp add: merge_conv') schirmer@19234: haftmann@34975: lemma merge_empty: "map_of (merge [] ys) = map_of ys" schirmer@19234: by (simp add: merge_conv') schirmer@19234: wenzelm@56327: lemma merge_assoc [simp]: "map_of (merge m1 (merge m2 m3)) = map_of (merge (merge m1 m2) m3)" schirmer@19234: by (simp add: merge_conv') schirmer@19234: wenzelm@56327: lemma merge_Some_iff: wenzelm@56327: "map_of (merge m n) k = Some x \ wenzelm@56327: map_of n k = Some x \ map_of n k = None \ map_of m k = Some x" schirmer@19234: by (simp add: merge_conv' map_add_Some_iff) schirmer@19234: wenzelm@45605: lemmas merge_SomeD [dest!] = merge_Some_iff [THEN iffD1] schirmer@19234: wenzelm@56327: lemma merge_find_right [simp]: "map_of n k = Some v \ map_of (merge m n) k = Some v" schirmer@19234: by (simp add: merge_conv') schirmer@19234: wenzelm@56327: lemma merge_None [iff]: schirmer@19234: "(map_of (merge m n) k = None) = (map_of n k = None \ map_of m k = None)" schirmer@19234: by (simp add: merge_conv') schirmer@19234: wenzelm@56327: lemma merge_upd [simp]: schirmer@19234: "map_of (merge m (update k v n)) = map_of (update k v (merge m n))" schirmer@19234: by (simp add: update_conv' merge_conv') schirmer@19234: wenzelm@56327: lemma merge_updatess [simp]: schirmer@19234: "map_of (merge m (updates xs ys n)) = map_of (updates xs ys (merge m n))" schirmer@19234: by (simp add: updates_conv' merge_conv') schirmer@19234: wenzelm@56327: lemma merge_append: "map_of (xs @ ys) = map_of (merge ys xs)" schirmer@19234: by (simp add: merge_conv') schirmer@19234: wenzelm@23373: haftmann@34975: subsection {* @{text compose} *} haftmann@34975: wenzelm@56327: function compose :: "('key \ 'a) list \ ('a \ 'b) list \ ('key \ 'b) list" wenzelm@56327: where wenzelm@56327: "compose [] ys = []" wenzelm@56327: | "compose (x # xs) ys = wenzelm@56327: (case map_of ys (snd x) of wenzelm@56327: None \ compose (delete (fst x) xs) ys wenzelm@56327: | Some v \ (fst x, v) # compose xs ys)" haftmann@34975: by pat_completeness auto wenzelm@56327: termination wenzelm@56327: by (relation "measure (length \ fst)") (simp_all add: less_Suc_eq_le length_delete_le) schirmer@19234: wenzelm@56327: lemma compose_first_None [simp]: wenzelm@56327: assumes "map_of xs k = None" schirmer@19234: shows "map_of (compose xs ys) k = None" wenzelm@56327: using assms by (induct xs ys rule: compose.induct) (auto split: option.splits split_if_asm) schirmer@19234: wenzelm@56327: lemma compose_conv: "map_of (compose xs ys) k = (map_of ys \\<^sub>m map_of xs) k" haftmann@22916: proof (induct xs ys rule: compose.induct) wenzelm@56327: case 1 wenzelm@56327: then show ?case by simp schirmer@19234: next wenzelm@56327: case (2 x xs ys) wenzelm@56327: show ?case schirmer@19234: proof (cases "map_of ys (snd x)") wenzelm@56327: case None wenzelm@56327: with 2 have hyp: "map_of (compose (delete (fst x) xs) ys) k = wenzelm@56327: (map_of ys \\<^sub>m map_of (delete (fst x) xs)) k" schirmer@19234: by simp schirmer@19234: show ?thesis schirmer@19234: proof (cases "fst x = k") schirmer@19234: case True schirmer@19234: from True delete_notin_dom [of k xs] schirmer@19234: have "map_of (delete (fst x) xs) k = None" wenzelm@32960: by (simp add: map_of_eq_None_iff) schirmer@19234: with hyp show ?thesis wenzelm@32960: using True None wenzelm@32960: by simp schirmer@19234: next schirmer@19234: case False schirmer@19234: from False have "map_of (delete (fst x) xs) k = map_of xs k" wenzelm@32960: by simp schirmer@19234: with hyp show ?thesis wenzelm@56327: using False None by (simp add: map_comp_def) schirmer@19234: qed schirmer@19234: next schirmer@19234: case (Some v) haftmann@22916: with 2 schirmer@19234: have "map_of (compose xs ys) k = (map_of ys \\<^sub>m map_of xs) k" schirmer@19234: by simp schirmer@19234: with Some show ?thesis schirmer@19234: by (auto simp add: map_comp_def) schirmer@19234: qed schirmer@19234: qed wenzelm@56327: wenzelm@56327: lemma compose_conv': "map_of (compose xs ys) = (map_of ys \\<^sub>m map_of xs)" schirmer@19234: by (rule ext) (rule compose_conv) schirmer@19234: schirmer@19234: lemma compose_first_Some [simp]: wenzelm@56327: assumes "map_of xs k = Some v" schirmer@19234: shows "map_of (compose xs ys) k = map_of ys v" wenzelm@56327: using assms by (simp add: compose_conv) schirmer@19234: schirmer@19234: lemma dom_compose: "fst ` set (compose xs ys) \ fst ` set xs" haftmann@22916: proof (induct xs ys rule: compose.induct) wenzelm@56327: case 1 wenzelm@56327: then show ?case by simp schirmer@19234: next haftmann@22916: case (2 x xs ys) schirmer@19234: show ?case schirmer@19234: proof (cases "map_of ys (snd x)") schirmer@19234: case None haftmann@22916: with "2.hyps" schirmer@19234: have "fst ` set (compose (delete (fst x) xs) ys) \ fst ` set (delete (fst x) xs)" schirmer@19234: by simp schirmer@19234: also schirmer@19234: have "\ \ fst ` set xs" schirmer@19234: by (rule dom_delete_subset) schirmer@19234: finally show ?thesis schirmer@19234: using None schirmer@19234: by auto schirmer@19234: next schirmer@19234: case (Some v) haftmann@22916: with "2.hyps" schirmer@19234: have "fst ` set (compose xs ys) \ fst ` set xs" schirmer@19234: by simp schirmer@19234: with Some show ?thesis schirmer@19234: by auto schirmer@19234: qed schirmer@19234: qed schirmer@19234: schirmer@19234: lemma distinct_compose: wenzelm@56327: assumes "distinct (map fst xs)" wenzelm@56327: shows "distinct (map fst (compose xs ys))" wenzelm@56327: using assms haftmann@22916: proof (induct xs ys rule: compose.induct) wenzelm@56327: case 1 wenzelm@56327: then show ?case by simp schirmer@19234: next haftmann@22916: case (2 x xs ys) schirmer@19234: show ?case schirmer@19234: proof (cases "map_of ys (snd x)") schirmer@19234: case None haftmann@22916: with 2 show ?thesis by simp schirmer@19234: next schirmer@19234: case (Some v) wenzelm@56327: with 2 dom_compose [of xs ys] show ?thesis wenzelm@56327: by auto schirmer@19234: qed schirmer@19234: qed schirmer@19234: wenzelm@56327: lemma compose_delete_twist: "compose (delete k xs) ys = delete k (compose xs ys)" haftmann@22916: proof (induct xs ys rule: compose.induct) wenzelm@56327: case 1 wenzelm@56327: then show ?case by simp schirmer@19234: next haftmann@22916: case (2 x xs ys) schirmer@19234: show ?case schirmer@19234: proof (cases "map_of ys (snd x)") schirmer@19234: case None wenzelm@56327: with 2 have hyp: "compose (delete k (delete (fst x) xs)) ys = wenzelm@56327: delete k (compose (delete (fst x) xs) ys)" schirmer@19234: by simp schirmer@19234: show ?thesis schirmer@19234: proof (cases "fst x = k") schirmer@19234: case True wenzelm@56327: with None hyp show ?thesis wenzelm@32960: by (simp add: delete_idem) schirmer@19234: next schirmer@19234: case False wenzelm@56327: from None False hyp show ?thesis wenzelm@32960: by (simp add: delete_twist) schirmer@19234: qed schirmer@19234: next schirmer@19234: case (Some v) wenzelm@56327: with 2 have hyp: "compose (delete k xs) ys = delete k (compose xs ys)" wenzelm@56327: by simp schirmer@19234: with Some show ?thesis schirmer@19234: by simp schirmer@19234: qed schirmer@19234: qed schirmer@19234: schirmer@19234: lemma compose_clearjunk: "compose xs (clearjunk ys) = compose xs ys" wenzelm@56327: by (induct xs ys rule: compose.induct) wenzelm@56327: (auto simp add: map_of_clearjunk split: option.splits) wenzelm@56327: schirmer@19234: lemma clearjunk_compose: "clearjunk (compose xs ys) = compose (clearjunk xs) ys" schirmer@19234: by (induct xs rule: clearjunk.induct) wenzelm@56327: (auto split: option.splits simp add: clearjunk_delete delete_idem compose_delete_twist) wenzelm@56327: wenzelm@56327: lemma compose_empty [simp]: "compose xs [] = []" haftmann@22916: by (induct xs) (auto simp add: compose_delete_twist) schirmer@19234: schirmer@19234: lemma compose_Some_iff: wenzelm@56327: "(map_of (compose xs ys) k = Some v) \ wenzelm@56327: (\k'. map_of xs k = Some k' \ map_of ys k' = Some v)" schirmer@19234: by (simp add: compose_conv map_comp_Some_iff) schirmer@19234: schirmer@19234: lemma map_comp_None_iff: wenzelm@56327: "map_of (compose xs ys) k = None \ wenzelm@56327: (map_of xs k = None \ (\k'. map_of xs k = Some k' \ map_of ys k' = None))" schirmer@19234: by (simp add: compose_conv map_comp_None_iff) schirmer@19234: wenzelm@56327: bulwahn@45869: subsection {* @{text map_entry} *} bulwahn@45869: bulwahn@45869: fun map_entry :: "'key \ ('val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" bulwahn@45869: where bulwahn@45869: "map_entry k f [] = []" wenzelm@56327: | "map_entry k f (p # ps) = wenzelm@56327: (if fst p = k then (k, f (snd p)) # ps else p # map_entry k f ps)" bulwahn@45869: bulwahn@45869: lemma map_of_map_entry: wenzelm@56327: "map_of (map_entry k f xs) = wenzelm@56327: (map_of xs)(k := case map_of xs k of None \ None | Some v' \ Some (f v'))" wenzelm@56327: by (induct xs) auto bulwahn@45869: wenzelm@56327: lemma dom_map_entry: "fst ` set (map_entry k f xs) = fst ` set xs" wenzelm@56327: by (induct xs) auto bulwahn@45869: bulwahn@45869: lemma distinct_map_entry: bulwahn@45869: assumes "distinct (map fst xs)" bulwahn@45869: shows "distinct (map fst (map_entry k f xs))" wenzelm@56327: using assms by (induct xs) (auto simp add: dom_map_entry) wenzelm@56327: bulwahn@45869: bulwahn@45868: subsection {* @{text map_default} *} bulwahn@45868: bulwahn@45868: fun map_default :: "'key \ 'val \ ('val \ 'val) \ ('key \ 'val) list \ ('key \ 'val) list" bulwahn@45868: where bulwahn@45868: "map_default k v f [] = [(k, v)]" wenzelm@56327: | "map_default k v f (p # ps) = wenzelm@56327: (if fst p = k then (k, f (snd p)) # ps else p # map_default k v f ps)" bulwahn@45868: bulwahn@45868: lemma map_of_map_default: wenzelm@56327: "map_of (map_default k v f xs) = wenzelm@56327: (map_of xs)(k := case map_of xs k of None \ Some v | Some v' \ Some (f v'))" wenzelm@56327: by (induct xs) auto bulwahn@45868: wenzelm@56327: lemma dom_map_default: "fst ` set (map_default k v f xs) = insert k (fst ` set xs)" wenzelm@56327: by (induct xs) auto bulwahn@45868: bulwahn@45868: lemma distinct_map_default: bulwahn@45868: assumes "distinct (map fst xs)" bulwahn@45868: shows "distinct (map fst (map_default k v f xs))" wenzelm@56327: using assms by (induct xs) (auto simp add: dom_map_default) bulwahn@45868: bulwahn@46171: hide_const (open) update updates delete restrict clearjunk merge compose map_entry bulwahn@45884: schirmer@19234: end