hoelzl@36648: (* Title: HOL/Library/Convex.thy hoelzl@36648: Author: Armin Heller, TU Muenchen hoelzl@36648: Author: Johannes Hoelzl, TU Muenchen hoelzl@36648: *) hoelzl@36648: hoelzl@36648: header {* Convexity in real vector spaces *} hoelzl@36648: hoelzl@36623: theory Convex hoelzl@36623: imports Product_Vector hoelzl@36623: begin hoelzl@36623: hoelzl@36623: subsection {* Convexity. *} hoelzl@36623: wenzelm@49609: definition convex :: "'a::real_vector set \ bool" wenzelm@49609: where "convex s \ (\x\s. \y\s. \u\0. \v\0. u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s)" hoelzl@36623: huffman@53676: lemma convexI: huffman@53676: assumes "\x y u v. x \ s \ y \ s \ 0 \ u \ 0 \ v \ u + v = 1 \ u *\<^sub>R x + v *\<^sub>R y \ s" huffman@53676: shows "convex s" huffman@53676: using assms unfolding convex_def by fast huffman@53676: huffman@53676: lemma convexD: huffman@53676: assumes "convex s" and "x \ s" and "y \ s" and "0 \ u" and "0 \ v" and "u + v = 1" huffman@53676: shows "u *\<^sub>R x + v *\<^sub>R y \ s" huffman@53676: using assms unfolding convex_def by fast huffman@53676: hoelzl@36623: lemma convex_alt: hoelzl@36623: "convex s \ (\x\s. \y\s. \u. 0 \ u \ u \ 1 \ ((1 - u) *\<^sub>R x + u *\<^sub>R y) \ s)" hoelzl@36623: (is "_ \ ?alt") hoelzl@36623: proof hoelzl@36623: assume alt[rule_format]: ?alt wenzelm@56796: { wenzelm@56796: fix x y and u v :: real wenzelm@56796: assume mem: "x \ s" "y \ s" wenzelm@49609: assume "0 \ u" "0 \ v" wenzelm@56796: moreover wenzelm@56796: assume "u + v = 1" wenzelm@56796: then have "u = 1 - v" by auto wenzelm@56796: ultimately have "u *\<^sub>R x + v *\<^sub>R y \ s" wenzelm@56796: using alt[OF mem] by auto wenzelm@56796: } wenzelm@56796: then show "convex s" wenzelm@56796: unfolding convex_def by auto hoelzl@36623: qed (auto simp: convex_def) hoelzl@36623: hoelzl@36623: lemma mem_convex: hoelzl@36623: assumes "convex s" "a \ s" "b \ s" "0 \ u" "u \ 1" hoelzl@36623: shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \ s" hoelzl@36623: using assms unfolding convex_alt by auto hoelzl@36623: hoelzl@36623: lemma convex_empty[intro]: "convex {}" hoelzl@36623: unfolding convex_def by simp hoelzl@36623: hoelzl@36623: lemma convex_singleton[intro]: "convex {a}" hoelzl@36623: unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) hoelzl@36623: hoelzl@36623: lemma convex_UNIV[intro]: "convex UNIV" hoelzl@36623: unfolding convex_def by auto hoelzl@36623: wenzelm@56796: lemma convex_Inter: "(\s\f. convex s) \ convex(\ f)" hoelzl@36623: unfolding convex_def by auto hoelzl@36623: hoelzl@36623: lemma convex_Int: "convex s \ convex t \ convex (s \ t)" hoelzl@36623: unfolding convex_def by auto hoelzl@36623: huffman@53596: lemma convex_INT: "\i\A. convex (B i) \ convex (\i\A. B i)" huffman@53596: unfolding convex_def by auto huffman@53596: huffman@53596: lemma convex_Times: "convex s \ convex t \ convex (s \ t)" huffman@53596: unfolding convex_def by auto huffman@53596: hoelzl@36623: lemma convex_halfspace_le: "convex {x. inner a x \ b}" hoelzl@36623: unfolding convex_def huffman@44142: by (auto simp: inner_add intro!: convex_bound_le) hoelzl@36623: hoelzl@36623: lemma convex_halfspace_ge: "convex {x. inner a x \ b}" hoelzl@36623: proof - wenzelm@56796: have *: "{x. inner a x \ b} = {x. inner (-a) x \ -b}" wenzelm@56796: by auto wenzelm@56796: show ?thesis wenzelm@56796: unfolding * using convex_halfspace_le[of "-a" "-b"] by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_hyperplane: "convex {x. inner a x = b}" wenzelm@49609: proof - wenzelm@56796: have *: "{x. inner a x = b} = {x. inner a x \ b} \ {x. inner a x \ b}" wenzelm@56796: by auto hoelzl@36623: show ?thesis using convex_halfspace_le convex_halfspace_ge hoelzl@36623: by (auto intro!: convex_Int simp: *) hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_halfspace_lt: "convex {x. inner a x < b}" hoelzl@36623: unfolding convex_def hoelzl@36623: by (auto simp: convex_bound_lt inner_add) hoelzl@36623: hoelzl@36623: lemma convex_halfspace_gt: "convex {x. inner a x > b}" hoelzl@36623: using convex_halfspace_lt[of "-a" "-b"] by auto hoelzl@36623: hoelzl@36623: lemma convex_real_interval: hoelzl@36623: fixes a b :: "real" hoelzl@36623: shows "convex {a..}" and "convex {..b}" wenzelm@49609: and "convex {a<..}" and "convex {.. inner 1 x}" by auto wenzelm@49609: then show 1: "convex {a..}" by (simp only: convex_halfspace_ge) hoelzl@36623: have "{..b} = {x. inner 1 x \ b}" by auto wenzelm@49609: then show 2: "convex {..b}" by (simp only: convex_halfspace_le) hoelzl@36623: have "{a<..} = {x. a < inner 1 x}" by auto wenzelm@49609: then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt) hoelzl@36623: have "{.. {..b}" by auto wenzelm@49609: then show "convex {a..b}" by (simp only: convex_Int 1 2) hoelzl@36623: have "{a<..b} = {a<..} \ {..b}" by auto wenzelm@49609: then show "convex {a<..b}" by (simp only: convex_Int 3 2) hoelzl@36623: have "{a.. {.. {.. i \ s. a i) = 1" wenzelm@56796: assumes "\i. i \ s \ a i \ 0" wenzelm@56796: and "\i. i \ s \ y i \ C" hoelzl@36623: shows "(\ j \ s. a j *\<^sub>R y j) \ C" huffman@55909: using assms(1,3,4,5) huffman@55909: proof (induct arbitrary: a set: finite) wenzelm@49609: case empty huffman@55909: then show ?case by simp hoelzl@36623: next huffman@55909: case (insert i s) note IH = this(3) wenzelm@56796: have "a i + setsum a s = 1" wenzelm@56796: and "0 \ a i" wenzelm@56796: and "\j\s. 0 \ a j" wenzelm@56796: and "y i \ C" wenzelm@56796: and "\j\s. y j \ C" huffman@55909: using insert.hyps(1,2) insert.prems by simp_all wenzelm@56796: then have "0 \ setsum a s" wenzelm@56796: by (simp add: setsum_nonneg) huffman@55909: have "a i *\<^sub>R y i + (\j\s. a j *\<^sub>R y j) \ C" huffman@55909: proof (cases) huffman@55909: assume z: "setsum a s = 0" wenzelm@56796: with `a i + setsum a s = 1` have "a i = 1" wenzelm@56796: by simp wenzelm@56796: from setsum_nonneg_0 [OF `finite s` _ z] `\j\s. 0 \ a j` have "\j\s. a j = 0" wenzelm@56796: by simp wenzelm@56796: show ?thesis using `a i = 1` and `\j\s. a j = 0` and `y i \ C` wenzelm@56796: by simp huffman@55909: next huffman@55909: assume nz: "setsum a s \ 0" wenzelm@56796: with `0 \ setsum a s` have "0 < setsum a s" wenzelm@56796: by simp huffman@55909: then have "(\j\s. (a j / setsum a s) *\<^sub>R y j) \ C" huffman@55909: using `\j\s. 0 \ a j` and `\j\s. y j \ C` hoelzl@56571: by (simp add: IH setsum_divide_distrib [symmetric]) huffman@55909: from `convex C` and `y i \ C` and this and `0 \ a i` huffman@55909: and `0 \ setsum a s` and `a i + setsum a s = 1` huffman@55909: have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\j\s. (a j / setsum a s) *\<^sub>R y j) \ C" huffman@55909: by (rule convexD) wenzelm@56796: then show ?thesis wenzelm@56796: by (simp add: scaleR_setsum_right nz) huffman@55909: qed wenzelm@56796: then show ?case using `finite s` and `i \ s` wenzelm@56796: by simp hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex: wenzelm@49609: "convex s \ (\(k::nat) u x. (\i. 1\i \ i\k \ 0 \ u i \ x i \s) \ (setsum u {1..k} = 1) wenzelm@49609: \ setsum (\i. u i *\<^sub>R x i) {1..k} \ s)" hoelzl@36623: proof safe wenzelm@49609: fix k :: nat wenzelm@49609: fix u :: "nat \ real" wenzelm@49609: fix x hoelzl@36623: assume "convex s" hoelzl@36623: "\i. 1 \ i \ i \ k \ 0 \ u i \ x i \ s" hoelzl@36623: "setsum u {1..k} = 1" hoelzl@36623: from this convex_setsum[of "{1 .. k}" s] wenzelm@56796: show "(\j\{1 .. k}. u j *\<^sub>R x j) \ s" wenzelm@56796: by auto hoelzl@36623: next hoelzl@36623: assume asm: "\k u x. (\ i :: nat. 1 \ i \ i \ k \ 0 \ u i \ x i \ s) \ setsum u {1..k} = 1 hoelzl@36623: \ (\i = 1..k. u i *\<^sub>R (x i :: 'a)) \ s" wenzelm@56796: { wenzelm@56796: fix \ :: real wenzelm@49609: fix x y :: 'a wenzelm@49609: assume xy: "x \ s" "y \ s" wenzelm@49609: assume mu: "\ \ 0" "\ \ 1" wenzelm@49609: let ?u = "\i. if (i :: nat) = 1 then \ else 1 - \" wenzelm@49609: let ?x = "\i. if (i :: nat) = 1 then x else y" wenzelm@56796: have "{1 :: nat .. 2} \ - {x. x = 1} = {2}" wenzelm@56796: by auto wenzelm@56796: then have card: "card ({1 :: nat .. 2} \ - {x. x = 1}) = 1" wenzelm@56796: by simp wenzelm@49609: then have "setsum ?u {1 .. 2} = 1" haftmann@57418: using setsum.If_cases[of "{(1 :: nat) .. 2}" "\ x. x = 1" "\ x. \" "\ x. 1 - \"] hoelzl@36623: by auto wenzelm@49609: with asm[rule_format, of "2" ?u ?x] have s: "(\j \ {1..2}. ?u j *\<^sub>R ?x j) \ s" hoelzl@36623: using mu xy by auto hoelzl@36623: have grarr: "(\j \ {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \) *\<^sub>R y" hoelzl@36623: using setsum_head_Suc[of "Suc (Suc 0)" 2 "\ j. (1 - \) *\<^sub>R y"] by auto hoelzl@36623: from setsum_head_Suc[of "Suc 0" 2 "\ j. ?u j *\<^sub>R ?x j", simplified this] wenzelm@56796: have "(\j \ {1..2}. ?u j *\<^sub>R ?x j) = \ *\<^sub>R x + (1 - \) *\<^sub>R y" wenzelm@56796: by auto wenzelm@56796: then have "(1 - \) *\<^sub>R y + \ *\<^sub>R x \ s" haftmann@57512: using s by (auto simp:add.commute) wenzelm@49609: } wenzelm@56796: then show "convex s" wenzelm@56796: unfolding convex_alt by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: hoelzl@36623: lemma convex_explicit: hoelzl@36623: fixes s :: "'a::real_vector set" hoelzl@36623: shows "convex s \ wenzelm@49609: (\t u. finite t \ t \ s \ (\x\t. 0 \ u x) \ setsum u t = 1 \ setsum (\x. u x *\<^sub>R x) t \ s)" hoelzl@36623: proof safe wenzelm@49609: fix t wenzelm@49609: fix u :: "'a \ real" wenzelm@56796: assume "convex s" wenzelm@56796: and "finite t" wenzelm@56796: and "t \ s" "\x\t. 0 \ u x" "setsum u t = 1" wenzelm@49609: then show "(\x\t. u x *\<^sub>R x) \ s" hoelzl@36623: using convex_setsum[of t s u "\ x. x"] by auto hoelzl@36623: next wenzelm@56796: assume asm0: "\t. \ u. finite t \ t \ s \ (\x\t. 0 \ u x) \ wenzelm@56796: setsum u t = 1 \ (\x\t. u x *\<^sub>R x) \ s" hoelzl@36623: show "convex s" hoelzl@36623: unfolding convex_alt hoelzl@36623: proof safe wenzelm@49609: fix x y wenzelm@49609: fix \ :: real hoelzl@36623: assume asm: "x \ s" "y \ s" "0 \ \" "\ \ 1" wenzelm@56796: { wenzelm@56796: assume "x \ y" wenzelm@49609: then have "(1 - \) *\<^sub>R x + \ *\<^sub>R y \ s" hoelzl@36623: using asm0[rule_format, of "{x, y}" "\ z. if z = x then 1 - \ else \"] wenzelm@56796: asm by auto wenzelm@56796: } hoelzl@36623: moreover wenzelm@56796: { wenzelm@56796: assume "x = y" wenzelm@49609: then have "(1 - \) *\<^sub>R x + \ *\<^sub>R y \ s" hoelzl@36623: using asm0[rule_format, of "{x, y}" "\ z. 1"] wenzelm@56796: asm by (auto simp: field_simps real_vector.scale_left_diff_distrib) wenzelm@56796: } wenzelm@56796: ultimately show "(1 - \) *\<^sub>R x + \ *\<^sub>R y \ s" wenzelm@56796: by blast hoelzl@36623: qed hoelzl@36623: qed hoelzl@36623: wenzelm@49609: lemma convex_finite: wenzelm@49609: assumes "finite s" wenzelm@56796: shows "convex s \ (\u. (\x\s. 0 \ u x) \ setsum u s = 1 \ setsum (\x. u x *\<^sub>R x) s \ s)" hoelzl@36623: unfolding convex_explicit wenzelm@49609: proof safe wenzelm@49609: fix t u wenzelm@49609: assume sum: "\u. (\x\s. 0 \ u x) \ setsum u s = 1 \ (\x\s. u x *\<^sub>R x) \ s" hoelzl@36623: and as: "finite t" "t \ s" "\x\t. 0 \ u x" "setsum u t = (1::real)" wenzelm@56796: have *: "s \ t = t" wenzelm@56796: using as(2) by auto wenzelm@49609: have if_distrib_arg: "\P f g x. (if P then f else g) x = (if P then f x else g x)" wenzelm@49609: by simp hoelzl@36623: show "(\x\t. u x *\<^sub>R x) \ s" hoelzl@36623: using sum[THEN spec[where x="\x. if x\t then u x else 0"]] as * haftmann@57418: by (auto simp: assms setsum.If_cases if_distrib if_distrib_arg) hoelzl@36623: qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) hoelzl@36623: wenzelm@56796: huffman@55909: subsection {* Functions that are convex on a set *} huffman@55909: wenzelm@49609: definition convex_on :: "'a::real_vector set \ ('a \ real) \ bool" wenzelm@49609: where "convex_on s f \ wenzelm@49609: (\x\s. \y\s. \u\0. \v\0. u + v = 1 \ f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y)" hoelzl@36623: hoelzl@36623: lemma convex_on_subset: "convex_on t f \ s \ t \ convex_on s f" hoelzl@36623: unfolding convex_on_def by auto hoelzl@36623: huffman@53620: lemma convex_on_add [intro]: wenzelm@56796: assumes "convex_on s f" wenzelm@56796: and "convex_on s g" hoelzl@36623: shows "convex_on s (\x. f x + g x)" wenzelm@49609: proof - wenzelm@56796: { wenzelm@56796: fix x y wenzelm@56796: assume "x \ s" "y \ s" wenzelm@49609: moreover wenzelm@49609: fix u v :: real wenzelm@49609: assume "0 \ u" "0 \ v" "u + v = 1" wenzelm@49609: ultimately wenzelm@49609: have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \ (u * f x + v * f y) + (u * g x + v * g y)" wenzelm@49609: using assms unfolding convex_on_def by (auto simp add: add_mono) wenzelm@49609: then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \ u * (f x + g x) + v * (f y + g y)" wenzelm@49609: by (simp add: field_simps) wenzelm@49609: } wenzelm@56796: then show ?thesis wenzelm@56796: unfolding convex_on_def by auto hoelzl@36623: qed hoelzl@36623: huffman@53620: lemma convex_on_cmul [intro]: wenzelm@56796: fixes c :: real wenzelm@56796: assumes "0 \ c" wenzelm@56796: and "convex_on s f" hoelzl@36623: shows "convex_on s (\x. c * f x)" wenzelm@56796: proof - wenzelm@49609: have *: "\u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" wenzelm@49609: by (simp add: field_simps) wenzelm@49609: show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] wenzelm@49609: unfolding convex_on_def and * by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_lower: wenzelm@56796: assumes "convex_on s f" wenzelm@56796: and "x \ s" wenzelm@56796: and "y \ s" wenzelm@56796: and "0 \ u" wenzelm@56796: and "0 \ v" wenzelm@56796: and "u + v = 1" hoelzl@36623: shows "f (u *\<^sub>R x + v *\<^sub>R y) \ max (f x) (f y)" wenzelm@56796: proof - hoelzl@36623: let ?m = "max (f x) (f y)" hoelzl@36623: have "u * f x + v * f y \ u * max (f x) (f y) + v * max (f x) (f y)" haftmann@38642: using assms(4,5) by (auto simp add: mult_left_mono add_mono) wenzelm@56796: also have "\ = max (f x) (f y)" wenzelm@56796: using assms(6) unfolding distrib[symmetric] by auto hoelzl@36623: finally show ?thesis nipkow@44890: using assms unfolding convex_on_def by fastforce hoelzl@36623: qed hoelzl@36623: huffman@53620: lemma convex_on_dist [intro]: hoelzl@36623: fixes s :: "'a::real_normed_vector set" hoelzl@36623: shows "convex_on s (\x. dist a x)" wenzelm@49609: proof (auto simp add: convex_on_def dist_norm) wenzelm@49609: fix x y wenzelm@56796: assume "x \ s" "y \ s" wenzelm@49609: fix u v :: real wenzelm@56796: assume "0 \ u" wenzelm@56796: assume "0 \ v" wenzelm@56796: assume "u + v = 1" wenzelm@49609: have "a = u *\<^sub>R a + v *\<^sub>R a" wenzelm@56796: unfolding scaleR_left_distrib[symmetric] and `u + v = 1` by simp wenzelm@49609: then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" hoelzl@36623: by (auto simp add: algebra_simps) hoelzl@36623: show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \ u * norm (a - x) + v * norm (a - y)" hoelzl@36623: unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] hoelzl@36623: using `0 \ u` `0 \ v` by auto hoelzl@36623: qed hoelzl@36623: wenzelm@49609: hoelzl@36623: subsection {* Arithmetic operations on sets preserve convexity. *} wenzelm@49609: huffman@53620: lemma convex_linear_image: wenzelm@56796: assumes "linear f" wenzelm@56796: and "convex s" wenzelm@56796: shows "convex (f ` s)" huffman@53620: proof - huffman@53620: interpret f: linear f by fact huffman@53620: from `convex s` show "convex (f ` s)" huffman@53620: by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric]) hoelzl@36623: qed hoelzl@36623: huffman@53620: lemma convex_linear_vimage: wenzelm@56796: assumes "linear f" wenzelm@56796: and "convex s" wenzelm@56796: shows "convex (f -` s)" huffman@53620: proof - huffman@53620: interpret f: linear f by fact huffman@53620: from `convex s` show "convex (f -` s)" huffman@53620: by (simp add: convex_def f.add f.scaleR) huffman@53620: qed huffman@53620: huffman@53620: lemma convex_scaling: wenzelm@56796: assumes "convex s" wenzelm@56796: shows "convex ((\x. c *\<^sub>R x) ` s)" huffman@53620: proof - wenzelm@56796: have "linear (\x. c *\<^sub>R x)" wenzelm@56796: by (simp add: linearI scaleR_add_right) wenzelm@56796: then show ?thesis wenzelm@56796: using `convex s` by (rule convex_linear_image) huffman@53620: qed huffman@53620: huffman@53620: lemma convex_negations: wenzelm@56796: assumes "convex s" wenzelm@56796: shows "convex ((\x. - x) ` s)" huffman@53620: proof - wenzelm@56796: have "linear (\x. - x)" wenzelm@56796: by (simp add: linearI) wenzelm@56796: then show ?thesis wenzelm@56796: using `convex s` by (rule convex_linear_image) hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_sums: wenzelm@56796: assumes "convex s" wenzelm@56796: and "convex t" hoelzl@36623: shows "convex {x + y| x y. x \ s \ y \ t}" huffman@53620: proof - huffman@53620: have "linear (\(x, y). x + y)" huffman@53620: by (auto intro: linearI simp add: scaleR_add_right) huffman@53620: with assms have "convex ((\(x, y). x + y) ` (s \ t))" huffman@53620: by (intro convex_linear_image convex_Times) huffman@53620: also have "((\(x, y). x + y) ` (s \ t)) = {x + y| x y. x \ s \ y \ t}" huffman@53620: by auto huffman@53620: finally show ?thesis . hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_differences: hoelzl@36623: assumes "convex s" "convex t" hoelzl@36623: shows "convex {x - y| x y. x \ s \ y \ t}" hoelzl@36623: proof - hoelzl@36623: have "{x - y| x y. x \ s \ y \ t} = {x + y |x y. x \ s \ y \ uminus ` t}" haftmann@54230: by (auto simp add: diff_conv_add_uminus simp del: add_uminus_conv_diff) wenzelm@49609: then show ?thesis wenzelm@49609: using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto hoelzl@36623: qed hoelzl@36623: wenzelm@49609: lemma convex_translation: wenzelm@49609: assumes "convex s" wenzelm@49609: shows "convex ((\x. a + x) ` s)" wenzelm@49609: proof - wenzelm@56796: have "{a + y |y. y \ s} = (\x. a + x) ` s" wenzelm@56796: by auto wenzelm@49609: then show ?thesis wenzelm@49609: using convex_sums[OF convex_singleton[of a] assms] by auto wenzelm@49609: qed hoelzl@36623: wenzelm@49609: lemma convex_affinity: wenzelm@49609: assumes "convex s" wenzelm@49609: shows "convex ((\x. a + c *\<^sub>R x) ` s)" wenzelm@49609: proof - wenzelm@56796: have "(\x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" wenzelm@56796: by auto wenzelm@49609: then show ?thesis wenzelm@49609: using convex_translation[OF convex_scaling[OF assms], of a c] by auto wenzelm@49609: qed hoelzl@36623: wenzelm@49609: lemma pos_is_convex: "convex {0 :: real <..}" wenzelm@49609: unfolding convex_alt hoelzl@36623: proof safe hoelzl@36623: fix y x \ :: real hoelzl@36623: assume asms: "y > 0" "x > 0" "\ \ 0" "\ \ 1" wenzelm@56796: { wenzelm@56796: assume "\ = 0" wenzelm@49609: then have "\ *\<^sub>R x + (1 - \) *\<^sub>R y = y" by simp wenzelm@56796: then have "\ *\<^sub>R x + (1 - \) *\<^sub>R y > 0" using asms by simp wenzelm@56796: } hoelzl@36623: moreover wenzelm@56796: { wenzelm@56796: assume "\ = 1" wenzelm@56796: then have "\ *\<^sub>R x + (1 - \) *\<^sub>R y > 0" using asms by simp wenzelm@56796: } hoelzl@36623: moreover wenzelm@56796: { wenzelm@56796: assume "\ \ 1" "\ \ 0" wenzelm@49609: then have "\ > 0" "(1 - \) > 0" using asms by auto wenzelm@49609: then have "\ *\<^sub>R x + (1 - \) *\<^sub>R y > 0" using asms wenzelm@56796: by (auto simp add: add_pos_pos) wenzelm@56796: } wenzelm@56796: ultimately show "(1 - \) *\<^sub>R y + \ *\<^sub>R x > 0" wenzelm@56796: using assms by fastforce hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_on_setsum: hoelzl@36623: fixes a :: "'a \ real" wenzelm@49609: and y :: "'a \ 'b::real_vector" wenzelm@49609: and f :: "'b \ real" hoelzl@36623: assumes "finite s" "s \ {}" wenzelm@49609: and "convex_on C f" wenzelm@49609: and "convex C" wenzelm@49609: and "(\ i \ s. a i) = 1" wenzelm@49609: and "\i. i \ s \ a i \ 0" wenzelm@49609: and "\i. i \ s \ y i \ C" hoelzl@36623: shows "f (\ i \ s. a i *\<^sub>R y i) \ (\ i \ s. a i * f (y i))" wenzelm@49609: using assms wenzelm@49609: proof (induct s arbitrary: a rule: finite_ne_induct) hoelzl@36623: case (singleton i) wenzelm@49609: then have ai: "a i = 1" by auto wenzelm@49609: then show ?case by auto hoelzl@36623: next hoelzl@36623: case (insert i s) note asms = this wenzelm@49609: then have "convex_on C f" by simp hoelzl@36623: from this[unfolded convex_on_def, rule_format] wenzelm@56796: have conv: "\x y \. x \ C \ y \ C \ 0 \ \ \ \ \ 1 \ wenzelm@56796: f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y" hoelzl@36623: by simp wenzelm@56796: { wenzelm@56796: assume "a i = 1" wenzelm@49609: then have "(\ j \ s. a j) = 0" hoelzl@36623: using asms by auto wenzelm@49609: then have "\j. j \ s \ a j = 0" nipkow@44890: using setsum_nonneg_0[where 'b=real] asms by fastforce wenzelm@56796: then have ?case using asms by auto wenzelm@56796: } hoelzl@36623: moreover wenzelm@56796: { wenzelm@56796: assume asm: "a i \ 1" hoelzl@36623: from asms have yai: "y i \ C" "a i \ 0" by auto hoelzl@36623: have fis: "finite (insert i s)" using asms by auto wenzelm@49609: then have ai1: "a i \ 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp wenzelm@49609: then have "a i < 1" using asm by auto wenzelm@49609: then have i0: "1 - a i > 0" by auto wenzelm@49609: let ?a = "\j. a j / (1 - a i)" wenzelm@56796: { wenzelm@56796: fix j wenzelm@56796: assume "j \ s" wenzelm@56796: with i0 asms have "?a j \ 0" wenzelm@56796: by fastforce wenzelm@56796: } wenzelm@49609: note a_nonneg = this hoelzl@36623: have "(\ j \ insert i s. a j) = 1" using asms by auto wenzelm@49609: then have "(\ j \ s. a j) = 1 - a i" using setsum.insert asms by fastforce wenzelm@49609: then have "(\ j \ s. a j) / (1 - a i) = 1" using i0 by auto wenzelm@49609: then have a1: "(\ j \ s. ?a j) = 1" unfolding setsum_divide_distrib by simp hoelzl@36623: have "convex C" using asms by auto wenzelm@49609: then have asum: "(\ j \ s. ?a j *\<^sub>R y j) \ C" hoelzl@36623: using asms convex_setsum[OF `finite s` hoelzl@36623: `convex C` a1 a_nonneg] by auto hoelzl@36623: have asum_le: "f (\ j \ s. ?a j *\<^sub>R y j) \ (\ j \ s. ?a j * f (y j))" hoelzl@36623: using a_nonneg a1 asms by blast hoelzl@36623: have "f (\ j \ insert i s. a j *\<^sub>R y j) = f ((\ j \ s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" hoelzl@36623: using setsum.insert[of s i "\ j. a j *\<^sub>R y j", OF `finite s` `i \ s`] asms haftmann@57512: by (auto simp only:add.commute) hoelzl@36623: also have "\ = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\ j \ s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" hoelzl@36623: using i0 by auto hoelzl@36623: also have "\ = f ((1 - a i) *\<^sub>R (\ j \ s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" wenzelm@49609: using scaleR_right.setsum[of "inverse (1 - a i)" "\ j. a j *\<^sub>R y j" s, symmetric] wenzelm@49609: by (auto simp:algebra_simps) hoelzl@36623: also have "\ = f ((1 - a i) *\<^sub>R (\ j \ s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" huffman@36778: by (auto simp: divide_inverse) hoelzl@36623: also have "\ \ (1 - a i) *\<^sub>R f ((\ j \ s. ?a j *\<^sub>R y j)) + a i * f (y i)" hoelzl@36623: using conv[of "y i" "(\ j \ s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] haftmann@57512: by (auto simp add:add.commute) hoelzl@36623: also have "\ \ (1 - a i) * (\ j \ s. ?a j * f (y j)) + a i * f (y i)" hoelzl@36623: using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", hoelzl@36623: OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp hoelzl@36623: also have "\ = (\ j \ s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" huffman@44282: unfolding setsum_right_distrib[of "1 - a i" "\ j. ?a j * f (y j)"] using i0 by auto hoelzl@36623: also have "\ = (\ j \ s. a j * f (y j)) + a i * f (y i)" using i0 by auto hoelzl@36623: also have "\ = (\ j \ insert i s. a j * f (y j))" using asms by auto hoelzl@36623: finally have "f (\ j \ insert i s. a j *\<^sub>R y j) \ (\ j \ insert i s. a j * f (y j))" wenzelm@56796: by simp wenzelm@56796: } hoelzl@36623: ultimately show ?case by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma convex_on_alt: hoelzl@36623: fixes C :: "'a::real_vector set" hoelzl@36623: assumes "convex C" wenzelm@56796: shows "convex_on C f \ wenzelm@56796: (\x \ C. \ y \ C. \ \ :: real. \ \ 0 \ \ \ 1 \ wenzelm@56796: f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y)" hoelzl@36623: proof safe wenzelm@49609: fix x y wenzelm@49609: fix \ :: real hoelzl@36623: assume asms: "convex_on C f" "x \ C" "y \ C" "0 \ \" "\ \ 1" hoelzl@36623: from this[unfolded convex_on_def, rule_format] wenzelm@56796: have "\u v. 0 \ u \ 0 \ v \ u + v = 1 \ f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y" wenzelm@56796: by auto hoelzl@36623: from this[of "\" "1 - \", simplified] asms wenzelm@56796: show "f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y" wenzelm@56796: by auto hoelzl@36623: next wenzelm@56796: assume asm: "\x\C. \y\C. \\. 0 \ \ \ \ \ 1 \ wenzelm@56796: f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y" wenzelm@56796: { wenzelm@56796: fix x y wenzelm@49609: fix u v :: real hoelzl@36623: assume lasm: "x \ C" "y \ C" "u \ 0" "v \ 0" "u + v = 1" wenzelm@49609: then have[simp]: "1 - u = v" by auto hoelzl@36623: from asm[rule_format, of x y u] wenzelm@56796: have "f (u *\<^sub>R x + v *\<^sub>R y) \ u * f x + v * f y" wenzelm@56796: using lasm by auto wenzelm@49609: } wenzelm@56796: then show "convex_on C f" wenzelm@56796: unfolding convex_on_def by auto hoelzl@36623: qed hoelzl@36623: hoelzl@43337: lemma convex_on_diff: hoelzl@43337: fixes f :: "real \ real" wenzelm@56796: assumes f: "convex_on I f" wenzelm@56796: and I: "x \ I" "y \ I" wenzelm@56796: and t: "x < t" "t < y" wenzelm@49609: shows "(f x - f t) / (x - t) \ (f x - f y) / (x - y)" wenzelm@56796: and "(f x - f y) / (x - y) \ (f t - f y) / (t - y)" hoelzl@43337: proof - hoelzl@43337: def a \ "(t - y) / (x - y)" wenzelm@56796: with t have "0 \ a" "0 \ 1 - a" wenzelm@56796: by (auto simp: field_simps) hoelzl@43337: with f `x \ I` `y \ I` have cvx: "f (a * x + (1 - a) * y) \ a * f x + (1 - a) * f y" hoelzl@43337: by (auto simp: convex_on_def) wenzelm@56796: have "a * x + (1 - a) * y = a * (x - y) + y" wenzelm@56796: by (simp add: field_simps) wenzelm@56796: also have "\ = t" wenzelm@56796: unfolding a_def using `x < t` `t < y` by simp wenzelm@56796: finally have "f t \ a * f x + (1 - a) * f y" wenzelm@56796: using cvx by simp wenzelm@56796: also have "\ = a * (f x - f y) + f y" wenzelm@56796: by (simp add: field_simps) wenzelm@56796: finally have "f t - f y \ a * (f x - f y)" wenzelm@56796: by simp hoelzl@43337: with t show "(f x - f t) / (x - t) \ (f x - f y) / (x - y)" huffman@44142: by (simp add: le_divide_eq divide_le_eq field_simps a_def) hoelzl@43337: with t show "(f x - f y) / (x - y) \ (f t - f y) / (t - y)" huffman@44142: by (simp add: le_divide_eq divide_le_eq field_simps) hoelzl@43337: qed hoelzl@36623: hoelzl@36623: lemma pos_convex_function: hoelzl@36623: fixes f :: "real \ real" hoelzl@36623: assumes "convex C" wenzelm@56796: and leq: "\x y. x \ C \ y \ C \ f' x * (y - x) \ f y - f x" hoelzl@36623: shows "convex_on C f" wenzelm@49609: unfolding convex_on_alt[OF assms(1)] wenzelm@49609: using assms hoelzl@36623: proof safe hoelzl@36623: fix x y \ :: real hoelzl@36623: let ?x = "\ *\<^sub>R x + (1 - \) *\<^sub>R y" hoelzl@36623: assume asm: "convex C" "x \ C" "y \ C" "\ \ 0" "\ \ 1" wenzelm@49609: then have "1 - \ \ 0" by auto wenzelm@56796: then have xpos: "?x \ C" wenzelm@56796: using asm unfolding convex_alt by fastforce wenzelm@56796: have geq: "\ * (f x - f ?x) + (1 - \) * (f y - f ?x) \ wenzelm@56796: \ * f' ?x * (x - ?x) + (1 - \) * f' ?x * (y - ?x)" haftmann@38642: using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\ \ 0`] wenzelm@56796: mult_left_mono[OF leq[OF xpos asm(3)] `1 - \ \ 0`]] wenzelm@56796: by auto wenzelm@49609: then have "\ * f x + (1 - \) * f y - f ?x \ 0" wenzelm@49609: by (auto simp add: field_simps) wenzelm@49609: then show "f (\ *\<^sub>R x + (1 - \) *\<^sub>R y) \ \ * f x + (1 - \) * f y" hoelzl@36623: using convex_on_alt by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma atMostAtLeast_subset_convex: hoelzl@36623: fixes C :: "real set" hoelzl@36623: assumes "convex C" wenzelm@49609: and "x \ C" "y \ C" "x < y" hoelzl@36623: shows "{x .. y} \ C" hoelzl@36623: proof safe hoelzl@36623: fix z assume zasm: "z \ {x .. y}" wenzelm@56796: { wenzelm@56796: assume asm: "x < z" "z < y" wenzelm@49609: let ?\ = "(y - z) / (y - x)" wenzelm@56796: have "0 \ ?\" "?\ \ 1" wenzelm@56796: using assms asm by (auto simp add: field_simps) wenzelm@49609: then have comb: "?\ * x + (1 - ?\) * y \ C" wenzelm@49609: using assms iffD1[OF convex_alt, rule_format, of C y x ?\] wenzelm@49609: by (simp add: algebra_simps) hoelzl@36623: have "?\ * x + (1 - ?\) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" wenzelm@49609: by (auto simp add: field_simps) hoelzl@36623: also have "\ = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" wenzelm@49609: using assms unfolding add_divide_distrib by (auto simp: field_simps) hoelzl@36623: also have "\ = z" wenzelm@49609: using assms by (auto simp: field_simps) hoelzl@36623: finally have "z \ C" wenzelm@56796: using comb by auto wenzelm@56796: } wenzelm@49609: note less = this hoelzl@36623: show "z \ C" using zasm less assms hoelzl@36623: unfolding atLeastAtMost_iff le_less by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma f''_imp_f': hoelzl@36623: fixes f :: "real \ real" hoelzl@36623: assumes "convex C" wenzelm@49609: and f': "\x. x \ C \ DERIV f x :> (f' x)" wenzelm@49609: and f'': "\x. x \ C \ DERIV f' x :> (f'' x)" wenzelm@49609: and pos: "\x. x \ C \ f'' x \ 0" wenzelm@49609: and "x \ C" "y \ C" hoelzl@36623: shows "f' x * (y - x) \ f y - f x" wenzelm@49609: using assms hoelzl@36623: proof - wenzelm@56796: { wenzelm@56796: fix x y :: real wenzelm@49609: assume asm: "x \ C" "y \ C" "y > x" wenzelm@49609: then have ge: "y - x > 0" "y - x \ 0" by auto hoelzl@36623: from asm have le: "x - y < 0" "x - y \ 0" by auto hoelzl@36623: then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" hoelzl@36623: using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \ C` `y \ C` `x < y`], hoelzl@36623: THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] hoelzl@36623: by auto wenzelm@49609: then have "z1 \ C" using atMostAtLeast_subset_convex nipkow@44890: `convex C` `x \ C` `y \ C` `x < y` by fastforce hoelzl@36623: from z1 have z1': "f x - f y = (x - y) * f' z1" hoelzl@36623: by (simp add:field_simps) hoelzl@36623: obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" hoelzl@36623: using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \ C` `z1 \ C` `x < z1`], hoelzl@36623: THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 hoelzl@36623: by auto hoelzl@36623: obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" hoelzl@36623: using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \ C` `y \ C` `z1 < y`], hoelzl@36623: THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 hoelzl@36623: by auto hoelzl@36623: have "f' y - (f x - f y) / (x - y) = f' y - f' z1" hoelzl@36623: using asm z1' by auto hoelzl@36623: also have "\ = (y - z1) * f'' z3" using z3 by auto hoelzl@36623: finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp hoelzl@36623: have A': "y - z1 \ 0" using z1 by auto hoelzl@36623: have "z3 \ C" using z3 asm atMostAtLeast_subset_convex nipkow@44890: `convex C` `x \ C` `z1 \ C` `x < z1` by fastforce wenzelm@49609: then have B': "f'' z3 \ 0" using assms by auto nipkow@56536: from A' B' have "(y - z1) * f'' z3 \ 0" by auto hoelzl@36623: from cool' this have "f' y - (f x - f y) / (x - y) \ 0" by auto hoelzl@36623: from mult_right_mono_neg[OF this le(2)] hoelzl@36623: have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \ 0 * (x - y)" huffman@36778: by (simp add: algebra_simps) wenzelm@49609: then have "f' y * (x - y) - (f x - f y) \ 0" using le by auto wenzelm@49609: then have res: "f' y * (x - y) \ f x - f y" by auto hoelzl@36623: have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" hoelzl@36623: using asm z1 by auto hoelzl@36623: also have "\ = (z1 - x) * f'' z2" using z2 by auto hoelzl@36623: finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp hoelzl@36623: have A: "z1 - x \ 0" using z1 by auto hoelzl@36623: have "z2 \ C" using z2 z1 asm atMostAtLeast_subset_convex nipkow@44890: `convex C` `z1 \ C` `y \ C` `z1 < y` by fastforce wenzelm@49609: then have B: "f'' z2 \ 0" using assms by auto nipkow@56536: from A B have "(z1 - x) * f'' z2 \ 0" by auto hoelzl@36623: from cool this have "(f y - f x) / (y - x) - f' x \ 0" by auto hoelzl@36623: from mult_right_mono[OF this ge(2)] hoelzl@36623: have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \ 0 * (y - x)" huffman@36778: by (simp add: algebra_simps) wenzelm@49609: then have "f y - f x - f' x * (y - x) \ 0" using ge by auto wenzelm@49609: then have "f y - f x \ f' x * (y - x)" "f' y * (x - y) \ f x - f y" hoelzl@36623: using res by auto } note less_imp = this wenzelm@56796: { wenzelm@56796: fix x y :: real wenzelm@49609: assume "x \ C" "y \ C" "x \ y" wenzelm@49609: then have"f y - f x \ f' x * (y - x)" wenzelm@56796: unfolding neq_iff using less_imp by auto wenzelm@56796: } hoelzl@36623: moreover wenzelm@56796: { wenzelm@56796: fix x y :: real wenzelm@49609: assume asm: "x \ C" "y \ C" "x = y" wenzelm@56796: then have "f y - f x \ f' x * (y - x)" by auto wenzelm@56796: } hoelzl@36623: ultimately show ?thesis using assms by blast hoelzl@36623: qed hoelzl@36623: hoelzl@36623: lemma f''_ge0_imp_convex: hoelzl@36623: fixes f :: "real \ real" hoelzl@36623: assumes conv: "convex C" wenzelm@49609: and f': "\x. x \ C \ DERIV f x :> (f' x)" wenzelm@49609: and f'': "\x. x \ C \ DERIV f' x :> (f'' x)" wenzelm@49609: and pos: "\x. x \ C \ f'' x \ 0" hoelzl@36623: shows "convex_on C f" wenzelm@56796: using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function wenzelm@56796: by fastforce hoelzl@36623: hoelzl@36623: lemma minus_log_convex: hoelzl@36623: fixes b :: real hoelzl@36623: assumes "b > 1" hoelzl@36623: shows "convex_on {0 <..} (\ x. - log b x)" hoelzl@36623: proof - wenzelm@56796: have "\z. z > 0 \ DERIV (log b) z :> 1 / (ln b * z)" wenzelm@56796: using DERIV_log by auto wenzelm@49609: then have f': "\z. z > 0 \ DERIV (\ z. - log b z) z :> - 1 / (ln b * z)" hoelzl@56479: by (auto simp: DERIV_minus) wenzelm@49609: have "\z :: real. z > 0 \ DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" hoelzl@36623: using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto hoelzl@36623: from this[THEN DERIV_cmult, of _ "- 1 / ln b"] wenzelm@49609: have "\z :: real. z > 0 \ wenzelm@49609: DERIV (\ z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" hoelzl@36623: by auto wenzelm@56796: then have f''0: "\z::real. z > 0 \ wenzelm@56796: DERIV (\ z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" haftmann@57512: unfolding inverse_eq_divide by (auto simp add: mult.assoc) wenzelm@56796: have f''_ge0: "\z::real. z > 0 \ 1 / (ln b * z * z) \ 0" nipkow@56544: using `b > 1` by (auto intro!:less_imp_le) hoelzl@36623: from f''_ge0_imp_convex[OF pos_is_convex, hoelzl@36623: unfolded greaterThan_iff, OF f' f''0 f''_ge0] hoelzl@36623: show ?thesis by auto hoelzl@36623: qed hoelzl@36623: hoelzl@36623: end