paulson@13957: (* Title: Complex.thy paulson@13957: Author: Jacques D. Fleuriot paulson@13957: Copyright: 2001 University of Edinburgh paulson@13957: Description: Complex numbers paulson@13957: *) paulson@13957: paulson@14323: theory Complex = HLog: paulson@13957: paulson@13957: typedef complex = "{p::(real*real). True}" paulson@14323: by blast paulson@13957: paulson@14323: instance complex :: zero .. paulson@14323: instance complex :: one .. paulson@14323: instance complex :: plus .. paulson@14323: instance complex :: times .. paulson@14323: instance complex :: minus .. paulson@14323: instance complex :: inverse .. paulson@14323: instance complex :: power .. paulson@13957: paulson@13957: consts paulson@14323: "ii" :: complex ("ii") paulson@13957: paulson@13957: constdefs paulson@13957: paulson@13957: (*--- real and Imaginary parts ---*) paulson@14323: paulson@14323: Re :: "complex => real" paulson@13957: "Re(z) == fst(Rep_complex z)" paulson@13957: paulson@14323: Im :: "complex => real" paulson@13957: "Im(z) == snd(Rep_complex z)" paulson@13957: paulson@13957: (*----------- modulus ------------*) paulson@13957: paulson@14323: cmod :: "complex => real" paulson@14323: "cmod z == sqrt(Re(z) ^ 2 + Im(z) ^ 2)" paulson@13957: paulson@14323: (*----- injection from reals -----*) paulson@14323: paulson@14323: complex_of_real :: "real => complex" paulson@13957: "complex_of_real r == Abs_complex(r,0::real)" paulson@14323: paulson@13957: (*------- complex conjugate ------*) paulson@13957: paulson@14323: cnj :: "complex => complex" paulson@13957: "cnj z == Abs_complex(Re z, -Im z)" paulson@13957: paulson@14323: (*------------ Argand -------------*) paulson@13957: paulson@14323: sgn :: "complex => complex" paulson@13957: "sgn z == z / complex_of_real(cmod z)" paulson@13957: paulson@14323: arg :: "complex => real" paulson@13957: "arg z == @a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a <= pi" paulson@14323: paulson@13957: paulson@14323: defs (overloaded) paulson@14323: paulson@14323: complex_zero_def: paulson@13957: "0 == Abs_complex(0::real,0)" paulson@13957: paulson@14323: complex_one_def: paulson@13957: "1 == Abs_complex(1,0::real)" paulson@13957: paulson@14323: (*------ imaginary unit ----------*) paulson@14323: paulson@14323: i_def: paulson@13957: "ii == Abs_complex(0::real,1)" paulson@13957: paulson@13957: (*----------- negation -----------*) paulson@14323: paulson@14323: complex_minus_def: paulson@14323: "- (z::complex) == Abs_complex(-Re z, -Im z)" paulson@13957: paulson@14323: paulson@13957: (*----------- inverse -----------*) paulson@14323: complex_inverse_def: paulson@13957: "inverse (z::complex) == Abs_complex(Re(z)/(Re(z) ^ 2 + Im(z) ^ 2), paulson@13957: -Im(z)/(Re(z) ^ 2 + Im(z) ^ 2))" paulson@13957: paulson@14323: complex_add_def: paulson@13957: "w + (z::complex) == Abs_complex(Re(w) + Re(z),Im(w) + Im(z))" paulson@13957: paulson@14323: complex_diff_def: paulson@13957: "w - (z::complex) == w + -(z::complex)" paulson@13957: paulson@14323: complex_mult_def: paulson@13957: "w * (z::complex) == Abs_complex(Re(w) * Re(z) - Im(w) * Im(z), paulson@13957: Re(w) * Im(z) + Im(w) * Re(z))" paulson@13957: paulson@13957: paulson@13957: (*----------- division ----------*) paulson@14323: complex_divide_def: paulson@13957: "w / (z::complex) == w * inverse z" paulson@14323: paulson@13957: paulson@13957: primrec paulson@14323: complexpow_0: "z ^ 0 = complex_of_real 1" paulson@14323: complexpow_Suc: "z ^ (Suc n) = (z::complex) * (z ^ n)" paulson@13957: paulson@13957: paulson@13957: constdefs paulson@13957: paulson@13957: (* abbreviation for (cos a + i sin a) *) paulson@14323: cis :: "real => complex" paulson@13957: "cis a == complex_of_real(cos a) + ii * complex_of_real(sin a)" paulson@13957: paulson@13957: (* abbreviation for r*(cos a + i sin a) *) paulson@14323: rcis :: "[real, real] => complex" paulson@13957: "rcis r a == complex_of_real r * cis a" paulson@13957: paulson@13957: (* e ^ (x + iy) *) paulson@14323: expi :: "complex => complex" paulson@13957: "expi z == complex_of_real(exp (Re z)) * cis (Im z)" paulson@14323: paulson@14323: paulson@14323: lemma inj_Rep_complex: "inj Rep_complex" paulson@14323: apply (rule inj_on_inverseI) paulson@14323: apply (rule Rep_complex_inverse) paulson@14323: done paulson@14323: paulson@14323: lemma inj_Abs_complex: "inj Abs_complex" paulson@14323: apply (rule inj_on_inverseI) paulson@14323: apply (rule Abs_complex_inverse) paulson@14323: apply (simp (no_asm) add: complex_def) paulson@14323: done paulson@14323: declare inj_Abs_complex [THEN injD, simp] paulson@14323: paulson@14323: lemma Abs_complex_cancel_iff: "(Abs_complex x = Abs_complex y) = (x = y)" paulson@14323: apply (auto dest: inj_Abs_complex [THEN injD]) paulson@14323: done paulson@14323: declare Abs_complex_cancel_iff [simp] paulson@14323: paulson@14323: lemma pair_mem_complex: "(x,y) : complex" paulson@14323: apply (unfold complex_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare pair_mem_complex [simp] paulson@14323: paulson@14323: lemma Abs_complex_inverse2: "Rep_complex (Abs_complex (x,y)) = (x,y)" paulson@14323: apply (simp (no_asm) add: Abs_complex_inverse) paulson@14323: done paulson@14323: declare Abs_complex_inverse2 [simp] paulson@14323: paulson@14323: lemma eq_Abs_complex: "(!!x y. z = Abs_complex(x,y) ==> P) ==> P" paulson@14323: apply (rule_tac p = "Rep_complex z" in PairE) paulson@14323: apply (drule_tac f = "Abs_complex" in arg_cong) paulson@14323: apply (force simp add: Rep_complex_inverse) paulson@14323: done paulson@14323: paulson@14323: lemma Re: "Re(Abs_complex(x,y)) = x" paulson@14323: apply (unfold Re_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare Re [simp] paulson@14323: paulson@14323: lemma Im: "Im(Abs_complex(x,y)) = y" paulson@14323: apply (unfold Im_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare Im [simp] paulson@14323: paulson@14323: lemma Abs_complex_cancel: "Abs_complex(Re(z),Im(z)) = z" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp)) paulson@14323: done paulson@14323: declare Abs_complex_cancel [simp] paulson@14323: paulson@14323: lemma complex_Re_Im_cancel_iff: "(w=z) = (Re(w) = Re(z) & Im(w) = Im(z))" paulson@14323: apply (rule_tac z = "w" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto dest: inj_Abs_complex [THEN injD]) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Re_zero: "Re 0 = 0" paulson@14323: apply (unfold complex_zero_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Im_zero: "Im 0 = 0" paulson@14323: apply (unfold complex_zero_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_Re_zero [simp] complex_Im_zero [simp] paulson@14323: paulson@14323: lemma complex_Re_one: "Re 1 = 1" paulson@14323: apply (unfold complex_one_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_Re_one [simp] paulson@14323: paulson@14323: lemma complex_Im_one: "Im 1 = 0" paulson@14323: apply (unfold complex_one_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_Im_one [simp] paulson@14323: paulson@14323: lemma complex_Re_i: "Re(ii) = 0" paulson@14323: apply (unfold i_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_Re_i [simp] paulson@14323: paulson@14323: lemma complex_Im_i: "Im(ii) = 1" paulson@14323: apply (unfold i_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_Im_i [simp] paulson@14323: paulson@14323: lemma Re_complex_of_real_zero: "Re(complex_of_real 0) = 0" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare Re_complex_of_real_zero [simp] paulson@14323: paulson@14323: lemma Im_complex_of_real_zero: "Im(complex_of_real 0) = 0" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare Im_complex_of_real_zero [simp] paulson@14323: paulson@14323: lemma Re_complex_of_real_one: "Re(complex_of_real 1) = 1" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare Re_complex_of_real_one [simp] paulson@14323: paulson@14323: lemma Im_complex_of_real_one: "Im(complex_of_real 1) = 0" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare Im_complex_of_real_one [simp] paulson@14323: paulson@14323: lemma Re_complex_of_real: "Re(complex_of_real z) = z" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare Re_complex_of_real [simp] paulson@14323: paulson@14323: lemma Im_complex_of_real: "Im(complex_of_real z) = 0" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare Im_complex_of_real [simp] paulson@14323: paulson@14323: paulson@14323: subsection{*Negation*} paulson@14323: paulson@14323: lemma complex_minus: "- Abs_complex(x,y) = Abs_complex(-x,-y)" paulson@14323: apply (unfold complex_minus_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Re_minus: "Re (-z) = - Re z" paulson@14323: apply (unfold Re_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Im_minus: "Im (-z) = - Im z" paulson@14323: apply (unfold Im_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_minus_minus: "- (- z) = (z::complex)" paulson@14323: apply (unfold complex_minus_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_minus_minus [simp] paulson@14323: paulson@14323: lemma inj_complex_minus: "inj(%r::complex. -r)" paulson@14323: apply (rule inj_onI) paulson@14323: apply (drule_tac f = "uminus" in arg_cong) paulson@14323: apply simp paulson@14323: done paulson@14323: paulson@14323: lemma complex_minus_zero: "-(0::complex) = 0" paulson@14323: apply (unfold complex_zero_def) paulson@14323: apply (simp (no_asm) add: complex_minus) paulson@14323: done paulson@14323: declare complex_minus_zero [simp] paulson@14323: paulson@14323: lemma complex_minus_zero_iff: "(-x = 0) = (x = (0::complex))" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (auto dest: inj_Abs_complex [THEN injD] paulson@14323: simp add: complex_zero_def complex_minus) paulson@14323: done paulson@14323: declare complex_minus_zero_iff [simp] paulson@14323: paulson@14323: lemma complex_minus_zero_iff2: "(0 = -x) = (x = (0::real))" paulson@14323: apply (auto dest: sym) paulson@14323: done paulson@14323: declare complex_minus_zero_iff2 [simp] paulson@14323: paulson@14323: lemma complex_minus_not_zero_iff: "(-x ~= 0) = (x ~= (0::complex))" paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*Addition*} paulson@14323: paulson@14323: lemma complex_add: paulson@14323: "Abs_complex(x1,y1) + Abs_complex(x2,y2) = Abs_complex(x1+x2,y1+y2)" paulson@14323: apply (unfold complex_add_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Re_add: "Re(x + y) = Re(x) + Re(y)" paulson@14323: apply (unfold Re_def) paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Im_add: "Im(x + y) = Im(x) + Im(y)" paulson@14323: apply (unfold Im_def) paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma complex_add_commute: "(u::complex) + v = v + u" paulson@14323: apply (unfold complex_add_def) paulson@14323: apply (simp (no_asm) add: real_add_commute) paulson@14323: done paulson@14323: paulson@14323: lemma complex_add_assoc: "((u::complex) + v) + w = u + (v + w)" paulson@14323: apply (unfold complex_add_def) paulson@14323: apply (simp (no_asm) add: real_add_assoc) paulson@14323: done paulson@14323: paulson@14323: lemma complex_add_left_commute: "(x::complex) + (y + z) = y + (x + z)" paulson@14323: apply (unfold complex_add_def) paulson@14323: apply (simp (no_asm) add: real_add_left_commute) paulson@14323: done paulson@14323: paulson@14323: lemmas complex_add_ac = complex_add_assoc complex_add_commute paulson@14323: complex_add_left_commute paulson@14323: paulson@14323: lemma complex_add_zero_left: "(0::complex) + z = z" paulson@14323: apply (unfold complex_add_def complex_zero_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_add_zero_left [simp] paulson@14323: paulson@14323: lemma complex_add_zero_right: "z + (0::complex) = z" paulson@14323: apply (unfold complex_add_def complex_zero_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_add_zero_right [simp] paulson@14323: paulson@14323: lemma complex_add_minus_right_zero: paulson@14323: "z + -z = (0::complex)" paulson@14323: apply (unfold complex_add_def complex_minus_def complex_zero_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_add_minus_right_zero [simp] paulson@14323: paulson@14323: lemma complex_add_minus_left_zero: paulson@14323: "-z + z = (0::complex)" paulson@14323: apply (unfold complex_add_def complex_minus_def complex_zero_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_add_minus_left_zero [simp] paulson@14323: paulson@14323: lemma complex_add_minus_cancel: "z + (- z + w) = (w::complex)" paulson@14323: apply (simp (no_asm) add: complex_add_assoc [symmetric]) paulson@14323: done paulson@14323: paulson@14323: lemma complex_minus_add_cancel: "(-z) + (z + w) = (w::complex)" paulson@14323: apply (simp (no_asm) add: complex_add_assoc [symmetric]) paulson@14323: done paulson@14323: paulson@14323: declare complex_add_minus_cancel [simp] complex_minus_add_cancel [simp] paulson@14323: paulson@14323: lemma complex_add_minus_eq_minus: "x + y = (0::complex) ==> x = -y" paulson@14323: apply (auto simp add: complex_Re_Im_cancel_iff complex_Re_add complex_Im_add complex_Re_minus complex_Im_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_minus_add_distrib: "-(x + y) = -x + -(y::complex)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_minus complex_add) paulson@14323: done paulson@14323: declare complex_minus_add_distrib [simp] paulson@14323: paulson@14323: lemma complex_add_left_cancel: "((x::complex) + y = x + z) = (y = z)" paulson@14323: apply (safe) paulson@14323: apply (drule_tac f = "%t.-x + t" in arg_cong) paulson@14323: apply (simp add: complex_add_assoc [symmetric]) paulson@14323: done paulson@14323: declare complex_add_left_cancel [iff] paulson@14323: paulson@14323: lemma complex_add_right_cancel: "(y + (x::complex)= z + x) = (y = z)" paulson@14323: apply (simp (no_asm) add: complex_add_commute) paulson@14323: done paulson@14323: declare complex_add_right_cancel [simp] paulson@14323: paulson@14323: lemma complex_eq_minus_iff: "((x::complex) = y) = (0 = x + - y)" paulson@14323: apply (safe) paulson@14323: apply (rule_tac [2] x1 = "-y" in complex_add_right_cancel [THEN iffD1]) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma complex_eq_minus_iff2: "((x::complex) = y) = (x + - y = 0)" paulson@14323: apply (safe) paulson@14323: apply (rule_tac [2] x1 = "-y" in complex_add_right_cancel [THEN iffD1]) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma complex_diff_0: "(0::complex) - x = -x" paulson@14323: apply (simp (no_asm) add: complex_diff_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_diff_0_right: "x - (0::complex) = x" paulson@14323: apply (simp (no_asm) add: complex_diff_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_diff_self: "x - x = (0::complex)" paulson@14323: apply (simp (no_asm) add: complex_diff_def) paulson@14323: done paulson@14323: paulson@14323: declare complex_diff_0 [simp] complex_diff_0_right [simp] complex_diff_self [simp] paulson@14323: paulson@14323: lemma complex_diff: paulson@14323: "Abs_complex(x1,y1) - Abs_complex(x2,y2) = Abs_complex(x1-x2,y1-y2)" paulson@14323: apply (unfold complex_diff_def) paulson@14323: apply (simp (no_asm) add: complex_add complex_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_diff_eq_eq: "((x::complex) - y = z) = (x = z + y)" paulson@14323: apply (auto simp add: complex_diff_def complex_add_assoc) paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*Multiplication*} paulson@14323: paulson@14323: lemma complex_mult: paulson@14323: "Abs_complex(x1,y1) * Abs_complex(x2,y2) = paulson@14323: Abs_complex(x1*x2 - y1*y2,x1*y2 + y1*x2)" paulson@14323: apply (unfold complex_mult_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mult_commute: "(w::complex) * z = z * w" paulson@14323: apply (unfold complex_mult_def) paulson@14323: apply (simp (no_asm) add: real_mult_commute real_add_commute) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mult_assoc: "((u::complex) * v) * w = u * (v * w)" paulson@14323: apply (unfold complex_mult_def) paulson@14323: apply (simp (no_asm) add: complex_Re_Im_cancel_iff real_mult_assoc real_diff_mult_distrib2 real_add_mult_distrib2 real_diff_mult_distrib real_add_mult_distrib real_mult_left_commute) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mult_left_commute: "(x::complex) * (y * z) = y * (x * z)" paulson@14323: apply (unfold complex_mult_def) paulson@14323: apply (simp (no_asm) add: complex_Re_Im_cancel_iff real_mult_left_commute real_diff_mult_distrib2 real_add_mult_distrib2) paulson@14323: done paulson@14323: paulson@14323: lemmas complex_mult_ac = complex_mult_assoc complex_mult_commute paulson@14323: complex_mult_left_commute paulson@14323: paulson@14323: lemma complex_mult_one_left: "(1::complex) * z = z" paulson@14323: apply (unfold complex_one_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_mult) paulson@14323: done paulson@14323: declare complex_mult_one_left [simp] paulson@14323: paulson@14323: lemma complex_mult_one_right: "z * (1::complex) = z" paulson@14323: apply (simp (no_asm) add: complex_mult_commute) paulson@14323: done paulson@14323: declare complex_mult_one_right [simp] paulson@14323: paulson@14323: lemma complex_mult_zero_left: "(0::complex) * z = 0" paulson@14323: apply (unfold complex_zero_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_mult) paulson@14323: done paulson@14323: declare complex_mult_zero_left [simp] paulson@14323: paulson@14323: lemma complex_mult_zero_right: "z * 0 = (0::complex)" paulson@14323: apply (simp (no_asm) add: complex_mult_commute) paulson@14323: done paulson@14323: declare complex_mult_zero_right [simp] paulson@14323: paulson@14323: lemma complex_divide_zero: "0 / z = (0::complex)" paulson@14323: apply (unfold complex_divide_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_divide_zero [simp] paulson@14323: paulson@14323: lemma complex_minus_mult_eq1: "-(x * y) = -x * (y::complex)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult complex_minus real_diff_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_minus_mult_eq2: "-(x * y) = x * -(y::complex)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult complex_minus real_diff_def) paulson@14323: done paulson@14323: paulson@14323: declare complex_minus_mult_eq1 [symmetric, simp] complex_minus_mult_eq2 [symmetric, simp] paulson@14323: paulson@14323: lemma complex_mult_minus_one: "-(1::complex) * z = -z" paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_mult_minus_one [simp] paulson@14323: paulson@14323: lemma complex_mult_minus_one_right: "z * -(1::complex) = -z" paulson@14323: apply (subst complex_mult_commute) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_mult_minus_one_right [simp] paulson@14323: paulson@14323: lemma complex_minus_mult_cancel: "-x * -y = x * (y::complex)" paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_minus_mult_cancel [simp] paulson@14323: paulson@14323: lemma complex_minus_mult_commute: "-x * y = x * -(y::complex)" paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma complex_add_mult_distrib: "((z1::complex) + z2) * w = (z1 * w) + (z2 * w)" paulson@14323: apply (rule_tac z = "z1" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "z2" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "w" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult complex_add real_add_mult_distrib real_diff_def real_add_ac) paulson@14323: done paulson@14323: paulson@14323: lemma complex_add_mult_distrib2: "(w::complex) * (z1 + z2) = (w * z1) + (w * z2)" paulson@14323: apply (rule_tac z1 = "z1 + z2" in complex_mult_commute [THEN ssubst]) paulson@14323: apply (simp (no_asm) add: complex_add_mult_distrib) paulson@14323: apply (simp (no_asm) add: complex_mult_commute) paulson@14323: done paulson@14323: paulson@14323: lemma complex_zero_not_eq_one: "(0::complex) ~= 1" paulson@14323: apply (unfold complex_zero_def complex_one_def) paulson@14323: apply (simp (no_asm) add: complex_Re_Im_cancel_iff) paulson@14323: done paulson@14323: declare complex_zero_not_eq_one [simp] paulson@14323: declare complex_zero_not_eq_one [THEN not_sym, simp] paulson@14323: paulson@14323: paulson@14323: subsection{*Inverse*} paulson@14323: paulson@14323: lemma complex_inverse: "inverse (Abs_complex(x,y)) = paulson@14323: Abs_complex(x/(x ^ 2 + y ^ 2),-y/(x ^ 2 + y ^ 2))" paulson@14323: apply (unfold complex_inverse_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma COMPLEX_INVERSE_ZERO: "inverse 0 = (0::complex)" paulson@14323: apply (unfold complex_inverse_def complex_zero_def) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma COMPLEX_DIVISION_BY_ZERO: "a / (0::complex) = 0" paulson@14323: apply (simp (no_asm) add: complex_divide_def COMPLEX_INVERSE_ZERO) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mult_inv_left: "z ~= (0::complex) ==> inverse(z) * z = 1" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult complex_inverse complex_one_def complex_zero_def real_add_divide_distrib [symmetric] real_power_two mult_ac) paulson@14323: apply (drule_tac y = "y" in real_sum_squares_not_zero) paulson@14323: apply (drule_tac [2] x = "x" in real_sum_squares_not_zero2) paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_mult_inv_left [simp] paulson@14323: paulson@14323: lemma complex_mult_inv_right: "z ~= (0::complex) ==> z * inverse(z) = 1" paulson@14323: apply (auto intro: complex_mult_commute [THEN subst]) paulson@14323: done paulson@14323: declare complex_mult_inv_right [simp] paulson@14323: paulson@14323: lemma complex_mult_left_cancel: "(c::complex) ~= 0 ==> (c*a=c*b) = (a=b)" paulson@14323: apply auto paulson@14323: apply (drule_tac f = "%x. x*inverse c" in arg_cong) paulson@14323: apply (simp add: complex_mult_ac) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mult_right_cancel: "(c::complex) ~= 0 ==> (a*c=b*c) = (a=b)" paulson@14323: apply (safe) paulson@14323: apply (drule_tac f = "%x. x*inverse c" in arg_cong) paulson@14323: apply (simp add: complex_mult_ac) paulson@14323: done paulson@14323: paulson@14323: lemma complex_inverse_not_zero: "z ~= 0 ==> inverse(z::complex) ~= 0" paulson@14323: apply (safe) paulson@14323: apply (frule complex_mult_right_cancel [THEN iffD2]) paulson@14323: apply (erule_tac [2] V = "inverse z = 0" in thin_rl) paulson@14323: apply (assumption , auto) paulson@14323: done paulson@14323: declare complex_inverse_not_zero [simp] paulson@14323: paulson@14323: lemma complex_mult_not_zero: "!!x. [| x ~= 0; y ~= (0::complex) |] ==> x * y ~= 0" paulson@14323: apply (safe) paulson@14323: apply (drule_tac f = "%z. inverse x*z" in arg_cong) paulson@14323: apply (simp add: complex_mult_assoc [symmetric]) paulson@14323: done paulson@14323: paulson@14323: lemmas complex_mult_not_zeroE = complex_mult_not_zero [THEN notE, standard] paulson@14323: paulson@14323: lemma complex_inverse_inverse: "inverse(inverse (x::complex)) = x" paulson@14323: apply (case_tac "x = 0", simp add: COMPLEX_INVERSE_ZERO) paulson@14323: apply (rule_tac c1 = "inverse x" in complex_mult_right_cancel [THEN iffD1]) paulson@14323: apply (erule complex_inverse_not_zero) paulson@14323: apply (auto dest: complex_inverse_not_zero) paulson@14323: done paulson@14323: declare complex_inverse_inverse [simp] paulson@14323: paulson@14323: lemma complex_inverse_one: "inverse(1::complex) = 1" paulson@14323: apply (unfold complex_one_def) paulson@14323: apply (simp (no_asm) add: complex_inverse) paulson@14323: done paulson@14323: declare complex_inverse_one [simp] paulson@14323: paulson@14323: lemma complex_minus_inverse: "inverse(-x) = -inverse(x::complex)" paulson@14323: apply (case_tac "x = 0", simp add: COMPLEX_INVERSE_ZERO) paulson@14323: apply (rule_tac c1 = "-x" in complex_mult_right_cancel [THEN iffD1]) paulson@14323: apply force paulson@14323: apply (subst complex_mult_inv_left) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma complex_inverse_distrib: "inverse(x*y) = inverse x * inverse (y::complex)" paulson@14323: apply (case_tac "x = 0", simp add: COMPLEX_INVERSE_ZERO) paulson@14323: apply (case_tac "y = 0", simp add: COMPLEX_INVERSE_ZERO) paulson@14323: apply (rule_tac c1 = "x*y" in complex_mult_left_cancel [THEN iffD1]) paulson@14323: apply (auto simp add: complex_mult_not_zero complex_mult_ac) paulson@14323: apply (auto simp add: complex_mult_not_zero complex_mult_assoc [symmetric]) paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*Division*} paulson@14323: paulson@14323: (*adding some of these theorems to simpset as for reals: paulson@14323: not 100% convinced for some*) paulson@14323: paulson@14323: lemma complex_times_divide1_eq: "(x::complex) * (y/z) = (x*y)/z" paulson@14323: apply (simp (no_asm) add: complex_divide_def complex_mult_assoc) paulson@14323: done paulson@14323: paulson@14323: lemma complex_times_divide2_eq: "(y/z) * (x::complex) = (y*x)/z" paulson@14323: apply (simp (no_asm) add: complex_divide_def complex_mult_ac) paulson@14323: done paulson@14323: paulson@14323: declare complex_times_divide1_eq [simp] complex_times_divide2_eq [simp] paulson@14323: paulson@14323: lemma complex_divide_divide1_eq: "(x::complex) / (y/z) = (x*z)/y" paulson@14323: apply (simp (no_asm) add: complex_divide_def complex_inverse_distrib complex_mult_ac) paulson@14323: done paulson@14323: paulson@14323: lemma complex_divide_divide2_eq: "((x::complex) / y) / z = x/(y*z)" paulson@14323: apply (simp (no_asm) add: complex_divide_def complex_inverse_distrib complex_mult_assoc) paulson@14323: done paulson@14323: paulson@14323: declare complex_divide_divide1_eq [simp] complex_divide_divide2_eq [simp] paulson@14323: paulson@14323: (** As with multiplication, pull minus signs OUT of the / operator **) paulson@14323: paulson@14323: lemma complex_minus_divide_eq: "(-x) / (y::complex) = - (x/y)" paulson@14323: apply (simp (no_asm) add: complex_divide_def) paulson@14323: done paulson@14323: declare complex_minus_divide_eq [simp] paulson@14323: paulson@14323: lemma complex_divide_minus_eq: "(x / -(y::complex)) = - (x/y)" paulson@14323: apply (simp (no_asm) add: complex_divide_def complex_minus_inverse) paulson@14323: done paulson@14323: declare complex_divide_minus_eq [simp] paulson@14323: paulson@14323: lemma complex_add_divide_distrib: "(x+y)/(z::complex) = x/z + y/z" paulson@14323: apply (simp (no_asm) add: complex_divide_def complex_add_mult_distrib) paulson@14323: done paulson@14323: paulson@14323: subsection{*Embedding Properties for @{term complex_of_real} Map*} paulson@14323: paulson@14323: lemma inj_complex_of_real: "inj complex_of_real" paulson@14323: apply (rule inj_onI) paulson@14323: apply (auto dest: inj_Abs_complex [THEN injD] simp add: complex_of_real_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_of_real_one: paulson@14323: "complex_of_real 1 = 1" paulson@14323: apply (unfold complex_one_def complex_of_real_def) paulson@14323: apply (rule refl) paulson@14323: done paulson@14323: declare complex_of_real_one [simp] paulson@14323: paulson@14323: lemma complex_of_real_zero: paulson@14323: "complex_of_real 0 = 0" paulson@14323: apply (unfold complex_zero_def complex_of_real_def) paulson@14323: apply (rule refl) paulson@14323: done paulson@14323: declare complex_of_real_zero [simp] paulson@14323: paulson@14323: lemma complex_of_real_eq_iff: "(complex_of_real x = complex_of_real y) = (x = y)" paulson@14323: apply (auto dest: inj_complex_of_real [THEN injD]) paulson@14323: done paulson@14323: declare complex_of_real_eq_iff [iff] paulson@14323: paulson@14323: lemma complex_of_real_minus: "complex_of_real(-x) = - complex_of_real x" paulson@14323: apply (simp (no_asm) add: complex_of_real_def complex_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_of_real_inverse: "complex_of_real(inverse x) = inverse(complex_of_real x)" paulson@14323: apply (case_tac "x=0") paulson@14323: apply (simp add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO) paulson@14323: apply (simp add: complex_inverse complex_of_real_def real_divide_def real_inverse_distrib real_power_two) paulson@14323: done paulson@14323: paulson@14323: lemma complex_of_real_add: "complex_of_real x + complex_of_real y = complex_of_real (x + y)" paulson@14323: apply (simp (no_asm) add: complex_add complex_of_real_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_of_real_diff: "complex_of_real x - complex_of_real y = complex_of_real (x - y)" paulson@14323: apply (simp (no_asm) add: complex_of_real_minus [symmetric] complex_diff_def complex_of_real_add) paulson@14323: done paulson@14323: paulson@14323: lemma complex_of_real_mult: "complex_of_real x * complex_of_real y = complex_of_real (x * y)" paulson@14323: apply (simp (no_asm) add: complex_mult complex_of_real_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_of_real_divide: paulson@14323: "complex_of_real x / complex_of_real y = complex_of_real(x/y)" paulson@14323: apply (unfold complex_divide_def) paulson@14323: apply (case_tac "y=0") paulson@14323: apply (simp (no_asm_simp) add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO) paulson@14323: apply (simp (no_asm_simp) add: complex_of_real_mult [symmetric] complex_of_real_inverse real_divide_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_of_real_pow: "complex_of_real (x ^ n) = (complex_of_real x) ^ n" paulson@14323: apply (induct_tac "n") paulson@14323: apply (auto simp add: complex_of_real_mult [symmetric]) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod: "cmod (Abs_complex(x,y)) = sqrt(x ^ 2 + y ^ 2)" paulson@14323: apply (unfold cmod_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_zero: "cmod(0) = 0" paulson@14323: apply (unfold cmod_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_mod_zero [simp] paulson@14323: paulson@14323: lemma complex_mod_one: "cmod(1) = 1" paulson@14323: apply (unfold cmod_def) paulson@14323: apply (simp add: ); paulson@14323: done paulson@14323: declare complex_mod_one [simp] paulson@14323: paulson@14323: lemma complex_mod_complex_of_real: "cmod(complex_of_real x) = abs x" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (simp (no_asm) add: complex_mod) paulson@14323: done paulson@14323: declare complex_mod_complex_of_real [simp] paulson@14323: paulson@14323: lemma complex_of_real_abs: "complex_of_real (abs x) = complex_of_real(cmod(complex_of_real x))" paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*Conjugation is an Automorphism*} paulson@14323: paulson@14323: lemma complex_cnj: "cnj (Abs_complex(x,y)) = Abs_complex(x,-y)" paulson@14323: apply (unfold cnj_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma inj_cnj: "inj cnj" paulson@14323: apply (rule inj_onI) paulson@14323: apply (auto simp add: cnj_def Abs_complex_cancel_iff complex_Re_Im_cancel_iff) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_cancel_iff: "(cnj x = cnj y) = (x = y)" paulson@14323: apply (auto dest: inj_cnj [THEN injD]) paulson@14323: done paulson@14323: declare complex_cnj_cancel_iff [simp] paulson@14323: paulson@14323: lemma complex_cnj_cnj: "cnj (cnj z) = z" paulson@14323: apply (unfold cnj_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_cnj_cnj [simp] paulson@14323: paulson@14323: lemma complex_cnj_complex_of_real: "cnj (complex_of_real x) = complex_of_real x" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (simp (no_asm) add: complex_cnj) paulson@14323: done paulson@14323: declare complex_cnj_complex_of_real [simp] paulson@14323: paulson@14323: lemma complex_mod_cnj: "cmod (cnj z) = cmod z" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_cnj complex_mod real_power_two) paulson@14323: done paulson@14323: declare complex_mod_cnj [simp] paulson@14323: paulson@14323: lemma complex_cnj_minus: "cnj (-z) = - cnj z" paulson@14323: apply (unfold cnj_def) paulson@14323: apply (simp (no_asm) add: complex_minus complex_Re_minus complex_Im_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_inverse: "cnj(inverse z) = inverse(cnj z)" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_cnj complex_inverse real_power_two) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_add: "cnj(w + z) = cnj(w) + cnj(z)" paulson@14323: apply (rule_tac z = "w" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_cnj complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_diff: "cnj(w - z) = cnj(w) - cnj(z)" paulson@14323: apply (unfold complex_diff_def) paulson@14323: apply (simp (no_asm) add: complex_cnj_add complex_cnj_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_mult: "cnj(w * z) = cnj(w) * cnj(z)" paulson@14323: apply (rule_tac z = "w" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_cnj complex_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_divide: "cnj(w / z) = (cnj w)/(cnj z)" paulson@14323: apply (unfold complex_divide_def) paulson@14323: apply (simp (no_asm) add: complex_cnj_mult complex_cnj_inverse) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_one: "cnj 1 = 1" paulson@14323: apply (unfold cnj_def complex_one_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_cnj_one [simp] paulson@14323: paulson@14323: lemma complex_cnj_pow: "cnj(z ^ n) = cnj(z) ^ n" paulson@14323: apply (induct_tac "n") paulson@14323: apply (auto simp add: complex_cnj_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re(z))" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_add complex_cnj complex_of_real_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im(z)) * ii" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_add complex_cnj complex_of_real_def complex_diff_def complex_minus i_def complex_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complex_cnj_zero: "cnj 0 = 0" paulson@14323: apply (simp add: cnj_def complex_zero_def) paulson@14323: done paulson@14323: declare complex_cnj_zero [simp] paulson@14323: paulson@14323: lemma complex_cnj_zero_iff: "(cnj z = 0) = (z = 0)" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_zero_def complex_cnj) paulson@14323: done paulson@14323: declare complex_cnj_zero_iff [iff] paulson@14323: paulson@14323: lemma complex_mult_cnj: "z * cnj z = complex_of_real (Re(z) ^ 2 + Im(z) ^ 2)" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_cnj complex_mult complex_of_real_def real_power_two) paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*Algebra*} paulson@14323: paulson@14323: lemma complex_mult_zero_iff: "(x*y = (0::complex)) = (x = 0 | y = 0)" paulson@14323: apply auto paulson@14323: apply (auto intro: ccontr dest: complex_mult_not_zero) paulson@14323: done paulson@14323: declare complex_mult_zero_iff [iff] paulson@14323: paulson@14323: lemma complex_add_left_cancel_zero: "(x + y = x) = (y = (0::complex))" paulson@14323: apply (unfold complex_zero_def) paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_add) paulson@14323: done paulson@14323: declare complex_add_left_cancel_zero [simp] paulson@14323: paulson@14323: lemma complex_diff_mult_distrib: paulson@14323: "((z1::complex) - z2) * w = (z1 * w) - (z2 * w)" paulson@14323: apply (unfold complex_diff_def) paulson@14323: apply (simp (no_asm) add: complex_add_mult_distrib) paulson@14323: done paulson@14323: paulson@14323: lemma complex_diff_mult_distrib2: paulson@14323: "(w::complex) * (z1 - z2) = (w * z1) - (w * z2)" paulson@14323: apply (unfold complex_diff_def) paulson@14323: apply (simp (no_asm) add: complex_add_mult_distrib2) paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*Modulus*} paulson@14323: paulson@14323: (* paulson@14323: Goal "[| sqrt(x) = 0; 0 <= x |] ==> x = 0" paulson@14323: by (auto_tac (claset() addIs [real_sqrt_eq_zero_cancel], paulson@14323: simpset())); paulson@14323: qed "real_sqrt_eq_zero_cancel2"; paulson@14323: *) paulson@14323: paulson@14323: lemma complex_mod_eq_zero_cancel: "(cmod x = 0) = (x = 0)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (auto intro: real_sum_squares_cancel real_sum_squares_cancel2 simp add: complex_mod complex_zero_def real_power_two) paulson@14323: done paulson@14323: declare complex_mod_eq_zero_cancel [simp] paulson@14323: paulson@14323: lemma complex_mod_complex_of_real_of_nat: "cmod (complex_of_real(real (n::nat))) = real n" paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_mod_complex_of_real_of_nat [simp] paulson@14323: paulson@14323: lemma complex_mod_minus: "cmod (-x) = cmod(x)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_mod complex_minus real_power_two) paulson@14323: done paulson@14323: declare complex_mod_minus [simp] paulson@14323: paulson@14323: lemma complex_mod_mult_cnj: "cmod(z * cnj(z)) = cmod(z) ^ 2" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_mod complex_cnj complex_mult); paulson@14323: apply (simp (no_asm) add: real_power_two real_abs_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_squared: "cmod(Abs_complex(x,y)) ^ 2 = x ^ 2 + y ^ 2" paulson@14323: apply (unfold cmod_def) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_ge_zero: "0 <= cmod x" paulson@14323: apply (unfold cmod_def) paulson@14323: apply (auto intro: real_sqrt_ge_zero) paulson@14323: done paulson@14323: declare complex_mod_ge_zero [simp] paulson@14323: paulson@14323: lemma abs_cmod_cancel: "abs(cmod x) = cmod x" paulson@14323: apply (auto intro: abs_eqI1) paulson@14323: done paulson@14323: declare abs_cmod_cancel [simp] paulson@14323: paulson@14323: lemma complex_mod_mult: "cmod(x*y) = cmod(x) * cmod(y)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult complex_mod real_sqrt_mult_distrib2 [symmetric] simp del: realpow_Suc) paulson@14323: apply (rule_tac n = "1" in realpow_Suc_cancel_eq) paulson@14323: apply (auto simp add: real_power_two [symmetric] simp del: realpow_Suc) paulson@14323: apply (auto simp add: real_diff_def real_power_two real_add_mult_distrib2 real_add_mult_distrib real_add_ac real_mult_ac) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_add_squared_eq: "cmod(x + y) ^ 2 = cmod(x) ^ 2 + cmod(y) ^ 2 + 2 * Re(x * cnj y)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_add complex_mod_squared complex_mult complex_cnj real_diff_def simp del: realpow_Suc) paulson@14323: apply (auto simp add: real_add_mult_distrib2 real_add_mult_distrib real_power_two real_mult_ac real_add_ac) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Re_mult_cnj_le_cmod: "Re(x * cnj y) <= cmod(x * cnj y)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mod complex_mult complex_cnj real_diff_def simp del: realpow_Suc) paulson@14323: done paulson@14323: declare complex_Re_mult_cnj_le_cmod [simp] paulson@14323: paulson@14323: lemma complex_Re_mult_cnj_le_cmod2: "Re(x * cnj y) <= cmod(x * y)" paulson@14323: apply (cut_tac x = "x" and y = "y" in complex_Re_mult_cnj_le_cmod) paulson@14323: apply (simp add: complex_mod_mult) paulson@14323: done paulson@14323: declare complex_Re_mult_cnj_le_cmod2 [simp] paulson@14323: paulson@14323: lemma real_sum_squared_expand: "((x::real) + y) ^ 2 = x ^ 2 + y ^ 2 + 2 * x * y" paulson@14323: apply (simp (no_asm) add: real_add_mult_distrib real_add_mult_distrib2 real_power_two) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_triangle_squared: "cmod (x + y) ^ 2 <= (cmod(x) + cmod(y)) ^ 2" paulson@14323: apply (simp (no_asm) add: real_sum_squared_expand complex_mod_add_squared_eq real_mult_assoc complex_mod_mult [symmetric]) paulson@14323: done paulson@14323: declare complex_mod_triangle_squared [simp] paulson@14323: paulson@14323: lemma complex_mod_minus_le_complex_mod: "- cmod x <= cmod x" paulson@14323: apply (rule order_trans [OF _ complex_mod_ge_zero]) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_mod_minus_le_complex_mod [simp] paulson@14323: paulson@14323: lemma complex_mod_triangle_ineq: "cmod (x + y) <= cmod(x) + cmod(y)" paulson@14323: apply (rule_tac n = "1" in realpow_increasing) paulson@14323: apply (auto intro: order_trans [OF _ complex_mod_ge_zero] paulson@14323: simp add: real_power_two [symmetric]) paulson@14323: done paulson@14323: declare complex_mod_triangle_ineq [simp] paulson@14323: paulson@14323: lemma complex_mod_triangle_ineq2: "cmod(b + a) - cmod b <= cmod a" paulson@14323: apply (cut_tac x1 = "b" and y1 = "a" and z = "-cmod b" in complex_mod_triangle_ineq [THEN real_add_le_mono1]) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_mod_triangle_ineq2 [simp] paulson@14323: paulson@14323: lemma complex_mod_diff_commute: "cmod (x - y) = cmod (y - x)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "y" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_diff complex_mod real_diff_mult_distrib2 real_power_two real_diff_mult_distrib real_add_ac real_mult_ac) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_add_less: "[| cmod x < r; cmod y < s |] ==> cmod (x + y) < r + s" paulson@14323: apply (auto intro: order_le_less_trans complex_mod_triangle_ineq) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_mult_less: "[| cmod x < r; cmod y < s |] ==> cmod (x * y) < r * s" paulson@14323: apply (auto intro: real_mult_less_mono' simp add: complex_mod_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_diff_ineq: "cmod(a) - cmod(b) <= cmod(a + b)" paulson@14323: apply (rule linorder_cases [of "cmod(a)" "cmod (b)"]) paulson@14323: apply auto paulson@14323: apply (rule order_trans [of _ 0] , rule order_less_imp_le) paulson@14323: apply (simp add: compare_rls) paulson@14323: apply (simp add: ); paulson@14323: apply (simp add: compare_rls) paulson@14323: apply (rule complex_mod_minus [THEN subst]) paulson@14323: apply (rule order_trans) paulson@14323: apply (rule_tac [2] complex_mod_triangle_ineq) paulson@14323: apply (auto simp add: complex_add_ac) paulson@14323: done paulson@14323: declare complex_mod_diff_ineq [simp] paulson@14323: paulson@14323: lemma complex_Re_le_cmod: "Re z <= cmod z" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mod simp del: realpow_Suc) paulson@14323: done paulson@14323: declare complex_Re_le_cmod [simp] paulson@14323: paulson@14323: lemma complex_mod_gt_zero: "z ~= 0 ==> 0 < cmod z" paulson@14323: apply (cut_tac x = "z" in complex_mod_ge_zero) paulson@14323: apply (drule order_le_imp_less_or_eq) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*A Few More Theorems*} paulson@14323: paulson@14323: lemma complex_mod_complexpow: "cmod(x ^ n) = cmod(x) ^ n" paulson@14323: apply (induct_tac "n") paulson@14323: apply (auto simp add: complex_mod_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complexpow_minus: "(-x::complex) ^ n = (if even n then (x ^ n) else -(x ^ n))" paulson@14323: apply (induct_tac "n") paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma complex_inverse_minus: "inverse (-x) = - inverse (x::complex)" paulson@14323: apply (rule_tac z = "x" in eq_Abs_complex) paulson@14323: apply (simp (no_asm_simp) add: complex_inverse complex_minus real_power_two) paulson@14323: done paulson@14323: paulson@14323: lemma complex_divide_one: "x / (1::complex) = x" paulson@14323: apply (unfold complex_divide_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_divide_one [simp] paulson@14323: paulson@14323: lemma complex_mod_inverse: "cmod(inverse x) = inverse(cmod x)" paulson@14323: apply (case_tac "x=0", simp add: COMPLEX_INVERSE_ZERO) paulson@14323: apply (rule_tac c1 = "cmod x" in real_mult_left_cancel [THEN iffD1]) paulson@14323: apply (auto simp add: complex_mod_mult [symmetric]) paulson@14323: done paulson@14323: paulson@14323: lemma complex_mod_divide: paulson@14323: "cmod(x/y) = cmod(x)/(cmod y)" paulson@14323: apply (unfold complex_divide_def real_divide_def) paulson@14323: apply (auto simp add: complex_mod_mult complex_mod_inverse) paulson@14323: done paulson@14323: paulson@14323: lemma complex_inverse_divide: paulson@14323: "inverse(x/y) = y/(x::complex)" paulson@14323: apply (unfold complex_divide_def) paulson@14323: apply (auto simp add: complex_inverse_distrib complex_mult_commute) paulson@14323: done paulson@14323: declare complex_inverse_divide [simp] paulson@14323: paulson@14323: lemma complexpow_mult: "((r::complex) * s) ^ n = (r ^ n) * (s ^ n)" paulson@14323: apply (induct_tac "n") paulson@14323: apply (auto simp add: complex_mult_ac) paulson@14323: done paulson@14323: paulson@14323: paulson@14323: subsection{*More Exponentiation*} paulson@14323: paulson@14323: lemma complexpow_zero: "(0::complex) ^ (Suc n) = 0" paulson@14323: apply auto paulson@14323: done paulson@14323: declare complexpow_zero [simp] paulson@14323: paulson@14323: lemma complexpow_not_zero [rule_format (no_asm)]: "r ~= (0::complex) --> r ^ n ~= 0" paulson@14323: apply (induct_tac "n") paulson@14323: apply (auto simp add: complex_mult_not_zero) paulson@14323: done paulson@14323: declare complexpow_not_zero [simp] paulson@14323: declare complexpow_not_zero [intro] paulson@14323: paulson@14323: lemma complexpow_zero_zero: "r ^ n = (0::complex) ==> r = 0" paulson@14323: apply (blast intro: ccontr dest: complexpow_not_zero) paulson@14323: done paulson@14323: paulson@14323: lemma complexpow_i_squared: "ii ^ 2 = -(1::complex)" paulson@14323: apply (unfold i_def) paulson@14323: apply (auto simp add: complex_mult complex_one_def complex_minus numeral_2_eq_2) paulson@14323: done paulson@14323: declare complexpow_i_squared [simp] paulson@14323: paulson@14323: lemma complex_i_not_zero: "ii ~= 0" paulson@14323: apply (unfold i_def complex_zero_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_i_not_zero [simp] paulson@14323: paulson@14323: lemma complex_mult_eq_zero_cancel1: "x * y ~= (0::complex) ==> x ~= 0" paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma complex_mult_eq_zero_cancel2: "x * y ~= 0 ==> y ~= (0::complex)" paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma complex_mult_not_eq_zero_iff: "(x * y ~= 0) = (x ~= 0 & y ~= (0::complex))" paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_mult_not_eq_zero_iff [iff] paulson@14323: paulson@14323: lemma complexpow_inverse: "inverse ((r::complex) ^ n) = (inverse r) ^ n" paulson@14323: apply (induct_tac "n") paulson@14323: apply (auto simp add: complex_inverse_distrib) paulson@14323: done paulson@14323: paulson@14323: (*---------------------------------------------------------------------------*) paulson@14323: (* sgn *) paulson@14323: (*---------------------------------------------------------------------------*) paulson@14323: paulson@14323: lemma sgn_zero: "sgn 0 = 0" paulson@14323: paulson@14323: apply (unfold sgn_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare sgn_zero [simp] paulson@14323: paulson@14323: lemma sgn_one: "sgn 1 = 1" paulson@14323: apply (unfold sgn_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare sgn_one [simp] paulson@14323: paulson@14323: lemma sgn_minus: "sgn (-z) = - sgn(z)" paulson@14323: apply (unfold sgn_def) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma sgn_eq: paulson@14323: "sgn z = z / complex_of_real (cmod z)" paulson@14323: apply (unfold sgn_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma complex_split: "EX x y. z = complex_of_real(x) + ii * complex_of_real(y)" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_of_real_def i_def complex_mult complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma Re_complex_i: "Re(complex_of_real(x) + ii * complex_of_real(y)) = x" paulson@14323: apply (auto simp add: complex_of_real_def i_def complex_mult complex_add) paulson@14323: done paulson@14323: declare Re_complex_i [simp] paulson@14323: paulson@14323: lemma Im_complex_i: "Im(complex_of_real(x) + ii * complex_of_real(y)) = y" paulson@14323: apply (auto simp add: complex_of_real_def i_def complex_mult complex_add) paulson@14323: done paulson@14323: declare Im_complex_i [simp] paulson@14323: paulson@14323: lemma i_mult_eq: "ii * ii = complex_of_real (-1)" paulson@14323: apply (unfold i_def complex_of_real_def) paulson@14323: apply (auto simp add: complex_mult complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma i_mult_eq2: "ii * ii = -(1::complex)" paulson@14323: apply (unfold i_def complex_one_def) paulson@14323: apply (simp (no_asm) add: complex_mult complex_minus) paulson@14323: done paulson@14323: declare i_mult_eq2 [simp] paulson@14323: paulson@14323: lemma cmod_i: "cmod (complex_of_real(x) + ii * complex_of_real(y)) = paulson@14323: sqrt (x ^ 2 + y ^ 2)" paulson@14323: apply (auto simp add: complex_mult complex_add i_def complex_of_real_def cmod_def) paulson@14323: done paulson@14323: paulson@14323: lemma complex_eq_Re_eq: paulson@14323: "complex_of_real xa + ii * complex_of_real ya = paulson@14323: complex_of_real xb + ii * complex_of_real yb paulson@14323: ==> xa = xb" paulson@14323: apply (unfold complex_of_real_def i_def) paulson@14323: apply (auto simp add: complex_mult complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma complex_eq_Im_eq: paulson@14323: "complex_of_real xa + ii * complex_of_real ya = paulson@14323: complex_of_real xb + ii * complex_of_real yb paulson@14323: ==> ya = yb" paulson@14323: apply (unfold complex_of_real_def i_def) paulson@14323: apply (auto simp add: complex_mult complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma complex_eq_cancel_iff: "(complex_of_real xa + ii * complex_of_real ya = paulson@14323: complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))" paulson@14323: apply (auto intro: complex_eq_Im_eq complex_eq_Re_eq) paulson@14323: done paulson@14323: declare complex_eq_cancel_iff [iff] paulson@14323: paulson@14323: lemma complex_eq_cancel_iffA: "(complex_of_real xa + complex_of_real ya * ii = paulson@14323: complex_of_real xb + complex_of_real yb * ii ) = ((xa = xb) & (ya = yb))" paulson@14323: apply (auto simp add: complex_mult_commute) paulson@14323: done paulson@14323: declare complex_eq_cancel_iffA [iff] paulson@14323: paulson@14323: lemma complex_eq_cancel_iffB: "(complex_of_real xa + complex_of_real ya * ii = paulson@14323: complex_of_real xb + ii * complex_of_real yb) = ((xa = xb) & (ya = yb))" paulson@14323: apply (auto simp add: complex_mult_commute) paulson@14323: done paulson@14323: declare complex_eq_cancel_iffB [iff] paulson@14323: paulson@14323: lemma complex_eq_cancel_iffC: "(complex_of_real xa + ii * complex_of_real ya = paulson@14323: complex_of_real xb + complex_of_real yb * ii) = ((xa = xb) & (ya = yb))" paulson@14323: apply (auto simp add: complex_mult_commute) paulson@14323: done paulson@14323: declare complex_eq_cancel_iffC [iff] paulson@14323: paulson@14323: lemma complex_eq_cancel_iff2: "(complex_of_real x + ii * complex_of_real y = paulson@14323: complex_of_real xa) = (x = xa & y = 0)" paulson@14323: apply (cut_tac xa = "x" and ya = "y" and xb = "xa" and yb = "0" in complex_eq_cancel_iff) paulson@14323: apply (simp del: complex_eq_cancel_iff) paulson@14323: done paulson@14323: declare complex_eq_cancel_iff2 [simp] paulson@14323: paulson@14323: lemma complex_eq_cancel_iff2a: "(complex_of_real x + complex_of_real y * ii = paulson@14323: complex_of_real xa) = (x = xa & y = 0)" paulson@14323: apply (auto simp add: complex_mult_commute) paulson@14323: done paulson@14323: declare complex_eq_cancel_iff2a [simp] paulson@14323: paulson@14323: lemma complex_eq_cancel_iff3: "(complex_of_real x + ii * complex_of_real y = paulson@14323: ii * complex_of_real ya) = (x = 0 & y = ya)" paulson@14323: apply (cut_tac xa = "x" and ya = "y" and xb = "0" and yb = "ya" in complex_eq_cancel_iff) paulson@14323: apply (simp del: complex_eq_cancel_iff) paulson@14323: done paulson@14323: declare complex_eq_cancel_iff3 [simp] paulson@14323: paulson@14323: lemma complex_eq_cancel_iff3a: "(complex_of_real x + complex_of_real y * ii = paulson@14323: ii * complex_of_real ya) = (x = 0 & y = ya)" paulson@14323: apply (auto simp add: complex_mult_commute) paulson@14323: done paulson@14323: declare complex_eq_cancel_iff3a [simp] paulson@14323: paulson@14323: lemma complex_split_Re_zero: paulson@14323: "complex_of_real x + ii * complex_of_real y = 0 paulson@14323: ==> x = 0" paulson@14323: apply (unfold complex_of_real_def i_def complex_zero_def) paulson@14323: apply (auto simp add: complex_mult complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma complex_split_Im_zero: paulson@14323: "complex_of_real x + ii * complex_of_real y = 0 paulson@14323: ==> y = 0" paulson@14323: apply (unfold complex_of_real_def i_def complex_zero_def) paulson@14323: apply (auto simp add: complex_mult complex_add) paulson@14323: done paulson@14323: paulson@14323: lemma Re_sgn: paulson@14323: "Re(sgn z) = Re(z)/cmod z" paulson@14323: apply (unfold sgn_def complex_divide_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_of_real_inverse [symmetric]) paulson@14323: apply (auto simp add: complex_of_real_def complex_mult real_divide_def) paulson@14323: done paulson@14323: declare Re_sgn [simp] paulson@14323: paulson@14323: lemma Im_sgn: paulson@14323: "Im(sgn z) = Im(z)/cmod z" paulson@14323: apply (unfold sgn_def complex_divide_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_of_real_inverse [symmetric]) paulson@14323: apply (auto simp add: complex_of_real_def complex_mult real_divide_def) paulson@14323: done paulson@14323: declare Im_sgn [simp] paulson@14323: paulson@14323: lemma complex_inverse_complex_split: paulson@14323: "inverse(complex_of_real x + ii * complex_of_real y) = paulson@14323: complex_of_real(x/(x ^ 2 + y ^ 2)) - paulson@14323: ii * complex_of_real(y/(x ^ 2 + y ^ 2))" paulson@14323: apply (unfold complex_of_real_def i_def) paulson@14323: apply (auto simp add: complex_mult complex_add complex_diff_def complex_minus complex_inverse real_divide_def) paulson@14323: done paulson@14323: paulson@14323: (*----------------------------------------------------------------------------*) paulson@14323: (* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *) paulson@14323: (* many of the theorems are not used - so should they be kept? *) paulson@14323: (*----------------------------------------------------------------------------*) paulson@14323: paulson@14323: lemma Re_mult_i_eq: paulson@14323: "Re (ii * complex_of_real y) = 0" paulson@14323: apply (unfold i_def complex_of_real_def) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: declare Re_mult_i_eq [simp] paulson@14323: paulson@14323: lemma Im_mult_i_eq: paulson@14323: "Im (ii * complex_of_real y) = y" paulson@14323: apply (unfold i_def complex_of_real_def) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: declare Im_mult_i_eq [simp] paulson@14323: paulson@14323: lemma complex_mod_mult_i: paulson@14323: "cmod (ii * complex_of_real y) = abs y" paulson@14323: apply (unfold i_def complex_of_real_def) paulson@14323: apply (auto simp add: complex_mult complex_mod real_power_two) paulson@14323: done paulson@14323: declare complex_mod_mult_i [simp] paulson@14323: paulson@14323: lemma cos_arg_i_mult_zero: paulson@14323: "0 < y ==> cos (arg(ii * complex_of_real y)) = 0" paulson@14323: apply (unfold arg_def) paulson@14323: apply (auto simp add: abs_eqI2) paulson@14323: apply (rule_tac a = "pi/2" in someI2) paulson@14323: apply auto paulson@14323: apply (rule order_less_trans [of _ 0]) paulson@14323: apply auto paulson@14323: done paulson@14323: declare cos_arg_i_mult_zero [simp] paulson@14323: paulson@14323: lemma cos_arg_i_mult_zero2: paulson@14323: "y < 0 ==> cos (arg(ii * complex_of_real y)) = 0" paulson@14323: apply (unfold arg_def) paulson@14323: apply (auto simp add: abs_minus_eqI2) paulson@14323: apply (rule_tac a = "- pi/2" in someI2) paulson@14323: apply auto paulson@14323: apply (rule order_trans [of _ 0]) paulson@14323: apply auto paulson@14323: done paulson@14323: declare cos_arg_i_mult_zero2 [simp] paulson@14323: paulson@14323: lemma complex_of_real_not_zero_iff: paulson@14323: "(complex_of_real y ~= 0) = (y ~= 0)" paulson@14323: apply (unfold complex_zero_def complex_of_real_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_of_real_not_zero_iff [simp] paulson@14323: paulson@14323: lemma complex_of_real_zero_iff: "(complex_of_real y = 0) = (y = 0)" paulson@14323: apply auto paulson@14323: apply (rule ccontr , drule complex_of_real_not_zero_iff [THEN iffD2]) paulson@14323: apply simp paulson@14323: done paulson@14323: declare complex_of_real_zero_iff [simp] paulson@14323: paulson@14323: lemma cos_arg_i_mult_zero3: "y ~= 0 ==> cos (arg(ii * complex_of_real y)) = 0" paulson@14323: apply (cut_tac x = "y" and y = "0" in linorder_less_linear) paulson@14323: apply auto paulson@14323: done paulson@14323: declare cos_arg_i_mult_zero3 [simp] paulson@14323: paulson@14323: paulson@14323: subsection{*Finally! Polar Form for Complex Numbers*} paulson@14323: paulson@14323: lemma complex_split_polar: "EX r a. z = complex_of_real r * paulson@14323: (complex_of_real(cos a) + ii * complex_of_real(sin a))" paulson@14323: apply (cut_tac z = "z" in complex_split) paulson@14323: apply (auto simp add: polar_Ex complex_add_mult_distrib2 complex_of_real_mult complex_mult_ac) paulson@14323: done paulson@14323: paulson@14323: lemma rcis_Ex: "EX r a. z = rcis r a" paulson@14323: apply (unfold rcis_def cis_def) paulson@14323: apply (rule complex_split_polar) paulson@14323: done paulson@14323: paulson@14323: lemma Re_complex_polar: "Re(complex_of_real r * paulson@14323: (complex_of_real(cos a) + ii * complex_of_real(sin a))) = r * cos a" paulson@14323: apply (auto simp add: complex_add_mult_distrib2 complex_of_real_mult complex_mult_ac) paulson@14323: done paulson@14323: declare Re_complex_polar [simp] paulson@14323: paulson@14323: lemma Re_rcis: "Re(rcis r a) = r * cos a" paulson@14323: apply (unfold rcis_def cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare Re_rcis [simp] paulson@14323: paulson@14323: lemma Im_complex_polar: "Im(complex_of_real r * paulson@14323: (complex_of_real(cos a) + ii * complex_of_real(sin a))) = r * sin a" paulson@14323: apply (auto simp add: complex_add_mult_distrib2 complex_of_real_mult complex_mult_ac) paulson@14323: done paulson@14323: declare Im_complex_polar [simp] paulson@14323: paulson@14323: lemma Im_rcis: "Im(rcis r a) = r * sin a" paulson@14323: apply (unfold rcis_def cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare Im_rcis [simp] paulson@14323: paulson@14323: lemma complex_mod_complex_polar: "cmod (complex_of_real r * paulson@14323: (complex_of_real(cos a) + ii * complex_of_real(sin a))) = abs r" paulson@14323: apply (auto simp add: complex_add_mult_distrib2 cmod_i complex_of_real_mult real_add_mult_distrib2 [symmetric] realpow_mult complex_mult_ac real_mult_ac simp del: realpow_Suc) paulson@14323: done paulson@14323: declare complex_mod_complex_polar [simp] paulson@14323: paulson@14323: lemma complex_mod_rcis: "cmod(rcis r a) = abs r" paulson@14323: apply (unfold rcis_def cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare complex_mod_rcis [simp] paulson@14323: paulson@14323: lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))" paulson@14323: apply (unfold cmod_def) paulson@14323: apply (rule real_sqrt_eq_iff [THEN iffD2]) paulson@14323: apply (auto simp add: complex_mult_cnj) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Re_cnj: "Re(cnj z) = Re z" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_cnj) paulson@14323: done paulson@14323: declare complex_Re_cnj [simp] paulson@14323: paulson@14323: lemma complex_Im_cnj: "Im(cnj z) = - Im z" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_cnj) paulson@14323: done paulson@14323: declare complex_Im_cnj [simp] paulson@14323: paulson@14323: lemma complex_In_mult_cnj_zero: "Im (z * cnj z) = 0" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_cnj complex_mult) paulson@14323: done paulson@14323: declare complex_In_mult_cnj_zero [simp] paulson@14323: paulson@14323: lemma complex_Re_mult: "[| Im w = 0; Im z = 0 |] ==> Re(w * z) = Re(w) * Re(z)" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "w" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Re_mult_complex_of_real: "Re (z * complex_of_real c) = Re(z) * c" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: declare complex_Re_mult_complex_of_real [simp] paulson@14323: paulson@14323: lemma complex_Im_mult_complex_of_real: "Im (z * complex_of_real c) = Im(z) * c" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: declare complex_Im_mult_complex_of_real [simp] paulson@14323: paulson@14323: lemma complex_Re_mult_complex_of_real2: "Re (complex_of_real c * z) = c * Re(z)" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: declare complex_Re_mult_complex_of_real2 [simp] paulson@14323: paulson@14323: lemma complex_Im_mult_complex_of_real2: "Im (complex_of_real c * z) = c * Im(z)" paulson@14323: apply (unfold complex_of_real_def) paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: declare complex_Im_mult_complex_of_real2 [simp] paulson@14323: paulson@14323: (*---------------------------------------------------------------------------*) paulson@14323: (* (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b) *) paulson@14323: (*---------------------------------------------------------------------------*) paulson@14323: paulson@14323: lemma cis_rcis_eq: "cis a = rcis 1 a" paulson@14323: apply (unfold rcis_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: paulson@14323: lemma rcis_mult: paulson@14323: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)" paulson@14323: apply (unfold rcis_def cis_def) paulson@14323: apply (auto simp add: cos_add sin_add complex_add_mult_distrib2 complex_add_mult_distrib complex_mult_ac complex_add_ac) paulson@14323: apply (auto simp add: complex_add_mult_distrib2 [symmetric] complex_mult_assoc [symmetric] complex_of_real_mult complex_of_real_add complex_add_assoc [symmetric] i_mult_eq simp del: i_mult_eq2) paulson@14323: apply (auto simp add: complex_add_ac) paulson@14323: apply (auto simp add: complex_add_assoc [symmetric] complex_of_real_add real_add_mult_distrib2 real_diff_def mult_ac add_ac) paulson@14323: done paulson@14323: paulson@14323: lemma cis_mult: "cis a * cis b = cis (a + b)" paulson@14323: apply (simp (no_asm) add: cis_rcis_eq rcis_mult) paulson@14323: done paulson@14323: paulson@14323: lemma cis_zero: "cis 0 = 1" paulson@14323: apply (unfold cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare cis_zero [simp] paulson@14323: paulson@14323: lemma cis_zero2: "cis 0 = complex_of_real 1" paulson@14323: apply (unfold cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare cis_zero2 [simp] paulson@14323: paulson@14323: lemma rcis_zero_mod: "rcis 0 a = 0" paulson@14323: apply (unfold rcis_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare rcis_zero_mod [simp] paulson@14323: paulson@14323: lemma rcis_zero_arg: "rcis r 0 = complex_of_real r" paulson@14323: apply (unfold rcis_def) paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare rcis_zero_arg [simp] paulson@14323: paulson@14323: lemma complex_of_real_minus_one: paulson@14323: "complex_of_real (-(1::real)) = -(1::complex)" paulson@14323: apply (unfold complex_of_real_def complex_one_def) paulson@14323: apply (simp (no_asm) add: complex_minus) paulson@14323: done paulson@14323: paulson@14323: lemma complex_i_mult_minus: "ii * (ii * x) = - x" paulson@14323: apply (simp (no_asm) add: complex_mult_assoc [symmetric]) paulson@14323: done paulson@14323: declare complex_i_mult_minus [simp] paulson@14323: paulson@14323: lemma complex_i_mult_minus2: "ii * ii * x = - x" paulson@14323: apply (simp (no_asm)) paulson@14323: done paulson@14323: declare complex_i_mult_minus2 [simp] paulson@14323: paulson@14323: lemma cis_real_of_nat_Suc_mult: paulson@14323: "cis (real (Suc n) * a) = cis a * cis (real n * a)" paulson@14323: apply (unfold cis_def) paulson@14323: apply (auto simp add: real_of_nat_Suc real_add_mult_distrib cos_add sin_add complex_add_mult_distrib complex_add_mult_distrib2 complex_of_real_add complex_of_real_mult complex_mult_ac complex_add_ac) paulson@14323: apply (auto simp add: complex_add_mult_distrib2 [symmetric] complex_mult_assoc [symmetric] i_mult_eq complex_of_real_mult complex_of_real_add complex_add_assoc [symmetric] complex_of_real_minus [symmetric] real_diff_def mult_ac simp del: i_mult_eq2) paulson@14323: done paulson@14323: paulson@14323: lemma DeMoivre: "(cis a) ^ n = cis (real n * a)" paulson@14323: apply (induct_tac "n") paulson@14323: apply (auto simp add: cis_real_of_nat_Suc_mult) paulson@14323: done paulson@14323: paulson@14323: lemma DeMoivre2: paulson@14323: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)" paulson@14323: apply (unfold rcis_def) paulson@14323: apply (auto simp add: complexpow_mult DeMoivre complex_of_real_pow) paulson@14323: done paulson@14323: paulson@14323: lemma cis_inverse: "inverse(cis a) = cis (-a)" paulson@14323: apply (unfold cis_def) paulson@14323: apply (auto simp add: complex_inverse_complex_split complex_of_real_minus complex_diff_def) paulson@14323: done paulson@14323: declare cis_inverse [simp] paulson@14323: paulson@14323: lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)" paulson@14323: apply (case_tac "r=0") paulson@14323: apply (simp (no_asm_simp) add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO) paulson@14323: apply (auto simp add: complex_inverse_complex_split complex_add_mult_distrib2 complex_of_real_mult rcis_def cis_def real_power_two complex_mult_ac real_mult_ac) paulson@14323: apply (auto simp add: real_add_mult_distrib2 [symmetric] complex_of_real_minus complex_diff_def) paulson@14323: done paulson@14323: paulson@14323: lemma cis_divide: "cis a / cis b = cis (a - b)" paulson@14323: apply (unfold complex_divide_def) paulson@14323: apply (auto simp add: cis_mult real_diff_def) paulson@14323: done paulson@14323: paulson@14323: lemma rcis_divide: paulson@14323: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)" paulson@14323: apply (unfold complex_divide_def) paulson@14323: apply (case_tac "r2=0") paulson@14323: apply (simp (no_asm_simp) add: DIVISION_BY_ZERO COMPLEX_INVERSE_ZERO) paulson@14323: apply (auto simp add: rcis_inverse rcis_mult real_diff_def) paulson@14323: done paulson@14323: paulson@14323: lemma Re_cis: "Re(cis a) = cos a" paulson@14323: apply (unfold cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare Re_cis [simp] paulson@14323: paulson@14323: lemma Im_cis: "Im(cis a) = sin a" paulson@14323: apply (unfold cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare Im_cis [simp] paulson@14323: paulson@14323: lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)" paulson@14323: apply (auto simp add: DeMoivre) paulson@14323: done paulson@14323: paulson@14323: lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)" paulson@14323: apply (auto simp add: DeMoivre) paulson@14323: done paulson@14323: paulson@14323: lemma expi_Im_split: paulson@14323: "expi (ii * complex_of_real y) = paulson@14323: complex_of_real (cos y) + ii * complex_of_real (sin y)" paulson@14323: apply (unfold expi_def cis_def) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma expi_Im_cis: paulson@14323: "expi (ii * complex_of_real y) = cis y" paulson@14323: apply (unfold expi_def) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma expi_add: "expi(a + b) = expi(a) * expi(b)" paulson@14323: apply (unfold expi_def) paulson@14323: apply (auto simp add: complex_Re_add exp_add complex_Im_add cis_mult [symmetric] complex_of_real_mult complex_mult_ac) paulson@14323: done paulson@14323: paulson@14323: lemma expi_complex_split: paulson@14323: "expi(complex_of_real x + ii * complex_of_real y) = paulson@14323: complex_of_real (exp(x)) * cis y" paulson@14323: apply (unfold expi_def) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: lemma expi_zero: "expi (0::complex) = 1" paulson@14323: apply (unfold expi_def) paulson@14323: apply auto paulson@14323: done paulson@14323: declare expi_zero [simp] paulson@14323: paulson@14323: lemma complex_Re_mult_eq: "Re (w * z) = Re w * Re z - Im w * Im z" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "w" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complex_Im_mult_eq: paulson@14323: "Im (w * z) = Re w * Im z + Im w * Re z" paulson@14323: apply (rule_tac z = "z" in eq_Abs_complex) paulson@14323: apply (rule_tac z = "w" in eq_Abs_complex) paulson@14323: apply (auto simp add: complex_mult) paulson@14323: done paulson@14323: paulson@14323: lemma complex_expi_Ex: paulson@14323: "EX a r. z = complex_of_real r * expi a" paulson@14323: apply (cut_tac z = "z" in rcis_Ex) paulson@14323: apply (auto simp add: expi_def rcis_def complex_mult_assoc [symmetric] complex_of_real_mult) paulson@14323: apply (rule_tac x = "ii * complex_of_real a" in exI) paulson@14323: apply auto paulson@14323: done paulson@14323: paulson@14323: paulson@14323: (**** paulson@14323: Goal "[| - pi < a; a <= pi |] ==> (-pi < a & a <= 0) | (0 <= a & a <= pi)" paulson@14323: by Auto_tac; paulson@14323: qed "lemma_split_interval"; paulson@14323: paulson@14323: Goalw [arg_def] paulson@14323: "[| r ~= 0; - pi < a; a <= pi |] \ paulson@14323: \ ==> arg(complex_of_real r * \ paulson@14323: \ (complex_of_real(cos a) + ii * complex_of_real(sin a))) = a"; paulson@14323: by Auto_tac; paulson@14323: by (cut_inst_tac [("x","0"),("y","r")] linorder_less_linear 1); paulson@14323: by (auto_tac (claset(),simpset() addsimps (map (full_rename_numerals thy) paulson@14323: [rabs_eqI2,rabs_minus_eqI2,real_minus_rinv]) [real_divide_def, paulson@14323: real_minus_mult_eq2 RS sym] real_mult_ac)); paulson@14323: by (auto_tac (claset(),simpset() addsimps [real_mult_assoc RS sym])); paulson@14323: by (dtac lemma_split_interval 1 THEN safe); paulson@14323: ****) paulson@14323: paulson@14323: paulson@14323: ML paulson@14323: {* paulson@14323: val complex_zero_def = thm"complex_zero_def"; paulson@14323: val complex_one_def = thm"complex_one_def"; paulson@14323: val complex_minus_def = thm"complex_minus_def"; paulson@14323: val complex_diff_def = thm"complex_diff_def"; paulson@14323: val complex_divide_def = thm"complex_divide_def"; paulson@14323: val complex_mult_def = thm"complex_mult_def"; paulson@14323: val complex_add_def = thm"complex_add_def"; paulson@14323: val complex_of_real_def = thm"complex_of_real_def"; paulson@14323: val i_def = thm"i_def"; paulson@14323: val expi_def = thm"expi_def"; paulson@14323: val cis_def = thm"cis_def"; paulson@14323: val rcis_def = thm"rcis_def"; paulson@14323: val cmod_def = thm"cmod_def"; paulson@14323: val cnj_def = thm"cnj_def"; paulson@14323: val sgn_def = thm"sgn_def"; paulson@14323: val arg_def = thm"arg_def"; paulson@14323: val complexpow_0 = thm"complexpow_0"; paulson@14323: val complexpow_Suc = thm"complexpow_Suc"; paulson@14323: paulson@14323: val inj_Rep_complex = thm"inj_Rep_complex"; paulson@14323: val inj_Abs_complex = thm"inj_Abs_complex"; paulson@14323: val Abs_complex_cancel_iff = thm"Abs_complex_cancel_iff"; paulson@14323: val pair_mem_complex = thm"pair_mem_complex"; paulson@14323: val Abs_complex_inverse2 = thm"Abs_complex_inverse2"; paulson@14323: val eq_Abs_complex = thm"eq_Abs_complex"; paulson@14323: val Re = thm"Re"; paulson@14323: val Im = thm"Im"; paulson@14323: val Abs_complex_cancel = thm"Abs_complex_cancel"; paulson@14323: val complex_Re_Im_cancel_iff = thm"complex_Re_Im_cancel_iff"; paulson@14323: val complex_Re_zero = thm"complex_Re_zero"; paulson@14323: val complex_Im_zero = thm"complex_Im_zero"; paulson@14323: val complex_Re_one = thm"complex_Re_one"; paulson@14323: val complex_Im_one = thm"complex_Im_one"; paulson@14323: val complex_Re_i = thm"complex_Re_i"; paulson@14323: val complex_Im_i = thm"complex_Im_i"; paulson@14323: val Re_complex_of_real_zero = thm"Re_complex_of_real_zero"; paulson@14323: val Im_complex_of_real_zero = thm"Im_complex_of_real_zero"; paulson@14323: val Re_complex_of_real_one = thm"Re_complex_of_real_one"; paulson@14323: val Im_complex_of_real_one = thm"Im_complex_of_real_one"; paulson@14323: val Re_complex_of_real = thm"Re_complex_of_real"; paulson@14323: val Im_complex_of_real = thm"Im_complex_of_real"; paulson@14323: val complex_minus = thm"complex_minus"; paulson@14323: val complex_Re_minus = thm"complex_Re_minus"; paulson@14323: val complex_Im_minus = thm"complex_Im_minus"; paulson@14323: val complex_minus_minus = thm"complex_minus_minus"; paulson@14323: val inj_complex_minus = thm"inj_complex_minus"; paulson@14323: val complex_minus_zero = thm"complex_minus_zero"; paulson@14323: val complex_minus_zero_iff = thm"complex_minus_zero_iff"; paulson@14323: val complex_minus_zero_iff2 = thm"complex_minus_zero_iff2"; paulson@14323: val complex_minus_not_zero_iff = thm"complex_minus_not_zero_iff"; paulson@14323: val complex_add = thm"complex_add"; paulson@14323: val complex_Re_add = thm"complex_Re_add"; paulson@14323: val complex_Im_add = thm"complex_Im_add"; paulson@14323: val complex_add_commute = thm"complex_add_commute"; paulson@14323: val complex_add_assoc = thm"complex_add_assoc"; paulson@14323: val complex_add_left_commute = thm"complex_add_left_commute"; paulson@14323: val complex_add_zero_left = thm"complex_add_zero_left"; paulson@14323: val complex_add_zero_right = thm"complex_add_zero_right"; paulson@14323: val complex_add_minus_right_zero = thm"complex_add_minus_right_zero"; paulson@14323: val complex_add_minus_left_zero = thm"complex_add_minus_left_zero"; paulson@14323: val complex_add_minus_cancel = thm"complex_add_minus_cancel"; paulson@14323: val complex_minus_add_cancel = thm"complex_minus_add_cancel"; paulson@14323: val complex_add_minus_eq_minus = thm"complex_add_minus_eq_minus"; paulson@14323: val complex_minus_add_distrib = thm"complex_minus_add_distrib"; paulson@14323: val complex_add_left_cancel = thm"complex_add_left_cancel"; paulson@14323: val complex_add_right_cancel = thm"complex_add_right_cancel"; paulson@14323: val complex_eq_minus_iff = thm"complex_eq_minus_iff"; paulson@14323: val complex_eq_minus_iff2 = thm"complex_eq_minus_iff2"; paulson@14323: val complex_diff_0 = thm"complex_diff_0"; paulson@14323: val complex_diff_0_right = thm"complex_diff_0_right"; paulson@14323: val complex_diff_self = thm"complex_diff_self"; paulson@14323: val complex_diff = thm"complex_diff"; paulson@14323: val complex_diff_eq_eq = thm"complex_diff_eq_eq"; paulson@14323: val complex_mult = thm"complex_mult"; paulson@14323: val complex_mult_commute = thm"complex_mult_commute"; paulson@14323: val complex_mult_assoc = thm"complex_mult_assoc"; paulson@14323: val complex_mult_left_commute = thm"complex_mult_left_commute"; paulson@14323: val complex_mult_one_left = thm"complex_mult_one_left"; paulson@14323: val complex_mult_one_right = thm"complex_mult_one_right"; paulson@14323: val complex_mult_zero_left = thm"complex_mult_zero_left"; paulson@14323: val complex_mult_zero_right = thm"complex_mult_zero_right"; paulson@14323: val complex_divide_zero = thm"complex_divide_zero"; paulson@14323: val complex_minus_mult_eq1 = thm"complex_minus_mult_eq1"; paulson@14323: val complex_minus_mult_eq2 = thm"complex_minus_mult_eq2"; paulson@14323: val complex_mult_minus_one = thm"complex_mult_minus_one"; paulson@14323: val complex_mult_minus_one_right = thm"complex_mult_minus_one_right"; paulson@14323: val complex_minus_mult_cancel = thm"complex_minus_mult_cancel"; paulson@14323: val complex_minus_mult_commute = thm"complex_minus_mult_commute"; paulson@14323: val complex_add_mult_distrib = thm"complex_add_mult_distrib"; paulson@14323: val complex_add_mult_distrib2 = thm"complex_add_mult_distrib2"; paulson@14323: val complex_zero_not_eq_one = thm"complex_zero_not_eq_one"; paulson@14323: val complex_inverse = thm"complex_inverse"; paulson@14323: val COMPLEX_INVERSE_ZERO = thm"COMPLEX_INVERSE_ZERO"; paulson@14323: val COMPLEX_DIVISION_BY_ZERO = thm"COMPLEX_DIVISION_BY_ZERO"; paulson@14323: val complex_mult_inv_left = thm"complex_mult_inv_left"; paulson@14323: val complex_mult_inv_right = thm"complex_mult_inv_right"; paulson@14323: val complex_mult_left_cancel = thm"complex_mult_left_cancel"; paulson@14323: val complex_mult_right_cancel = thm"complex_mult_right_cancel"; paulson@14323: val complex_inverse_not_zero = thm"complex_inverse_not_zero"; paulson@14323: val complex_mult_not_zero = thm"complex_mult_not_zero"; paulson@14323: val complex_inverse_inverse = thm"complex_inverse_inverse"; paulson@14323: val complex_inverse_one = thm"complex_inverse_one"; paulson@14323: val complex_minus_inverse = thm"complex_minus_inverse"; paulson@14323: val complex_inverse_distrib = thm"complex_inverse_distrib"; paulson@14323: val complex_times_divide1_eq = thm"complex_times_divide1_eq"; paulson@14323: val complex_times_divide2_eq = thm"complex_times_divide2_eq"; paulson@14323: val complex_divide_divide1_eq = thm"complex_divide_divide1_eq"; paulson@14323: val complex_divide_divide2_eq = thm"complex_divide_divide2_eq"; paulson@14323: val complex_minus_divide_eq = thm"complex_minus_divide_eq"; paulson@14323: val complex_divide_minus_eq = thm"complex_divide_minus_eq"; paulson@14323: val complex_add_divide_distrib = thm"complex_add_divide_distrib"; paulson@14323: val inj_complex_of_real = thm"inj_complex_of_real"; paulson@14323: val complex_of_real_one = thm"complex_of_real_one"; paulson@14323: val complex_of_real_zero = thm"complex_of_real_zero"; paulson@14323: val complex_of_real_eq_iff = thm"complex_of_real_eq_iff"; paulson@14323: val complex_of_real_minus = thm"complex_of_real_minus"; paulson@14323: val complex_of_real_inverse = thm"complex_of_real_inverse"; paulson@14323: val complex_of_real_add = thm"complex_of_real_add"; paulson@14323: val complex_of_real_diff = thm"complex_of_real_diff"; paulson@14323: val complex_of_real_mult = thm"complex_of_real_mult"; paulson@14323: val complex_of_real_divide = thm"complex_of_real_divide"; paulson@14323: val complex_of_real_pow = thm"complex_of_real_pow"; paulson@14323: val complex_mod = thm"complex_mod"; paulson@14323: val complex_mod_zero = thm"complex_mod_zero"; paulson@14323: val complex_mod_one = thm"complex_mod_one"; paulson@14323: val complex_mod_complex_of_real = thm"complex_mod_complex_of_real"; paulson@14323: val complex_of_real_abs = thm"complex_of_real_abs"; paulson@14323: val complex_cnj = thm"complex_cnj"; paulson@14323: val inj_cnj = thm"inj_cnj"; paulson@14323: val complex_cnj_cancel_iff = thm"complex_cnj_cancel_iff"; paulson@14323: val complex_cnj_cnj = thm"complex_cnj_cnj"; paulson@14323: val complex_cnj_complex_of_real = thm"complex_cnj_complex_of_real"; paulson@14323: val complex_mod_cnj = thm"complex_mod_cnj"; paulson@14323: val complex_cnj_minus = thm"complex_cnj_minus"; paulson@14323: val complex_cnj_inverse = thm"complex_cnj_inverse"; paulson@14323: val complex_cnj_add = thm"complex_cnj_add"; paulson@14323: val complex_cnj_diff = thm"complex_cnj_diff"; paulson@14323: val complex_cnj_mult = thm"complex_cnj_mult"; paulson@14323: val complex_cnj_divide = thm"complex_cnj_divide"; paulson@14323: val complex_cnj_one = thm"complex_cnj_one"; paulson@14323: val complex_cnj_pow = thm"complex_cnj_pow"; paulson@14323: val complex_add_cnj = thm"complex_add_cnj"; paulson@14323: val complex_diff_cnj = thm"complex_diff_cnj"; paulson@14323: val complex_cnj_zero = thm"complex_cnj_zero"; paulson@14323: val complex_cnj_zero_iff = thm"complex_cnj_zero_iff"; paulson@14323: val complex_mult_cnj = thm"complex_mult_cnj"; paulson@14323: val complex_mult_zero_iff = thm"complex_mult_zero_iff"; paulson@14323: val complex_add_left_cancel_zero = thm"complex_add_left_cancel_zero"; paulson@14323: val complex_diff_mult_distrib = thm"complex_diff_mult_distrib"; paulson@14323: val complex_diff_mult_distrib2 = thm"complex_diff_mult_distrib2"; paulson@14323: val complex_mod_eq_zero_cancel = thm"complex_mod_eq_zero_cancel"; paulson@14323: val complex_mod_complex_of_real_of_nat = thm"complex_mod_complex_of_real_of_nat"; paulson@14323: val complex_mod_minus = thm"complex_mod_minus"; paulson@14323: val complex_mod_mult_cnj = thm"complex_mod_mult_cnj"; paulson@14323: val complex_mod_squared = thm"complex_mod_squared"; paulson@14323: val complex_mod_ge_zero = thm"complex_mod_ge_zero"; paulson@14323: val abs_cmod_cancel = thm"abs_cmod_cancel"; paulson@14323: val complex_mod_mult = thm"complex_mod_mult"; paulson@14323: val complex_mod_add_squared_eq = thm"complex_mod_add_squared_eq"; paulson@14323: val complex_Re_mult_cnj_le_cmod = thm"complex_Re_mult_cnj_le_cmod"; paulson@14323: val complex_Re_mult_cnj_le_cmod2 = thm"complex_Re_mult_cnj_le_cmod2"; paulson@14323: val real_sum_squared_expand = thm"real_sum_squared_expand"; paulson@14323: val complex_mod_triangle_squared = thm"complex_mod_triangle_squared"; paulson@14323: val complex_mod_minus_le_complex_mod = thm"complex_mod_minus_le_complex_mod"; paulson@14323: val complex_mod_triangle_ineq = thm"complex_mod_triangle_ineq"; paulson@14323: val complex_mod_triangle_ineq2 = thm"complex_mod_triangle_ineq2"; paulson@14323: val complex_mod_diff_commute = thm"complex_mod_diff_commute"; paulson@14323: val complex_mod_add_less = thm"complex_mod_add_less"; paulson@14323: val complex_mod_mult_less = thm"complex_mod_mult_less"; paulson@14323: val complex_mod_diff_ineq = thm"complex_mod_diff_ineq"; paulson@14323: val complex_Re_le_cmod = thm"complex_Re_le_cmod"; paulson@14323: val complex_mod_gt_zero = thm"complex_mod_gt_zero"; paulson@14323: val complex_mod_complexpow = thm"complex_mod_complexpow"; paulson@14323: val complexpow_minus = thm"complexpow_minus"; paulson@14323: val complex_inverse_minus = thm"complex_inverse_minus"; paulson@14323: val complex_divide_one = thm"complex_divide_one"; paulson@14323: val complex_mod_inverse = thm"complex_mod_inverse"; paulson@14323: val complex_mod_divide = thm"complex_mod_divide"; paulson@14323: val complex_inverse_divide = thm"complex_inverse_divide"; paulson@14323: val complexpow_mult = thm"complexpow_mult"; paulson@14323: val complexpow_zero = thm"complexpow_zero"; paulson@14323: val complexpow_not_zero = thm"complexpow_not_zero"; paulson@14323: val complexpow_zero_zero = thm"complexpow_zero_zero"; paulson@14323: val complexpow_i_squared = thm"complexpow_i_squared"; paulson@14323: val complex_i_not_zero = thm"complex_i_not_zero"; paulson@14323: val complex_mult_eq_zero_cancel1 = thm"complex_mult_eq_zero_cancel1"; paulson@14323: val complex_mult_eq_zero_cancel2 = thm"complex_mult_eq_zero_cancel2"; paulson@14323: val complex_mult_not_eq_zero_iff = thm"complex_mult_not_eq_zero_iff"; paulson@14323: val complexpow_inverse = thm"complexpow_inverse"; paulson@14323: val sgn_zero = thm"sgn_zero"; paulson@14323: val sgn_one = thm"sgn_one"; paulson@14323: val sgn_minus = thm"sgn_minus"; paulson@14323: val sgn_eq = thm"sgn_eq"; paulson@14323: val complex_split = thm"complex_split"; paulson@14323: val Re_complex_i = thm"Re_complex_i"; paulson@14323: val Im_complex_i = thm"Im_complex_i"; paulson@14323: val i_mult_eq = thm"i_mult_eq"; paulson@14323: val i_mult_eq2 = thm"i_mult_eq2"; paulson@14323: val cmod_i = thm"cmod_i"; paulson@14323: val complex_eq_Re_eq = thm"complex_eq_Re_eq"; paulson@14323: val complex_eq_Im_eq = thm"complex_eq_Im_eq"; paulson@14323: val complex_eq_cancel_iff = thm"complex_eq_cancel_iff"; paulson@14323: val complex_eq_cancel_iffA = thm"complex_eq_cancel_iffA"; paulson@14323: val complex_eq_cancel_iffB = thm"complex_eq_cancel_iffB"; paulson@14323: val complex_eq_cancel_iffC = thm"complex_eq_cancel_iffC"; paulson@14323: val complex_eq_cancel_iff2 = thm"complex_eq_cancel_iff2"; paulson@14323: val complex_eq_cancel_iff2a = thm"complex_eq_cancel_iff2a"; paulson@14323: val complex_eq_cancel_iff3 = thm"complex_eq_cancel_iff3"; paulson@14323: val complex_eq_cancel_iff3a = thm"complex_eq_cancel_iff3a"; paulson@14323: val complex_split_Re_zero = thm"complex_split_Re_zero"; paulson@14323: val complex_split_Im_zero = thm"complex_split_Im_zero"; paulson@14323: val Re_sgn = thm"Re_sgn"; paulson@14323: val Im_sgn = thm"Im_sgn"; paulson@14323: val complex_inverse_complex_split = thm"complex_inverse_complex_split"; paulson@14323: val Re_mult_i_eq = thm"Re_mult_i_eq"; paulson@14323: val Im_mult_i_eq = thm"Im_mult_i_eq"; paulson@14323: val complex_mod_mult_i = thm"complex_mod_mult_i"; paulson@14323: val cos_arg_i_mult_zero = thm"cos_arg_i_mult_zero"; paulson@14323: val cos_arg_i_mult_zero2 = thm"cos_arg_i_mult_zero2"; paulson@14323: val complex_of_real_not_zero_iff = thm"complex_of_real_not_zero_iff"; paulson@14323: val complex_of_real_zero_iff = thm"complex_of_real_zero_iff"; paulson@14323: val cos_arg_i_mult_zero3 = thm"cos_arg_i_mult_zero3"; paulson@14323: val complex_split_polar = thm"complex_split_polar"; paulson@14323: val rcis_Ex = thm"rcis_Ex"; paulson@14323: val Re_complex_polar = thm"Re_complex_polar"; paulson@14323: val Re_rcis = thm"Re_rcis"; paulson@14323: val Im_complex_polar = thm"Im_complex_polar"; paulson@14323: val Im_rcis = thm"Im_rcis"; paulson@14323: val complex_mod_complex_polar = thm"complex_mod_complex_polar"; paulson@14323: val complex_mod_rcis = thm"complex_mod_rcis"; paulson@14323: val complex_mod_sqrt_Re_mult_cnj = thm"complex_mod_sqrt_Re_mult_cnj"; paulson@14323: val complex_Re_cnj = thm"complex_Re_cnj"; paulson@14323: val complex_Im_cnj = thm"complex_Im_cnj"; paulson@14323: val complex_In_mult_cnj_zero = thm"complex_In_mult_cnj_zero"; paulson@14323: val complex_Re_mult = thm"complex_Re_mult"; paulson@14323: val complex_Re_mult_complex_of_real = thm"complex_Re_mult_complex_of_real"; paulson@14323: val complex_Im_mult_complex_of_real = thm"complex_Im_mult_complex_of_real"; paulson@14323: val complex_Re_mult_complex_of_real2 = thm"complex_Re_mult_complex_of_real2"; paulson@14323: val complex_Im_mult_complex_of_real2 = thm"complex_Im_mult_complex_of_real2"; paulson@14323: val cis_rcis_eq = thm"cis_rcis_eq"; paulson@14323: val rcis_mult = thm"rcis_mult"; paulson@14323: val cis_mult = thm"cis_mult"; paulson@14323: val cis_zero = thm"cis_zero"; paulson@14323: val cis_zero2 = thm"cis_zero2"; paulson@14323: val rcis_zero_mod = thm"rcis_zero_mod"; paulson@14323: val rcis_zero_arg = thm"rcis_zero_arg"; paulson@14323: val complex_of_real_minus_one = thm"complex_of_real_minus_one"; paulson@14323: val complex_i_mult_minus = thm"complex_i_mult_minus"; paulson@14323: val complex_i_mult_minus2 = thm"complex_i_mult_minus2"; paulson@14323: val cis_real_of_nat_Suc_mult = thm"cis_real_of_nat_Suc_mult"; paulson@14323: val DeMoivre = thm"DeMoivre"; paulson@14323: val DeMoivre2 = thm"DeMoivre2"; paulson@14323: val cis_inverse = thm"cis_inverse"; paulson@14323: val rcis_inverse = thm"rcis_inverse"; paulson@14323: val cis_divide = thm"cis_divide"; paulson@14323: val rcis_divide = thm"rcis_divide"; paulson@14323: val Re_cis = thm"Re_cis"; paulson@14323: val Im_cis = thm"Im_cis"; paulson@14323: val cos_n_Re_cis_pow_n = thm"cos_n_Re_cis_pow_n"; paulson@14323: val sin_n_Im_cis_pow_n = thm"sin_n_Im_cis_pow_n"; paulson@14323: val expi_Im_split = thm"expi_Im_split"; paulson@14323: val expi_Im_cis = thm"expi_Im_cis"; paulson@14323: val expi_add = thm"expi_add"; paulson@14323: val expi_complex_split = thm"expi_complex_split"; paulson@14323: val expi_zero = thm"expi_zero"; paulson@14323: val complex_Re_mult_eq = thm"complex_Re_mult_eq"; paulson@14323: val complex_Im_mult_eq = thm"complex_Im_mult_eq"; paulson@14323: val complex_expi_Ex = thm"complex_expi_Ex"; paulson@14323: paulson@14323: val complex_add_ac = thms"complex_add_ac"; paulson@14323: val complex_mult_ac = thms"complex_mult_ac"; paulson@14323: *} paulson@14323: paulson@13957: end paulson@13957: paulson@13957: