wenzelm@16932: (* Title: HOL/Library/BigO.thy avigad@16908: Authors: Jeremy Avigad and Kevin Donnelly avigad@16908: *) avigad@16908: avigad@16908: header {* Big O notation *} avigad@16908: avigad@16908: theory BigO haftmann@38622: imports Complex_Main Function_Algebras Set_Algebras avigad@16908: begin avigad@16908: avigad@16908: text {* avigad@16908: This library is designed to support asymptotic ``big O'' calculations, wenzelm@17199: i.e.~reasoning with expressions of the form $f = O(g)$ and $f = g + wenzelm@17199: O(h)$. An earlier version of this library is described in detail in wenzelm@17199: \cite{Avigad-Donnelly}. wenzelm@17199: avigad@16908: The main changes in this version are as follows: avigad@16908: \begin{itemize} wenzelm@17199: \item We have eliminated the @{text O} operator on sets. (Most uses of this seem avigad@16908: to be inessential.) wenzelm@17199: \item We no longer use @{text "+"} as output syntax for @{text "+o"} wenzelm@17199: \item Lemmas involving @{text "sumr"} have been replaced by more general lemmas wenzelm@17199: involving `@{text "setsum"}. avigad@16908: \item The library has been expanded, with e.g.~support for expressions of wenzelm@17199: the form @{text "f < g + O(h)"}. avigad@16908: \end{itemize} wenzelm@17199: wenzelm@17199: Note also since the Big O library includes rules that demonstrate set wenzelm@17199: inclusion, to use the automated reasoners effectively with the library wenzelm@17199: one should redeclare the theorem @{text "subsetI"} as an intro rule, wenzelm@17199: rather than as an @{text "intro!"} rule, for example, using wenzelm@17199: \isa{\isakeyword{declare}}~@{text "subsetI [del, intro]"}. avigad@16908: *} avigad@16908: avigad@16908: subsection {* Definitions *} avigad@16908: wenzelm@19736: definition haftmann@35028: bigo :: "('a => 'b::linordered_idom) => ('a => 'b) set" ("(1O'(_'))") where wenzelm@19736: "O(f::('a => 'b)) = avigad@16908: {h. EX c. ALL x. abs (h x) <= c * abs (f x)}" avigad@16908: haftmann@35028: lemma bigo_pos_const: "(EX (c::'a::linordered_idom). avigad@16908: ALL x. (abs (h x)) <= (c * (abs (f x)))) avigad@16908: = (EX c. 0 < c & (ALL x. (abs(h x)) <= (c * (abs (f x)))))" avigad@16908: apply auto avigad@16908: apply (case_tac "c = 0") avigad@16908: apply simp avigad@16908: apply (rule_tac x = "1" in exI) avigad@16908: apply simp avigad@16908: apply (rule_tac x = "abs c" in exI) avigad@16908: apply auto avigad@16908: apply (subgoal_tac "c * abs(f x) <= abs c * abs (f x)") avigad@16908: apply (erule_tac x = x in allE) avigad@16908: apply force avigad@16908: apply (rule mult_right_mono) avigad@16908: apply (rule abs_ge_self) avigad@16908: apply (rule abs_ge_zero) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_alt_def: "O(f) = avigad@16908: {h. EX c. (0 < c & (ALL x. abs (h x) <= c * abs (f x)))}" wenzelm@22665: by (auto simp add: bigo_def bigo_pos_const) avigad@16908: avigad@16908: lemma bigo_elt_subset [intro]: "f : O(g) ==> O(f) <= O(g)" avigad@16908: apply (auto simp add: bigo_alt_def) avigad@16908: apply (rule_tac x = "ca * c" in exI) avigad@16908: apply (rule conjI) avigad@16908: apply (rule mult_pos_pos) avigad@16908: apply (assumption)+ avigad@16908: apply (rule allI) avigad@16908: apply (drule_tac x = "xa" in spec)+ avigad@16908: apply (subgoal_tac "ca * abs(f xa) <= ca * (c * abs(g xa))") avigad@16908: apply (erule order_trans) avigad@16908: apply (simp add: mult_ac) avigad@16908: apply (rule mult_left_mono, assumption) avigad@16908: apply (rule order_less_imp_le, assumption) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_refl [intro]: "f : O(f)" avigad@16908: apply(auto simp add: bigo_def) avigad@16908: apply(rule_tac x = 1 in exI) avigad@16908: apply simp wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_zero: "0 : O(g)" avigad@16908: apply (auto simp add: bigo_def func_zero) avigad@16908: apply (rule_tac x = 0 in exI) avigad@16908: apply auto wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_zero2: "O(%x.0) = {%x.0}" paulson@41865: by (auto simp add: bigo_def) avigad@16908: avigad@16908: lemma bigo_plus_self_subset [intro]: berghofe@26814: "O(f) \ O(f) <= O(f)" berghofe@26814: apply (auto simp add: bigo_alt_def set_plus_def) avigad@16908: apply (rule_tac x = "c + ca" in exI) avigad@16908: apply auto nipkow@23477: apply (simp add: ring_distribs func_plus) avigad@16908: apply (rule order_trans) avigad@16908: apply (rule abs_triangle_ineq) avigad@16908: apply (rule add_mono) avigad@16908: apply force avigad@16908: apply force avigad@16908: done avigad@16908: berghofe@26814: lemma bigo_plus_idemp [simp]: "O(f) \ O(f) = O(f)" avigad@16908: apply (rule equalityI) avigad@16908: apply (rule bigo_plus_self_subset) avigad@16908: apply (rule set_zero_plus2) avigad@16908: apply (rule bigo_zero) wenzelm@22665: done avigad@16908: berghofe@26814: lemma bigo_plus_subset [intro]: "O(f + g) <= O(f) \ O(g)" avigad@16908: apply (rule subsetI) berghofe@26814: apply (auto simp add: bigo_def bigo_pos_const func_plus set_plus_def) avigad@16908: apply (subst bigo_pos_const [symmetric])+ avigad@16908: apply (rule_tac x = avigad@16908: "%n. if abs (g n) <= (abs (f n)) then x n else 0" in exI) avigad@16908: apply (rule conjI) avigad@16908: apply (rule_tac x = "c + c" in exI) avigad@16908: apply (clarsimp) avigad@16908: apply (auto) avigad@16908: apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (f xa)") avigad@16908: apply (erule_tac x = xa in allE) avigad@16908: apply (erule order_trans) avigad@16908: apply (simp) avigad@16908: apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))") avigad@16908: apply (erule order_trans) nipkow@23477: apply (simp add: ring_distribs) avigad@16908: apply (rule mult_left_mono) avigad@16908: apply (simp add: abs_triangle_ineq) avigad@16908: apply (simp add: order_less_le) avigad@16908: apply (rule mult_nonneg_nonneg) avigad@16908: apply auto avigad@16908: apply (rule_tac x = "%n. if (abs (f n)) < abs (g n) then x n else 0" avigad@16908: in exI) avigad@16908: apply (rule conjI) avigad@16908: apply (rule_tac x = "c + c" in exI) avigad@16908: apply auto avigad@16908: apply (subgoal_tac "c * abs (f xa + g xa) <= (c + c) * abs (g xa)") avigad@16908: apply (erule_tac x = xa in allE) avigad@16908: apply (erule order_trans) avigad@16908: apply (simp) avigad@16908: apply (subgoal_tac "c * abs (f xa + g xa) <= c * (abs (f xa) + abs (g xa))") avigad@16908: apply (erule order_trans) nipkow@23477: apply (simp add: ring_distribs) avigad@16908: apply (rule mult_left_mono) avigad@16908: apply (rule abs_triangle_ineq) avigad@16908: apply (simp add: order_less_le) avigad@16908: apply (rule mult_nonneg_nonneg) huffman@47108: apply (erule order_less_imp_le) avigad@16908: apply simp wenzelm@22665: done avigad@16908: berghofe@26814: lemma bigo_plus_subset2 [intro]: "A <= O(f) ==> B <= O(f) ==> A \ B <= O(f)" berghofe@26814: apply (subgoal_tac "A \ B <= O(f) \ O(f)") avigad@16908: apply (erule order_trans) avigad@16908: apply simp avigad@16908: apply (auto del: subsetI simp del: bigo_plus_idemp) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_plus_eq: "ALL x. 0 <= f x ==> ALL x. 0 <= g x ==> berghofe@26814: O(f + g) = O(f) \ O(g)" avigad@16908: apply (rule equalityI) avigad@16908: apply (rule bigo_plus_subset) berghofe@26814: apply (simp add: bigo_alt_def set_plus_def func_plus) avigad@16908: apply clarify avigad@16908: apply (rule_tac x = "max c ca" in exI) avigad@16908: apply (rule conjI) avigad@16908: apply (subgoal_tac "c <= max c ca") avigad@16908: apply (erule order_less_le_trans) avigad@16908: apply assumption avigad@16908: apply (rule le_maxI1) avigad@16908: apply clarify avigad@16908: apply (drule_tac x = "xa" in spec)+ avigad@16908: apply (subgoal_tac "0 <= f xa + g xa") nipkow@23477: apply (simp add: ring_distribs) avigad@16908: apply (subgoal_tac "abs(a xa + b xa) <= abs(a xa) + abs(b xa)") avigad@16908: apply (subgoal_tac "abs(a xa) + abs(b xa) <= avigad@16908: max c ca * f xa + max c ca * g xa") avigad@16908: apply (force) avigad@16908: apply (rule add_mono) avigad@16908: apply (subgoal_tac "c * f xa <= max c ca * f xa") avigad@16908: apply (force) avigad@16908: apply (rule mult_right_mono) avigad@16908: apply (rule le_maxI1) avigad@16908: apply assumption avigad@16908: apply (subgoal_tac "ca * g xa <= max c ca * g xa") avigad@16908: apply (force) avigad@16908: apply (rule mult_right_mono) avigad@16908: apply (rule le_maxI2) avigad@16908: apply assumption avigad@16908: apply (rule abs_triangle_ineq) avigad@16908: apply (rule add_nonneg_nonneg) avigad@16908: apply assumption+ wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_bounded_alt: "ALL x. 0 <= f x ==> ALL x. f x <= c * g x ==> avigad@16908: f : O(g)" avigad@16908: apply (auto simp add: bigo_def) avigad@16908: apply (rule_tac x = "abs c" in exI) avigad@16908: apply auto avigad@16908: apply (drule_tac x = x in spec)+ avigad@16908: apply (simp add: abs_mult [symmetric]) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_bounded: "ALL x. 0 <= f x ==> ALL x. f x <= g x ==> avigad@16908: f : O(g)" avigad@16908: apply (erule bigo_bounded_alt [of f 1 g]) avigad@16908: apply simp wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_bounded2: "ALL x. lb x <= f x ==> ALL x. f x <= lb x + g x ==> avigad@16908: f : lb +o O(g)" avigad@16908: apply (rule set_minus_imp_plus) avigad@16908: apply (rule bigo_bounded) berghofe@26814: apply (auto simp add: diff_minus fun_Compl_def func_plus) avigad@16908: apply (drule_tac x = x in spec)+ avigad@16908: apply force avigad@16908: apply (drule_tac x = x in spec)+ avigad@16908: apply force wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_abs: "(%x. abs(f x)) =o O(f)" avigad@16908: apply (unfold bigo_def) avigad@16908: apply auto avigad@16908: apply (rule_tac x = 1 in exI) avigad@16908: apply auto wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_abs2: "f =o O(%x. abs(f x))" avigad@16908: apply (unfold bigo_def) avigad@16908: apply auto avigad@16908: apply (rule_tac x = 1 in exI) avigad@16908: apply auto wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_abs3: "O(f) = O(%x. abs(f x))" avigad@16908: apply (rule equalityI) avigad@16908: apply (rule bigo_elt_subset) avigad@16908: apply (rule bigo_abs2) avigad@16908: apply (rule bigo_elt_subset) avigad@16908: apply (rule bigo_abs) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_abs4: "f =o g +o O(h) ==> avigad@16908: (%x. abs (f x)) =o (%x. abs (g x)) +o O(h)" avigad@16908: apply (drule set_plus_imp_minus) avigad@16908: apply (rule set_minus_imp_plus) berghofe@26814: apply (subst fun_diff_def) avigad@16908: proof - avigad@16908: assume a: "f - g : O(h)" avigad@16908: have "(%x. abs (f x) - abs (g x)) =o O(%x. abs(abs (f x) - abs (g x)))" avigad@16908: by (rule bigo_abs2) avigad@16908: also have "... <= O(%x. abs (f x - g x))" avigad@16908: apply (rule bigo_elt_subset) avigad@16908: apply (rule bigo_bounded) avigad@16908: apply force avigad@16908: apply (rule allI) avigad@16908: apply (rule abs_triangle_ineq3) avigad@16908: done avigad@16908: also have "... <= O(f - g)" avigad@16908: apply (rule bigo_elt_subset) berghofe@26814: apply (subst fun_diff_def) avigad@16908: apply (rule bigo_abs) avigad@16908: done wenzelm@23373: also from a have "... <= O(h)" avigad@16908: by (rule bigo_elt_subset) avigad@16908: finally show "(%x. abs (f x) - abs (g x)) : O(h)". avigad@16908: qed avigad@16908: avigad@16908: lemma bigo_abs5: "f =o O(g) ==> (%x. abs(f x)) =o O(g)" wenzelm@22665: by (unfold bigo_def, auto) avigad@16908: berghofe@26814: lemma bigo_elt_subset2 [intro]: "f : g +o O(h) ==> O(f) <= O(g) \ O(h)" avigad@16908: proof - avigad@16908: assume "f : g +o O(h)" berghofe@26814: also have "... <= O(g) \ O(h)" avigad@16908: by (auto del: subsetI) berghofe@26814: also have "... = O(%x. abs(g x)) \ O(%x. abs(h x))" avigad@16908: apply (subst bigo_abs3 [symmetric])+ avigad@16908: apply (rule refl) avigad@16908: done avigad@16908: also have "... = O((%x. abs(g x)) + (%x. abs(h x)))" avigad@16908: by (rule bigo_plus_eq [symmetric], auto) avigad@16908: finally have "f : ...". avigad@16908: then have "O(f) <= ..." avigad@16908: by (elim bigo_elt_subset) berghofe@26814: also have "... = O(%x. abs(g x)) \ O(%x. abs(h x))" avigad@16908: by (rule bigo_plus_eq, auto) avigad@16908: finally show ?thesis avigad@16908: by (simp add: bigo_abs3 [symmetric]) avigad@16908: qed avigad@16908: berghofe@26814: lemma bigo_mult [intro]: "O(f)\O(g) <= O(f * g)" avigad@16908: apply (rule subsetI) avigad@16908: apply (subst bigo_def) berghofe@26814: apply (auto simp add: bigo_alt_def set_times_def func_times) avigad@16908: apply (rule_tac x = "c * ca" in exI) avigad@16908: apply(rule allI) avigad@16908: apply(erule_tac x = x in allE)+ avigad@16908: apply(subgoal_tac "c * ca * abs(f x * g x) = avigad@16908: (c * abs(f x)) * (ca * abs(g x))") avigad@16908: apply(erule ssubst) avigad@16908: apply (subst abs_mult) avigad@16908: apply (rule mult_mono) avigad@16908: apply assumption+ avigad@16908: apply (rule mult_nonneg_nonneg) avigad@16908: apply auto avigad@16908: apply (simp add: mult_ac abs_mult) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_mult2 [intro]: "f *o O(g) <= O(f * g)" avigad@16908: apply (auto simp add: bigo_def elt_set_times_def func_times abs_mult) avigad@16908: apply (rule_tac x = c in exI) avigad@16908: apply auto avigad@16908: apply (drule_tac x = x in spec) avigad@16908: apply (subgoal_tac "abs(f x) * abs(b x) <= abs(f x) * (c * abs(g x))") avigad@16908: apply (force simp add: mult_ac) avigad@16908: apply (rule mult_left_mono, assumption) avigad@16908: apply (rule abs_ge_zero) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_mult3: "f : O(h) ==> g : O(j) ==> f * g : O(h * j)" avigad@16908: apply (rule subsetD) avigad@16908: apply (rule bigo_mult) avigad@16908: apply (erule set_times_intro, assumption) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_mult4 [intro]:"f : k +o O(h) ==> g * f : (g * k) +o O(g * h)" avigad@16908: apply (drule set_plus_imp_minus) avigad@16908: apply (rule set_minus_imp_plus) avigad@16908: apply (drule bigo_mult3 [where g = g and j = g]) nipkow@29667: apply (auto simp add: algebra_simps) wenzelm@22665: done avigad@16908: wenzelm@41528: lemma bigo_mult5: wenzelm@41528: assumes "ALL x. f x ~= 0" wenzelm@41528: shows "O(f * g) <= (f::'a => ('b::linordered_field)) *o O(g)" wenzelm@41528: proof wenzelm@41528: fix h wenzelm@41528: assume "h : O(f * g)" wenzelm@41528: then have "(%x. 1 / (f x)) * h : (%x. 1 / f x) *o O(f * g)" wenzelm@41528: by auto wenzelm@41528: also have "... <= O((%x. 1 / f x) * (f * g))" wenzelm@41528: by (rule bigo_mult2) wenzelm@41528: also have "(%x. 1 / f x) * (f * g) = g" wenzelm@41528: apply (simp add: func_times) wenzelm@41528: apply (rule ext) wenzelm@41528: apply (simp add: assms nonzero_divide_eq_eq mult_ac) wenzelm@41528: done wenzelm@41528: finally have "(%x. (1::'b) / f x) * h : O(g)" . wenzelm@41528: then have "f * ((%x. (1::'b) / f x) * h) : f *o O(g)" wenzelm@41528: by auto wenzelm@41528: also have "f * ((%x. (1::'b) / f x) * h) = h" wenzelm@41528: apply (simp add: func_times) wenzelm@41528: apply (rule ext) wenzelm@41528: apply (simp add: assms nonzero_divide_eq_eq mult_ac) wenzelm@41528: done wenzelm@41528: finally show "h : f *o O(g)" . avigad@16908: qed avigad@16908: avigad@16908: lemma bigo_mult6: "ALL x. f x ~= 0 ==> haftmann@35028: O(f * g) = (f::'a => ('b::linordered_field)) *o O(g)" avigad@16908: apply (rule equalityI) avigad@16908: apply (erule bigo_mult5) avigad@16908: apply (rule bigo_mult2) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_mult7: "ALL x. f x ~= 0 ==> haftmann@35028: O(f * g) <= O(f::'a => ('b::linordered_field)) \ O(g)" avigad@16908: apply (subst bigo_mult6) avigad@16908: apply assumption avigad@16908: apply (rule set_times_mono3) avigad@16908: apply (rule bigo_refl) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_mult8: "ALL x. f x ~= 0 ==> haftmann@35028: O(f * g) = O(f::'a => ('b::linordered_field)) \ O(g)" avigad@16908: apply (rule equalityI) avigad@16908: apply (erule bigo_mult7) avigad@16908: apply (rule bigo_mult) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_minus [intro]: "f : O(g) ==> - f : O(g)" berghofe@26814: by (auto simp add: bigo_def fun_Compl_def) avigad@16908: avigad@16908: lemma bigo_minus2: "f : g +o O(h) ==> -f : -g +o O(h)" avigad@16908: apply (rule set_minus_imp_plus) avigad@16908: apply (drule set_plus_imp_minus) avigad@16908: apply (drule bigo_minus) avigad@16908: apply (simp add: diff_minus) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_minus3: "O(-f) = O(f)" wenzelm@41528: by (auto simp add: bigo_def fun_Compl_def) avigad@16908: avigad@16908: lemma bigo_plus_absorb_lemma1: "f : O(g) ==> f +o O(g) <= O(g)" avigad@16908: proof - avigad@16908: assume a: "f : O(g)" avigad@16908: show "f +o O(g) <= O(g)" avigad@16908: proof - avigad@16908: have "f : O(f)" by auto berghofe@26814: then have "f +o O(g) <= O(f) \ O(g)" avigad@16908: by (auto del: subsetI) berghofe@26814: also have "... <= O(g) \ O(g)" avigad@16908: proof - avigad@16908: from a have "O(f) <= O(g)" by (auto del: subsetI) avigad@16908: thus ?thesis by (auto del: subsetI) avigad@16908: qed wenzelm@41528: also have "... <= O(g)" by simp avigad@16908: finally show ?thesis . avigad@16908: qed avigad@16908: qed avigad@16908: avigad@16908: lemma bigo_plus_absorb_lemma2: "f : O(g) ==> O(g) <= f +o O(g)" avigad@16908: proof - avigad@16908: assume a: "f : O(g)" avigad@16908: show "O(g) <= f +o O(g)" avigad@16908: proof - avigad@16908: from a have "-f : O(g)" by auto avigad@16908: then have "-f +o O(g) <= O(g)" by (elim bigo_plus_absorb_lemma1) avigad@16908: then have "f +o (-f +o O(g)) <= f +o O(g)" by auto avigad@16908: also have "f +o (-f +o O(g)) = O(g)" avigad@16908: by (simp add: set_plus_rearranges) avigad@16908: finally show ?thesis . avigad@16908: qed avigad@16908: qed avigad@16908: avigad@16908: lemma bigo_plus_absorb [simp]: "f : O(g) ==> f +o O(g) = O(g)" avigad@16908: apply (rule equalityI) avigad@16908: apply (erule bigo_plus_absorb_lemma1) avigad@16908: apply (erule bigo_plus_absorb_lemma2) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_plus_absorb2 [intro]: "f : O(g) ==> A <= O(g) ==> f +o A <= O(g)" avigad@16908: apply (subgoal_tac "f +o A <= f +o O(g)") avigad@16908: apply force+ wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_add_commute_imp: "f : g +o O(h) ==> g : f +o O(h)" avigad@16908: apply (subst set_minus_plus [symmetric]) avigad@16908: apply (subgoal_tac "g - f = - (f - g)") avigad@16908: apply (erule ssubst) avigad@16908: apply (rule bigo_minus) avigad@16908: apply (subst set_minus_plus) avigad@16908: apply assumption avigad@16908: apply (simp add: diff_minus add_ac) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_add_commute: "(f : g +o O(h)) = (g : f +o O(h))" avigad@16908: apply (rule iffI) avigad@16908: apply (erule bigo_add_commute_imp)+ wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_const1: "(%x. c) : O(%x. 1)" wenzelm@22665: by (auto simp add: bigo_def mult_ac) avigad@16908: avigad@16908: lemma bigo_const2 [intro]: "O(%x. c) <= O(%x. 1)" avigad@16908: apply (rule bigo_elt_subset) avigad@16908: apply (rule bigo_const1) wenzelm@22665: done avigad@16908: haftmann@35028: lemma bigo_const3: "(c::'a::linordered_field) ~= 0 ==> (%x. 1) : O(%x. c)" avigad@16908: apply (simp add: bigo_def) avigad@16908: apply (rule_tac x = "abs(inverse c)" in exI) avigad@16908: apply (simp add: abs_mult [symmetric]) wenzelm@22665: done avigad@16908: haftmann@35028: lemma bigo_const4: "(c::'a::linordered_field) ~= 0 ==> O(%x. 1) <= O(%x. c)" wenzelm@22665: by (rule bigo_elt_subset, rule bigo_const3, assumption) avigad@16908: haftmann@35028: lemma bigo_const [simp]: "(c::'a::linordered_field) ~= 0 ==> avigad@16908: O(%x. c) = O(%x. 1)" wenzelm@22665: by (rule equalityI, rule bigo_const2, rule bigo_const4, assumption) avigad@16908: avigad@16908: lemma bigo_const_mult1: "(%x. c * f x) : O(f)" avigad@16908: apply (simp add: bigo_def) avigad@16908: apply (rule_tac x = "abs(c)" in exI) avigad@16908: apply (auto simp add: abs_mult [symmetric]) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_const_mult2: "O(%x. c * f x) <= O(f)" wenzelm@22665: by (rule bigo_elt_subset, rule bigo_const_mult1) avigad@16908: haftmann@35028: lemma bigo_const_mult3: "(c::'a::linordered_field) ~= 0 ==> f : O(%x. c * f x)" avigad@16908: apply (simp add: bigo_def) avigad@16908: apply (rule_tac x = "abs(inverse c)" in exI) avigad@16908: apply (simp add: abs_mult [symmetric] mult_assoc [symmetric]) wenzelm@22665: done avigad@16908: haftmann@35028: lemma bigo_const_mult4: "(c::'a::linordered_field) ~= 0 ==> avigad@16908: O(f) <= O(%x. c * f x)" wenzelm@22665: by (rule bigo_elt_subset, rule bigo_const_mult3, assumption) avigad@16908: haftmann@35028: lemma bigo_const_mult [simp]: "(c::'a::linordered_field) ~= 0 ==> avigad@16908: O(%x. c * f x) = O(f)" wenzelm@22665: by (rule equalityI, rule bigo_const_mult2, erule bigo_const_mult4) avigad@16908: haftmann@35028: lemma bigo_const_mult5 [simp]: "(c::'a::linordered_field) ~= 0 ==> avigad@16908: (%x. c) *o O(f) = O(f)" avigad@16908: apply (auto del: subsetI) avigad@16908: apply (rule order_trans) avigad@16908: apply (rule bigo_mult2) avigad@16908: apply (simp add: func_times) wenzelm@41528: apply (auto intro!: simp add: bigo_def elt_set_times_def func_times) avigad@16908: apply (rule_tac x = "%y. inverse c * x y" in exI) avigad@16908: apply (simp add: mult_assoc [symmetric] abs_mult) avigad@16908: apply (rule_tac x = "abs (inverse c) * ca" in exI) avigad@16908: apply (rule allI) avigad@16908: apply (subst mult_assoc) avigad@16908: apply (rule mult_left_mono) avigad@16908: apply (erule spec) avigad@16908: apply force wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_const_mult6 [intro]: "(%x. c) *o O(f) <= O(f)" wenzelm@41528: apply (auto intro!: simp add: bigo_def elt_set_times_def func_times) avigad@16908: apply (rule_tac x = "ca * (abs c)" in exI) avigad@16908: apply (rule allI) avigad@16908: apply (subgoal_tac "ca * abs(c) * abs(f x) = abs(c) * (ca * abs(f x))") avigad@16908: apply (erule ssubst) avigad@16908: apply (subst abs_mult) avigad@16908: apply (rule mult_left_mono) avigad@16908: apply (erule spec) avigad@16908: apply simp avigad@16908: apply(simp add: mult_ac) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_const_mult7 [intro]: "f =o O(g) ==> (%x. c * f x) =o O(g)" avigad@16908: proof - avigad@16908: assume "f =o O(g)" avigad@16908: then have "(%x. c) * f =o (%x. c) *o O(g)" avigad@16908: by auto avigad@16908: also have "(%x. c) * f = (%x. c * f x)" avigad@16908: by (simp add: func_times) avigad@16908: also have "(%x. c) *o O(g) <= O(g)" avigad@16908: by (auto del: subsetI) avigad@16908: finally show ?thesis . avigad@16908: qed avigad@16908: avigad@16908: lemma bigo_compose1: "f =o O(g) ==> (%x. f(k x)) =o O(%x. g(k x))" avigad@16908: by (unfold bigo_def, auto) avigad@16908: avigad@16908: lemma bigo_compose2: "f =o g +o O(h) ==> (%x. f(k x)) =o (%x. g(k x)) +o avigad@16908: O(%x. h(k x))" berghofe@26814: apply (simp only: set_minus_plus [symmetric] diff_minus fun_Compl_def avigad@16908: func_plus) avigad@16908: apply (erule bigo_compose1) avigad@16908: done avigad@16908: wenzelm@22665: avigad@16908: subsection {* Setsum *} avigad@16908: avigad@16908: lemma bigo_setsum_main: "ALL x. ALL y : A x. 0 <= h x y ==> avigad@16908: EX c. ALL x. ALL y : A x. abs(f x y) <= c * (h x y) ==> avigad@16908: (%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)" avigad@16908: apply (auto simp add: bigo_def) avigad@16908: apply (rule_tac x = "abs c" in exI) wenzelm@17199: apply (subst abs_of_nonneg) back back avigad@16908: apply (rule setsum_nonneg) avigad@16908: apply force ballarin@19279: apply (subst setsum_right_distrib) avigad@16908: apply (rule allI) avigad@16908: apply (rule order_trans) avigad@16908: apply (rule setsum_abs) avigad@16908: apply (rule setsum_mono) avigad@16908: apply (rule order_trans) avigad@16908: apply (drule spec)+ avigad@16908: apply (drule bspec)+ avigad@16908: apply assumption+ avigad@16908: apply (drule bspec) avigad@16908: apply assumption+ avigad@16908: apply (rule mult_right_mono) avigad@16908: apply (rule abs_ge_self) avigad@16908: apply force wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_setsum1: "ALL x y. 0 <= h x y ==> avigad@16908: EX c. ALL x y. abs(f x y) <= c * (h x y) ==> avigad@16908: (%x. SUM y : A x. f x y) =o O(%x. SUM y : A x. h x y)" avigad@16908: apply (rule bigo_setsum_main) avigad@16908: apply force avigad@16908: apply clarsimp avigad@16908: apply (rule_tac x = c in exI) avigad@16908: apply force wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_setsum2: "ALL y. 0 <= h y ==> avigad@16908: EX c. ALL y. abs(f y) <= c * (h y) ==> avigad@16908: (%x. SUM y : A x. f y) =o O(%x. SUM y : A x. h y)" wenzelm@22665: by (rule bigo_setsum1, auto) avigad@16908: avigad@16908: lemma bigo_setsum3: "f =o O(h) ==> avigad@16908: (%x. SUM y : A x. (l x y) * f(k x y)) =o avigad@16908: O(%x. SUM y : A x. abs(l x y * h(k x y)))" avigad@16908: apply (rule bigo_setsum1) avigad@16908: apply (rule allI)+ avigad@16908: apply (rule abs_ge_zero) avigad@16908: apply (unfold bigo_def) avigad@16908: apply auto avigad@16908: apply (rule_tac x = c in exI) avigad@16908: apply (rule allI)+ avigad@16908: apply (subst abs_mult)+ avigad@16908: apply (subst mult_left_commute) avigad@16908: apply (rule mult_left_mono) avigad@16908: apply (erule spec) avigad@16908: apply (rule abs_ge_zero) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_setsum4: "f =o g +o O(h) ==> avigad@16908: (%x. SUM y : A x. l x y * f(k x y)) =o avigad@16908: (%x. SUM y : A x. l x y * g(k x y)) +o avigad@16908: O(%x. SUM y : A x. abs(l x y * h(k x y)))" avigad@16908: apply (rule set_minus_imp_plus) berghofe@26814: apply (subst fun_diff_def) avigad@16908: apply (subst setsum_subtractf [symmetric]) avigad@16908: apply (subst right_diff_distrib [symmetric]) avigad@16908: apply (rule bigo_setsum3) berghofe@26814: apply (subst fun_diff_def [symmetric]) avigad@16908: apply (erule set_plus_imp_minus) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_setsum5: "f =o O(h) ==> ALL x y. 0 <= l x y ==> avigad@16908: ALL x. 0 <= h x ==> avigad@16908: (%x. SUM y : A x. (l x y) * f(k x y)) =o avigad@16908: O(%x. SUM y : A x. (l x y) * h(k x y))" avigad@16908: apply (subgoal_tac "(%x. SUM y : A x. (l x y) * h(k x y)) = avigad@16908: (%x. SUM y : A x. abs((l x y) * h(k x y)))") avigad@16908: apply (erule ssubst) avigad@16908: apply (erule bigo_setsum3) avigad@16908: apply (rule ext) avigad@16908: apply (rule setsum_cong2) avigad@16908: apply (subst abs_of_nonneg) avigad@16908: apply (rule mult_nonneg_nonneg) avigad@16908: apply auto wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_setsum6: "f =o g +o O(h) ==> ALL x y. 0 <= l x y ==> avigad@16908: ALL x. 0 <= h x ==> avigad@16908: (%x. SUM y : A x. (l x y) * f(k x y)) =o avigad@16908: (%x. SUM y : A x. (l x y) * g(k x y)) +o avigad@16908: O(%x. SUM y : A x. (l x y) * h(k x y))" avigad@16908: apply (rule set_minus_imp_plus) berghofe@26814: apply (subst fun_diff_def) avigad@16908: apply (subst setsum_subtractf [symmetric]) avigad@16908: apply (subst right_diff_distrib [symmetric]) avigad@16908: apply (rule bigo_setsum5) berghofe@26814: apply (subst fun_diff_def [symmetric]) avigad@16908: apply (drule set_plus_imp_minus) avigad@16908: apply auto wenzelm@22665: done wenzelm@22665: avigad@16908: avigad@16908: subsection {* Misc useful stuff *} avigad@16908: avigad@16908: lemma bigo_useful_intro: "A <= O(f) ==> B <= O(f) ==> berghofe@26814: A \ B <= O(f)" avigad@16908: apply (subst bigo_plus_idemp [symmetric]) avigad@16908: apply (rule set_plus_mono2) avigad@16908: apply assumption+ wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_useful_add: "f =o O(h) ==> g =o O(h) ==> f + g =o O(h)" avigad@16908: apply (subst bigo_plus_idemp [symmetric]) avigad@16908: apply (rule set_plus_intro) avigad@16908: apply assumption+ wenzelm@22665: done avigad@16908: haftmann@35028: lemma bigo_useful_const_mult: "(c::'a::linordered_field) ~= 0 ==> avigad@16908: (%x. c) * f =o O(h) ==> f =o O(h)" avigad@16908: apply (rule subsetD) avigad@16908: apply (subgoal_tac "(%x. 1 / c) *o O(h) <= O(h)") avigad@16908: apply assumption avigad@16908: apply (rule bigo_const_mult6) avigad@16908: apply (subgoal_tac "f = (%x. 1 / c) * ((%x. c) * f)") avigad@16908: apply (erule ssubst) avigad@16908: apply (erule set_times_intro2) nipkow@23413: apply (simp add: func_times) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_fix: "(%x. f ((x::nat) + 1)) =o O(%x. h(x + 1)) ==> f 0 = 0 ==> avigad@16908: f =o O(h)" avigad@16908: apply (simp add: bigo_alt_def) avigad@16908: apply auto avigad@16908: apply (rule_tac x = c in exI) avigad@16908: apply auto avigad@16908: apply (case_tac "x = 0") avigad@16908: apply simp avigad@16908: apply (rule mult_nonneg_nonneg) avigad@16908: apply force avigad@16908: apply force avigad@16908: apply (subgoal_tac "x = Suc (x - 1)") wenzelm@17199: apply (erule ssubst) back avigad@16908: apply (erule spec) avigad@16908: apply simp wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_fix2: avigad@16908: "(%x. f ((x::nat) + 1)) =o (%x. g(x + 1)) +o O(%x. h(x + 1)) ==> avigad@16908: f 0 = g 0 ==> f =o g +o O(h)" avigad@16908: apply (rule set_minus_imp_plus) avigad@16908: apply (rule bigo_fix) berghofe@26814: apply (subst fun_diff_def) berghofe@26814: apply (subst fun_diff_def [symmetric]) avigad@16908: apply (rule set_plus_imp_minus) avigad@16908: apply simp berghofe@26814: apply (simp add: fun_diff_def) wenzelm@22665: done wenzelm@22665: avigad@16908: avigad@16908: subsection {* Less than or equal to *} avigad@16908: wenzelm@19736: definition haftmann@35028: lesso :: "('a => 'b::linordered_idom) => ('a => 'b) => ('a => 'b)" wenzelm@21404: (infixl " ALL x. abs (g x) <= abs (f x) ==> avigad@16908: g =o O(h)" avigad@16908: apply (unfold bigo_def) avigad@16908: apply clarsimp avigad@16908: apply (rule_tac x = c in exI) avigad@16908: apply (rule allI) avigad@16908: apply (rule order_trans) avigad@16908: apply (erule spec)+ wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_lesseq2: "f =o O(h) ==> ALL x. abs (g x) <= f x ==> avigad@16908: g =o O(h)" avigad@16908: apply (erule bigo_lesseq1) avigad@16908: apply (rule allI) avigad@16908: apply (drule_tac x = x in spec) avigad@16908: apply (rule order_trans) avigad@16908: apply assumption avigad@16908: apply (rule abs_ge_self) wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_lesseq3: "f =o O(h) ==> ALL x. 0 <= g x ==> ALL x. g x <= f x ==> wenzelm@22665: g =o O(h)" avigad@16908: apply (erule bigo_lesseq2) avigad@16908: apply (rule allI) avigad@16908: apply (subst abs_of_nonneg) avigad@16908: apply (erule spec)+ wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_lesseq4: "f =o O(h) ==> avigad@16908: ALL x. 0 <= g x ==> ALL x. g x <= abs (f x) ==> avigad@16908: g =o O(h)" avigad@16908: apply (erule bigo_lesseq1) avigad@16908: apply (rule allI) avigad@16908: apply (subst abs_of_nonneg) avigad@16908: apply (erule spec)+ wenzelm@22665: done avigad@16908: avigad@16908: lemma bigo_lesso1: "ALL x. f x <= g x ==> f avigad@16908: ALL x. 0 <= k x ==> ALL x. k x <= f x ==> avigad@16908: k avigad@16908: ALL x. 0 <= k x ==> ALL x. g x <= k x ==> avigad@16908: f 'b::linordered_field) ==> avigad@16908: g =o h +o O(k) ==> f avigad@16908: EX C. ALL x. f x <= g x + C * abs(h x)" avigad@16908: apply (simp only: lesso_def bigo_alt_def) avigad@16908: apply clarsimp avigad@16908: apply (rule_tac x = c in exI) avigad@16908: apply (rule allI) avigad@16908: apply (drule_tac x = x in spec) avigad@16908: apply (subgoal_tac "abs(max (f x - g x) 0) = max (f x - g x) 0") nipkow@29667: apply (clarsimp simp add: algebra_simps) avigad@16908: apply (rule abs_of_nonneg) avigad@16908: apply (rule le_maxI2) wenzelm@22665: done avigad@16908: avigad@16908: lemma lesso_add: "f avigad@16908: k (f + k) g ----> 0 ==> f ----> (0::real)" huffman@31337: apply (simp add: LIMSEQ_iff bigo_alt_def) haftmann@29786: apply clarify haftmann@29786: apply (drule_tac x = "r / c" in spec) haftmann@29786: apply (drule mp) haftmann@29786: apply (erule divide_pos_pos) haftmann@29786: apply assumption haftmann@29786: apply clarify haftmann@29786: apply (rule_tac x = no in exI) haftmann@29786: apply (rule allI) haftmann@29786: apply (drule_tac x = n in spec)+ haftmann@29786: apply (rule impI) haftmann@29786: apply (drule mp) haftmann@29786: apply assumption haftmann@29786: apply (rule order_le_less_trans) haftmann@29786: apply assumption haftmann@29786: apply (rule order_less_le_trans) haftmann@29786: apply (subgoal_tac "c * abs(g n) < c * (r / c)") haftmann@29786: apply assumption haftmann@29786: apply (erule mult_strict_left_mono) haftmann@29786: apply assumption haftmann@29786: apply simp haftmann@29786: done haftmann@29786: haftmann@29786: lemma bigo_LIMSEQ2: "f =o g +o O(h) ==> h ----> 0 ==> f ----> a haftmann@29786: ==> g ----> (a::real)" haftmann@29786: apply (drule set_plus_imp_minus) haftmann@29786: apply (drule bigo_LIMSEQ1) haftmann@29786: apply assumption haftmann@29786: apply (simp only: fun_diff_def) haftmann@29786: apply (erule LIMSEQ_diff_approach_zero2) haftmann@29786: apply assumption haftmann@29786: done haftmann@29786: avigad@16908: end