wenzelm@11049: (* Title: HOL/NumberTheory/WilsonBij.thy paulson@9508: ID: $Id$ wenzelm@11049: Author: Thomas M. Rasmussen wenzelm@11049: Copyright 2000 University of Cambridge paulson@9508: *) paulson@9508: wenzelm@11049: header {* Wilson's Theorem using a more abstract approach *} wenzelm@11049: wenzelm@11049: theory WilsonBij = BijectionRel + IntFact: wenzelm@11049: wenzelm@11049: text {* wenzelm@11049: Wilson's Theorem using a more ``abstract'' approach based on wenzelm@11049: bijections between sets. Does not use Fermat's Little Theorem wenzelm@11049: (unlike Russinoff). wenzelm@11049: *} wenzelm@11049: wenzelm@11049: wenzelm@11049: subsection {* Definitions and lemmas *} wenzelm@11049: wenzelm@11049: constdefs wenzelm@11049: reciR :: "int => int => int => bool" wenzelm@11049: "reciR p == wenzelm@11701: \a b. zcong (a * b) Numeral1 p \ Numeral1 < a \ a < p - Numeral1 \ Numeral1 < b \ b < p - Numeral1" wenzelm@11049: inv :: "int => int => int" wenzelm@11049: "inv p a == wenzelm@11701: if p \ zprime \ Numeral0 < a \ a < p then wenzelm@11701: (SOME x. Numeral0 \ x \ x < p \ zcong (a * x) Numeral1 p) wenzelm@11701: else Numeral0" wenzelm@11049: wenzelm@11049: wenzelm@11049: text {* \medskip Inverse *} wenzelm@11049: wenzelm@11049: lemma inv_correct: wenzelm@11701: "p \ zprime ==> Numeral0 < a ==> a < p wenzelm@11701: ==> Numeral0 \ inv p a \ inv p a < p \ [a * inv p a = Numeral1] (mod p)" wenzelm@11049: apply (unfold inv_def) wenzelm@11049: apply (simp (no_asm_simp)) wenzelm@11049: apply (rule zcong_lineq_unique [THEN ex1_implies_ex, THEN someI_ex]) wenzelm@11049: apply (erule_tac [2] zless_zprime_imp_zrelprime) wenzelm@11049: apply (unfold zprime_def) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemmas inv_ge = inv_correct [THEN conjunct1, standard] wenzelm@11049: lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1, standard] wenzelm@11049: lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2, standard] wenzelm@11049: wenzelm@11049: lemma inv_not_0: wenzelm@11701: "p \ zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a \ Numeral0" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply safe wenzelm@11049: apply (cut_tac a = a and p = p in inv_is_inv) wenzelm@11049: apply (unfold zcong_def) wenzelm@11049: apply auto wenzelm@11701: apply (subgoal_tac "\ p dvd Numeral1") wenzelm@11049: apply (rule_tac [2] zdvd_not_zless) wenzelm@11701: apply (subgoal_tac "p dvd Numeral1") wenzelm@11049: prefer 2 wenzelm@11049: apply (subst zdvd_zminus_iff [symmetric]) wenzelm@11049: apply auto wenzelm@11049: done paulson@9508: wenzelm@11049: lemma inv_not_1: wenzelm@11701: "p \ zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a \ Numeral1" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply safe wenzelm@11049: apply (cut_tac a = a and p = p in inv_is_inv) wenzelm@11049: prefer 4 wenzelm@11049: apply simp wenzelm@11701: apply (subgoal_tac "a = Numeral1") wenzelm@11049: apply (rule_tac [2] zcong_zless_imp_eq) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11701: lemma aux: "[a * (p - Numeral1) = Numeral1] (mod p) = [a = p - Numeral1] (mod p)" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply (unfold zcong_def) wenzelm@11049: apply (simp add: zdiff_zdiff_eq zdiff_zdiff_eq2 zdiff_zmult_distrib2) wenzelm@11701: apply (rule_tac s = "p dvd -((a + Numeral1) + (p * -a))" in trans) wenzelm@11049: apply (simp add: zmult_commute zminus_zdiff_eq) wenzelm@11049: apply (subst zdvd_zminus_iff) wenzelm@11049: apply (subst zdvd_reduce) wenzelm@11701: apply (rule_tac s = "p dvd (a + Numeral1) + (p * -Numeral1)" in trans) wenzelm@11049: apply (subst zdvd_reduce) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma inv_not_p_minus_1: wenzelm@11701: "p \ zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a \ p - Numeral1" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply safe wenzelm@11049: apply (cut_tac a = a and p = p in inv_is_inv) wenzelm@11049: apply auto wenzelm@11049: apply (simp add: aux) wenzelm@11701: apply (subgoal_tac "a = p - Numeral1") wenzelm@11049: apply (rule_tac [2] zcong_zless_imp_eq) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: text {* wenzelm@11049: Below is slightly different as we don't expand @{term [source] inv} wenzelm@11049: but use ``@{text correct}'' theorems. wenzelm@11049: *} wenzelm@11049: wenzelm@11701: lemma inv_g_1: "p \ zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> Numeral1 < inv p a" wenzelm@11701: apply (subgoal_tac "inv p a \ Numeral1") wenzelm@11701: apply (subgoal_tac "inv p a \ Numeral0") wenzelm@11049: apply (subst order_less_le) wenzelm@11049: apply (subst zle_add1_eq_le [symmetric]) wenzelm@11049: apply (subst order_less_le) wenzelm@11049: apply (rule_tac [2] inv_not_0) wenzelm@11049: apply (rule_tac [5] inv_not_1) wenzelm@11049: apply auto wenzelm@11049: apply (rule inv_ge) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma inv_less_p_minus_1: wenzelm@11701: "p \ zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a < p - Numeral1" wenzelm@11049: -- {* ditto *} wenzelm@11049: apply (subst order_less_le) wenzelm@11049: apply (simp add: inv_not_p_minus_1 inv_less) wenzelm@11049: done wenzelm@11049: wenzelm@11049: wenzelm@11049: text {* \medskip Bijection *} wenzelm@11049: wenzelm@11701: lemma aux1: "Numeral1 < x ==> Numeral0 \ (x::int)" wenzelm@11049: apply auto wenzelm@11049: done paulson@9508: wenzelm@11701: lemma aux2: "Numeral1 < x ==> Numeral0 < (x::int)" wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11704: lemma aux3: "x \ p - 2 ==> x < (p::int)" wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11704: lemma aux4: "x \ p - 2 ==> x < (p::int)-Numeral1" wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11704: lemma inv_inj: "p \ zprime ==> inj_on (inv p) (d22set (p - 2))" wenzelm@11049: apply (unfold inj_on_def) wenzelm@11049: apply auto wenzelm@11049: apply (rule zcong_zless_imp_eq) wenzelm@11049: apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *}) wenzelm@11049: apply (rule_tac [7] zcong_trans) wenzelm@11049: apply (tactic {* stac (thm "zcong_sym") 8 *}) wenzelm@11049: apply (erule_tac [7] inv_is_inv) wenzelm@11049: apply (tactic "Asm_simp_tac 9") wenzelm@11049: apply (erule_tac [9] inv_is_inv) wenzelm@11049: apply (rule_tac [6] zless_zprime_imp_zrelprime) wenzelm@11049: apply (rule_tac [8] inv_less) wenzelm@11049: apply (rule_tac [7] inv_g_1 [THEN aux2]) wenzelm@11049: apply (unfold zprime_def) wenzelm@11049: apply (auto intro: d22set_g_1 d22set_le wenzelm@11049: aux1 aux2 aux3 aux4) wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma inv_d22set_d22set: wenzelm@11704: "p \ zprime ==> inv p ` d22set (p - 2) = d22set (p - 2)" wenzelm@11049: apply (rule endo_inj_surj) wenzelm@11049: apply (rule d22set_fin) wenzelm@11049: apply (erule_tac [2] inv_inj) wenzelm@11049: apply auto wenzelm@11049: apply (rule d22set_mem) wenzelm@11049: apply (erule inv_g_1) wenzelm@11701: apply (subgoal_tac [3] "inv p xa < p - Numeral1") wenzelm@11049: apply (erule_tac [4] inv_less_p_minus_1) wenzelm@11049: apply (auto intro: d22set_g_1 d22set_le aux4) wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma d22set_d22set_bij: wenzelm@11704: "p \ zprime ==> (d22set (p - 2), d22set (p - 2)) \ bijR (reciR p)" wenzelm@11049: apply (unfold reciR_def) wenzelm@11704: apply (rule_tac s = "(d22set (p - 2), inv p ` d22set (p - 2))" in subst) wenzelm@11049: apply (simp add: inv_d22set_d22set) wenzelm@11049: apply (rule inj_func_bijR) wenzelm@11049: apply (rule_tac [3] d22set_fin) wenzelm@11049: apply (erule_tac [2] inv_inj) wenzelm@11049: apply auto wenzelm@11049: apply (erule inv_is_inv) wenzelm@11049: apply (erule_tac [5] inv_g_1) wenzelm@11049: apply (erule_tac [7] inv_less_p_minus_1) wenzelm@11049: apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4) wenzelm@11049: done wenzelm@11049: wenzelm@11704: lemma reciP_bijP: "p \ zprime ==> bijP (reciR p) (d22set (p - 2))" wenzelm@11049: apply (unfold reciR_def bijP_def) wenzelm@11049: apply auto wenzelm@11049: apply (rule d22set_mem) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma reciP_uniq: "p \ zprime ==> uniqP (reciR p)" wenzelm@11049: apply (unfold reciR_def uniqP_def) wenzelm@11049: apply auto wenzelm@11049: apply (rule zcong_zless_imp_eq) wenzelm@11049: apply (tactic {* stac (thm "zcong_cancel2" RS sym) 5 *}) wenzelm@11049: apply (rule_tac [7] zcong_trans) wenzelm@11049: apply (tactic {* stac (thm "zcong_sym") 8 *}) wenzelm@11049: apply (rule_tac [6] zless_zprime_imp_zrelprime) wenzelm@11049: apply auto wenzelm@11049: apply (rule zcong_zless_imp_eq) wenzelm@11049: apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *}) wenzelm@11049: apply (rule_tac [7] zcong_trans) wenzelm@11049: apply (tactic {* stac (thm "zcong_sym") 8 *}) wenzelm@11049: apply (rule_tac [6] zless_zprime_imp_zrelprime) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma reciP_sym: "p \ zprime ==> symP (reciR p)" wenzelm@11049: apply (unfold reciR_def symP_def) wenzelm@11049: apply (simp add: zmult_commute) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11704: lemma bijER_d22set: "p \ zprime ==> d22set (p - 2) \ bijER (reciR p)" wenzelm@11049: apply (rule bijR_bijER) wenzelm@11049: apply (erule d22set_d22set_bij) wenzelm@11049: apply (erule reciP_bijP) wenzelm@11049: apply (erule reciP_uniq) wenzelm@11049: apply (erule reciP_sym) wenzelm@11049: done wenzelm@11049: wenzelm@11049: wenzelm@11049: subsection {* Wilson *} wenzelm@11049: wenzelm@11049: lemma bijER_zcong_prod_1: wenzelm@11701: "p \ zprime ==> A \ bijER (reciR p) ==> [setprod A = Numeral1] (mod p)" wenzelm@11049: apply (unfold reciR_def) wenzelm@11049: apply (erule bijER.induct) wenzelm@11701: apply (subgoal_tac [2] "a = Numeral1 \ a = p - Numeral1") wenzelm@11049: apply (rule_tac [3] zcong_square_zless) wenzelm@11049: apply auto wenzelm@11049: apply (subst setprod_insert) wenzelm@11049: prefer 3 wenzelm@11049: apply (subst setprod_insert) wenzelm@11049: apply (auto simp add: fin_bijER) wenzelm@11701: apply (subgoal_tac "zcong ((a * b) * setprod A) (Numeral1 * Numeral1) p") wenzelm@11049: apply (simp add: zmult_assoc) wenzelm@11049: apply (rule zcong_zmult) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11704: theorem Wilson_Bij: "p \ zprime ==> [zfact (p - Numeral1) = -1] (mod p)" wenzelm@11704: apply (subgoal_tac "zcong ((p - Numeral1) * zfact (p - 2)) (-1 * Numeral1) p") wenzelm@11049: apply (rule_tac [2] zcong_zmult) wenzelm@11049: apply (simp add: zprime_def) wenzelm@11049: apply (subst zfact.simps) wenzelm@11704: apply (rule_tac t = "p - Numeral1 - Numeral1" and s = "p - 2" in subst) wenzelm@11049: apply auto wenzelm@11049: apply (simp add: zcong_def) wenzelm@11049: apply (subst d22set_prod_zfact [symmetric]) wenzelm@11049: apply (rule bijER_zcong_prod_1) wenzelm@11049: apply (rule_tac [2] bijER_d22set) wenzelm@11049: apply auto wenzelm@11049: done paulson@9508: paulson@9508: end