wenzelm@23164: (* Title: HOL/IntDiv.thy wenzelm@23164: ID: $Id$ wenzelm@23164: Author: Lawrence C Paulson, Cambridge University Computer Laboratory wenzelm@23164: Copyright 1999 University of Cambridge wenzelm@23164: wenzelm@23164: *) wenzelm@23164: wenzelm@23164: header{*The Division Operators div and mod; the Divides Relation dvd*} wenzelm@23164: wenzelm@23164: theory IntDiv haftmann@25919: imports Int Divides FunDef wenzelm@23164: begin wenzelm@23164: wenzelm@23164: constdefs wenzelm@23164: quorem :: "(int*int) * (int*int) => bool" wenzelm@23164: --{*definition of quotient and remainder*} haftmann@28562: [code]: "quorem == %((a,b), (q,r)). wenzelm@23164: a = b*q + r & wenzelm@23164: (if 0 < b then 0\r & r 0)" wenzelm@23164: wenzelm@23164: adjust :: "[int, int*int] => int*int" wenzelm@23164: --{*for the division algorithm*} haftmann@28562: [code]: "adjust b == %(q,r). if 0 \ r-b then (2*q + 1, r-b) wenzelm@23164: else (2*q, r)" wenzelm@23164: wenzelm@23164: text{*algorithm for the case @{text "a\0, b>0"}*} wenzelm@23164: function wenzelm@23164: posDivAlg :: "int \ int \ int \ int" wenzelm@23164: where wenzelm@23164: "posDivAlg a b = wenzelm@23164: (if (a0) then (0,a) wenzelm@23164: else adjust b (posDivAlg a (2*b)))" wenzelm@23164: by auto wenzelm@23164: termination by (relation "measure (%(a,b). nat(a - b + 1))") auto wenzelm@23164: wenzelm@23164: text{*algorithm for the case @{text "a<0, b>0"}*} wenzelm@23164: function wenzelm@23164: negDivAlg :: "int \ int \ int \ int" wenzelm@23164: where wenzelm@23164: "negDivAlg a b = wenzelm@23164: (if (0\a+b | b\0) then (-1,a+b) wenzelm@23164: else adjust b (negDivAlg a (2*b)))" wenzelm@23164: by auto wenzelm@23164: termination by (relation "measure (%(a,b). nat(- a - b))") auto wenzelm@23164: wenzelm@23164: text{*algorithm for the general case @{term "b\0"}*} wenzelm@23164: constdefs wenzelm@23164: negateSnd :: "int*int => int*int" haftmann@28562: [code]: "negateSnd == %(q,r). (q,-r)" wenzelm@23164: wenzelm@23164: definition wenzelm@23164: divAlg :: "int \ int \ int \ int" wenzelm@23164: --{*The full division algorithm considers all possible signs for a, b wenzelm@23164: including the special case @{text "a=0, b<0"} because wenzelm@23164: @{term negDivAlg} requires @{term "a<0"}.*} wenzelm@23164: where wenzelm@23164: "divAlg = (\(a, b). (if 0\a then wenzelm@23164: if 0\b then posDivAlg a b wenzelm@23164: else if a=0 then (0, 0) wenzelm@23164: else negateSnd (negDivAlg (-a) (-b)) wenzelm@23164: else wenzelm@23164: if 0r-b then (2*q+1, r-b) else (2*q, r) wenzelm@23164: end wenzelm@23164: wenzelm@23164: fun negDivAlg (a,b) = wenzelm@23164: if 0\a+b then (~1,a+b) wenzelm@23164: else let val (q,r) = negDivAlg(a, 2*b) wenzelm@23164: in if 0\r-b then (2*q+1, r-b) else (2*q, r) wenzelm@23164: end; wenzelm@23164: wenzelm@23164: fun negateSnd (q,r:int) = (q,~r); wenzelm@23164: wenzelm@23164: fun divAlg (a,b) = if 0\a then wenzelm@23164: if b>0 then posDivAlg (a,b) wenzelm@23164: else if a=0 then (0,0) wenzelm@23164: else negateSnd (negDivAlg (~a,~b)) wenzelm@23164: else wenzelm@23164: if 0 b*q + r; 0 \ r'; r' < b; r < b |] wenzelm@23164: ==> q' \ (q::int)" wenzelm@23164: apply (subgoal_tac "r' + b * (q'-q) \ r") wenzelm@23164: prefer 2 apply (simp add: right_diff_distrib) wenzelm@23164: apply (subgoal_tac "0 < b * (1 + q - q') ") wenzelm@23164: apply (erule_tac [2] order_le_less_trans) wenzelm@23164: prefer 2 apply (simp add: right_diff_distrib right_distrib) wenzelm@23164: apply (subgoal_tac "b * q' < b * (1 + q) ") wenzelm@23164: prefer 2 apply (simp add: right_diff_distrib right_distrib) wenzelm@23164: apply (simp add: mult_less_cancel_left) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma unique_quotient_lemma_neg: wenzelm@23164: "[| b*q' + r' \ b*q + r; r \ 0; b < r; b < r' |] wenzelm@23164: ==> q \ (q'::int)" wenzelm@23164: by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, wenzelm@23164: auto) wenzelm@23164: wenzelm@23164: lemma unique_quotient: wenzelm@23164: "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \ 0 |] wenzelm@23164: ==> q = q'" wenzelm@23164: apply (simp add: quorem_def linorder_neq_iff split: split_if_asm) wenzelm@23164: apply (blast intro: order_antisym wenzelm@23164: dest: order_eq_refl [THEN unique_quotient_lemma] wenzelm@23164: order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: lemma unique_remainder: wenzelm@23164: "[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); b \ 0 |] wenzelm@23164: ==> r = r'" wenzelm@23164: apply (subgoal_tac "q = q'") wenzelm@23164: apply (simp add: quorem_def) wenzelm@23164: apply (blast intro: unique_quotient) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends*} wenzelm@23164: wenzelm@23164: text{*And positive divisors*} wenzelm@23164: wenzelm@23164: lemma adjust_eq [simp]: wenzelm@23164: "adjust b (q,r) = wenzelm@23164: (let diff = r-b in wenzelm@23164: if 0 \ diff then (2*q + 1, diff) wenzelm@23164: else (2*q, r))" wenzelm@23164: by (simp add: Let_def adjust_def) wenzelm@23164: wenzelm@23164: declare posDivAlg.simps [simp del] wenzelm@23164: wenzelm@23164: text{*use with a simproc to avoid repeatedly proving the premise*} wenzelm@23164: lemma posDivAlg_eqn: wenzelm@23164: "0 < b ==> wenzelm@23164: posDivAlg a b = (if a a" and "0 < b" wenzelm@23164: shows "quorem ((a, b), posDivAlg a b)" wenzelm@23164: using prems apply (induct a b rule: posDivAlg.induct) wenzelm@23164: apply auto wenzelm@23164: apply (simp add: quorem_def) wenzelm@23164: apply (subst posDivAlg_eqn, simp add: right_distrib) wenzelm@23164: apply (case_tac "a < b") wenzelm@23164: apply simp_all wenzelm@23164: apply (erule splitE) wenzelm@23164: apply (auto simp add: right_distrib Let_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends*} wenzelm@23164: wenzelm@23164: text{*And positive divisors*} wenzelm@23164: wenzelm@23164: declare negDivAlg.simps [simp del] wenzelm@23164: wenzelm@23164: text{*use with a simproc to avoid repeatedly proving the premise*} wenzelm@23164: lemma negDivAlg_eqn: wenzelm@23164: "0 < b ==> wenzelm@23164: negDivAlg a b = wenzelm@23164: (if 0\a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))" wenzelm@23164: by (rule negDivAlg.simps [THEN trans], simp) wenzelm@23164: wenzelm@23164: (*Correctness of negDivAlg: it computes quotients correctly wenzelm@23164: It doesn't work if a=0 because the 0/b equals 0, not -1*) wenzelm@23164: lemma negDivAlg_correct: wenzelm@23164: assumes "a < 0" and "b > 0" wenzelm@23164: shows "quorem ((a, b), negDivAlg a b)" wenzelm@23164: using prems apply (induct a b rule: negDivAlg.induct) wenzelm@23164: apply (auto simp add: linorder_not_le) wenzelm@23164: apply (simp add: quorem_def) wenzelm@23164: apply (subst negDivAlg_eqn, assumption) wenzelm@23164: apply (case_tac "a + b < (0\int)") wenzelm@23164: apply simp_all wenzelm@23164: apply (erule splitE) wenzelm@23164: apply (auto simp add: right_distrib Let_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Existence Shown by Proving the Division Algorithm to be Correct*} wenzelm@23164: wenzelm@23164: (*the case a=0*) wenzelm@23164: lemma quorem_0: "b \ 0 ==> quorem ((0,b), (0,0))" wenzelm@23164: by (auto simp add: quorem_def linorder_neq_iff) wenzelm@23164: wenzelm@23164: lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)" wenzelm@23164: by (subst posDivAlg.simps, auto) wenzelm@23164: wenzelm@23164: lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)" wenzelm@23164: by (subst negDivAlg.simps, auto) wenzelm@23164: wenzelm@23164: lemma negateSnd_eq [simp]: "negateSnd(q,r) = (q,-r)" wenzelm@23164: by (simp add: negateSnd_def) wenzelm@23164: wenzelm@23164: lemma quorem_neg: "quorem ((-a,-b), qr) ==> quorem ((a,b), negateSnd qr)" wenzelm@23164: by (auto simp add: split_ifs quorem_def) wenzelm@23164: wenzelm@23164: lemma divAlg_correct: "b \ 0 ==> quorem ((a,b), divAlg (a, b))" wenzelm@23164: by (force simp add: linorder_neq_iff quorem_0 divAlg_def quorem_neg wenzelm@23164: posDivAlg_correct negDivAlg_correct) wenzelm@23164: wenzelm@23164: text{*Arbitrary definitions for division by zero. Useful to simplify wenzelm@23164: certain equations.*} wenzelm@23164: wenzelm@23164: lemma DIVISION_BY_ZERO [simp]: "a div (0::int) = 0 & a mod (0::int) = a" wenzelm@23164: by (simp add: div_def mod_def divAlg_def posDivAlg.simps) wenzelm@23164: wenzelm@23164: wenzelm@23164: text{*Basic laws about division and remainder*} wenzelm@23164: wenzelm@23164: lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (cut_tac a = a and b = b in divAlg_correct) wenzelm@23164: apply (auto simp add: quorem_def div_def mod_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_zmod_equality: "(b * (a div b) + (a mod b)) + k = (a::int)+k" wenzelm@23164: by(simp add: zmod_zdiv_equality[symmetric]) wenzelm@23164: wenzelm@23164: lemma zdiv_zmod_equality2: "((a div b) * b + (a mod b)) + k = (a::int)+k" wenzelm@23164: by(simp add: mult_commute zmod_zdiv_equality[symmetric]) wenzelm@23164: wenzelm@23164: text {* Tool setup *} wenzelm@23164: wenzelm@26480: ML {* wenzelm@23164: local wenzelm@23164: wenzelm@23164: structure CancelDivMod = CancelDivModFun( wenzelm@23164: struct wenzelm@23164: val div_name = @{const_name Divides.div}; wenzelm@23164: val mod_name = @{const_name Divides.mod}; wenzelm@23164: val mk_binop = HOLogic.mk_binop; wenzelm@23164: val mk_sum = Int_Numeral_Simprocs.mk_sum HOLogic.intT; wenzelm@23164: val dest_sum = Int_Numeral_Simprocs.dest_sum; wenzelm@23164: val div_mod_eqs = wenzelm@23164: map mk_meta_eq [@{thm zdiv_zmod_equality}, wenzelm@23164: @{thm zdiv_zmod_equality2}]; wenzelm@23164: val trans = trans; wenzelm@23164: val prove_eq_sums = wenzelm@23164: let huffman@23365: val simps = @{thm diff_int_def} :: Int_Numeral_Simprocs.add_0s @ @{thms zadd_ac} haftmann@26101: in ArithData.prove_conv all_tac (ArithData.simp_all_tac simps) end; wenzelm@23164: end) wenzelm@23164: wenzelm@23164: in wenzelm@23164: wenzelm@28262: val cancel_zdiv_zmod_proc = Simplifier.simproc (the_context ()) haftmann@26101: "cancel_zdiv_zmod" ["(m::int) + n"] (K CancelDivMod.proc) wenzelm@23164: wenzelm@23164: end; wenzelm@23164: wenzelm@23164: Addsimprocs [cancel_zdiv_zmod_proc] wenzelm@23164: *} wenzelm@23164: wenzelm@23164: lemma pos_mod_conj : "(0::int) < b ==> 0 \ a mod b & a mod b < b" wenzelm@23164: apply (cut_tac a = a and b = b in divAlg_correct) wenzelm@23164: apply (auto simp add: quorem_def mod_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1, standard] wenzelm@23164: and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2, standard] wenzelm@23164: wenzelm@23164: lemma neg_mod_conj : "b < (0::int) ==> a mod b \ 0 & b < a mod b" wenzelm@23164: apply (cut_tac a = a and b = b in divAlg_correct) wenzelm@23164: apply (auto simp add: quorem_def div_def mod_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1, standard] wenzelm@23164: and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2, standard] wenzelm@23164: wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*General Properties of div and mod*} wenzelm@23164: wenzelm@23164: lemma quorem_div_mod: "b \ 0 ==> quorem ((a, b), (a div b, a mod b))" wenzelm@23164: apply (cut_tac a = a and b = b in zmod_zdiv_equality) wenzelm@23164: apply (force simp add: quorem_def linorder_neq_iff) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma quorem_div: "[| quorem((a,b),(q,r)); b \ 0 |] ==> a div b = q" wenzelm@23164: by (simp add: quorem_div_mod [THEN unique_quotient]) wenzelm@23164: wenzelm@23164: lemma quorem_mod: "[| quorem((a,b),(q,r)); b \ 0 |] ==> a mod b = r" wenzelm@23164: by (simp add: quorem_div_mod [THEN unique_remainder]) wenzelm@23164: wenzelm@23164: lemma div_pos_pos_trivial: "[| (0::int) \ a; a < b |] ==> a div b = 0" wenzelm@23164: apply (rule quorem_div) wenzelm@23164: apply (auto simp add: quorem_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma div_neg_neg_trivial: "[| a \ (0::int); b < a |] ==> a div b = 0" wenzelm@23164: apply (rule quorem_div) wenzelm@23164: apply (auto simp add: quorem_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \ 0 |] ==> a div b = -1" wenzelm@23164: apply (rule quorem_div) wenzelm@23164: apply (auto simp add: quorem_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: (*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*) wenzelm@23164: wenzelm@23164: lemma mod_pos_pos_trivial: "[| (0::int) \ a; a < b |] ==> a mod b = a" wenzelm@23164: apply (rule_tac q = 0 in quorem_mod) wenzelm@23164: apply (auto simp add: quorem_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma mod_neg_neg_trivial: "[| a \ (0::int); b < a |] ==> a mod b = a" wenzelm@23164: apply (rule_tac q = 0 in quorem_mod) wenzelm@23164: apply (auto simp add: quorem_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \ 0 |] ==> a mod b = a+b" wenzelm@23164: apply (rule_tac q = "-1" in quorem_mod) wenzelm@23164: apply (auto simp add: quorem_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: text{*There is no @{text mod_neg_pos_trivial}.*} wenzelm@23164: wenzelm@23164: wenzelm@23164: (*Simpler laws such as -a div b = -(a div b) FAIL, but see just below*) wenzelm@23164: lemma zdiv_zminus_zminus [simp]: "(-a) div (-b) = a div (b::int)" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (simp add: quorem_div_mod [THEN quorem_neg, simplified, wenzelm@23164: THEN quorem_div, THEN sym]) wenzelm@23164: wenzelm@23164: done wenzelm@23164: wenzelm@23164: (*Simpler laws such as -a mod b = -(a mod b) FAIL, but see just below*) wenzelm@23164: lemma zmod_zminus_zminus [simp]: "(-a) mod (-b) = - (a mod (b::int))" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (subst quorem_div_mod [THEN quorem_neg, simplified, THEN quorem_mod], wenzelm@23164: auto) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Laws for div and mod with Unary Minus*} wenzelm@23164: wenzelm@23164: lemma zminus1_lemma: wenzelm@23164: "quorem((a,b),(q,r)) wenzelm@23164: ==> quorem ((-a,b), (if r=0 then -q else -q - 1), wenzelm@23164: (if r=0 then 0 else b-r))" wenzelm@23164: by (force simp add: split_ifs quorem_def linorder_neq_iff right_diff_distrib) wenzelm@23164: wenzelm@23164: wenzelm@23164: lemma zdiv_zminus1_eq_if: wenzelm@23164: "b \ (0::int) wenzelm@23164: ==> (-a) div b = wenzelm@23164: (if a mod b = 0 then - (a div b) else - (a div b) - 1)" wenzelm@23164: by (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_div]) wenzelm@23164: wenzelm@23164: lemma zmod_zminus1_eq_if: wenzelm@23164: "(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (blast intro: quorem_div_mod [THEN zminus1_lemma, THEN quorem_mod]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_zminus2: "a div (-b) = (-a::int) div b" wenzelm@23164: by (cut_tac a = "-a" in zdiv_zminus_zminus, auto) wenzelm@23164: wenzelm@23164: lemma zmod_zminus2: "a mod (-b) = - ((-a::int) mod b)" wenzelm@23164: by (cut_tac a = "-a" and b = b in zmod_zminus_zminus, auto) wenzelm@23164: wenzelm@23164: lemma zdiv_zminus2_eq_if: wenzelm@23164: "b \ (0::int) wenzelm@23164: ==> a div (-b) = wenzelm@23164: (if a mod b = 0 then - (a div b) else - (a div b) - 1)" wenzelm@23164: by (simp add: zdiv_zminus1_eq_if zdiv_zminus2) wenzelm@23164: wenzelm@23164: lemma zmod_zminus2_eq_if: wenzelm@23164: "a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)" wenzelm@23164: by (simp add: zmod_zminus1_eq_if zmod_zminus2) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Division of a Number by Itself*} wenzelm@23164: wenzelm@23164: lemma self_quotient_aux1: "[| (0::int) < a; a = r + a*q; r < a |] ==> 1 \ q" wenzelm@23164: apply (subgoal_tac "0 < a*q") wenzelm@23164: apply (simp add: zero_less_mult_iff, arith) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma self_quotient_aux2: "[| (0::int) < a; a = r + a*q; 0 \ r |] ==> q \ 1" wenzelm@23164: apply (subgoal_tac "0 \ a* (1-q) ") wenzelm@23164: apply (simp add: zero_le_mult_iff) wenzelm@23164: apply (simp add: right_diff_distrib) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma self_quotient: "[| quorem((a,a),(q,r)); a \ (0::int) |] ==> q = 1" wenzelm@23164: apply (simp add: split_ifs quorem_def linorder_neq_iff) wenzelm@23164: apply (rule order_antisym, safe, simp_all) wenzelm@23164: apply (rule_tac [3] a = "-a" and r = "-r" in self_quotient_aux1) wenzelm@23164: apply (rule_tac a = "-a" and r = "-r" in self_quotient_aux2) wenzelm@23164: apply (force intro: self_quotient_aux1 self_quotient_aux2 simp add: add_commute)+ wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma self_remainder: "[| quorem((a,a),(q,r)); a \ (0::int) |] ==> r = 0" wenzelm@23164: apply (frule self_quotient, assumption) wenzelm@23164: apply (simp add: quorem_def) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_self [simp]: "a \ 0 ==> a div a = (1::int)" wenzelm@23164: by (simp add: quorem_div_mod [THEN self_quotient]) wenzelm@23164: wenzelm@23164: (*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *) wenzelm@23164: lemma zmod_self [simp]: "a mod a = (0::int)" wenzelm@23164: apply (case_tac "a = 0", simp) wenzelm@23164: apply (simp add: quorem_div_mod [THEN self_remainder]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Computation of Division and Remainder*} wenzelm@23164: wenzelm@23164: lemma zdiv_zero [simp]: "(0::int) div b = 0" wenzelm@23164: by (simp add: div_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1" wenzelm@23164: by (simp add: div_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma zmod_zero [simp]: "(0::int) mod b = 0" wenzelm@23164: by (simp add: mod_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma zdiv_minus1: "(0::int) < b ==> -1 div b = -1" wenzelm@23164: by (simp add: div_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1" wenzelm@23164: by (simp add: mod_def divAlg_def) wenzelm@23164: wenzelm@23164: text{*a positive, b positive *} wenzelm@23164: wenzelm@23164: lemma div_pos_pos: "[| 0 < a; 0 \ b |] ==> a div b = fst (posDivAlg a b)" wenzelm@23164: by (simp add: div_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma mod_pos_pos: "[| 0 < a; 0 \ b |] ==> a mod b = snd (posDivAlg a b)" wenzelm@23164: by (simp add: mod_def divAlg_def) wenzelm@23164: wenzelm@23164: text{*a negative, b positive *} wenzelm@23164: wenzelm@23164: lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)" wenzelm@23164: by (simp add: div_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)" wenzelm@23164: by (simp add: mod_def divAlg_def) wenzelm@23164: wenzelm@23164: text{*a positive, b negative *} wenzelm@23164: wenzelm@23164: lemma div_pos_neg: wenzelm@23164: "[| 0 < a; b < 0 |] ==> a div b = fst (negateSnd (negDivAlg (-a) (-b)))" wenzelm@23164: by (simp add: div_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma mod_pos_neg: wenzelm@23164: "[| 0 < a; b < 0 |] ==> a mod b = snd (negateSnd (negDivAlg (-a) (-b)))" wenzelm@23164: by (simp add: mod_def divAlg_def) wenzelm@23164: wenzelm@23164: text{*a negative, b negative *} wenzelm@23164: wenzelm@23164: lemma div_neg_neg: wenzelm@23164: "[| a < 0; b \ 0 |] ==> a div b = fst (negateSnd (posDivAlg (-a) (-b)))" wenzelm@23164: by (simp add: div_def divAlg_def) wenzelm@23164: wenzelm@23164: lemma mod_neg_neg: wenzelm@23164: "[| a < 0; b \ 0 |] ==> a mod b = snd (negateSnd (posDivAlg (-a) (-b)))" wenzelm@23164: by (simp add: mod_def divAlg_def) wenzelm@23164: wenzelm@23164: text {*Simplify expresions in which div and mod combine numerical constants*} wenzelm@23164: huffman@24481: lemma quoremI: huffman@24481: "\a == b * q + r; if 0 < b then 0 \ r \ r < b else b < r \ r \ 0\ huffman@24481: \ quorem ((a, b), (q, r))" huffman@24481: unfolding quorem_def by simp huffman@24481: huffman@24481: lemmas quorem_div_eq = quoremI [THEN quorem_div, THEN eq_reflection] huffman@24481: lemmas quorem_mod_eq = quoremI [THEN quorem_mod, THEN eq_reflection] huffman@24481: lemmas arithmetic_simps = huffman@24481: arith_simps huffman@24481: add_special huffman@24481: OrderedGroup.add_0_left huffman@24481: OrderedGroup.add_0_right huffman@24481: mult_zero_left huffman@24481: mult_zero_right huffman@24481: mult_1_left huffman@24481: mult_1_right huffman@24481: huffman@24481: (* simprocs adapted from HOL/ex/Binary.thy *) huffman@24481: ML {* huffman@24481: local huffman@24481: infix ==; huffman@24481: val op == = Logic.mk_equals; huffman@24481: fun plus m n = @{term "plus :: int \ int \ int"} $ m $ n; huffman@24481: fun mult m n = @{term "times :: int \ int \ int"} $ m $ n; huffman@24481: huffman@24481: val binary_ss = HOL_basic_ss addsimps @{thms arithmetic_simps}; huffman@24481: fun prove ctxt prop = huffman@24481: Goal.prove ctxt [] [] prop (fn _ => ALLGOALS (full_simp_tac binary_ss)); huffman@24481: huffman@24481: fun binary_proc proc ss ct = huffman@24481: (case Thm.term_of ct of huffman@24481: _ $ t $ u => huffman@24481: (case try (pairself (`(snd o HOLogic.dest_number))) (t, u) of huffman@24481: SOME args => proc (Simplifier.the_context ss) args huffman@24481: | NONE => NONE) huffman@24481: | _ => NONE); huffman@24481: in huffman@24481: huffman@24481: fun divmod_proc rule = binary_proc (fn ctxt => fn ((m, t), (n, u)) => huffman@24481: if n = 0 then NONE huffman@24481: else wenzelm@24630: let val (k, l) = Integer.div_mod m n; huffman@24481: fun mk_num x = HOLogic.mk_number HOLogic.intT x; huffman@24481: in SOME (rule OF [prove ctxt (t == plus (mult u (mk_num k)) (mk_num l))]) huffman@24481: end); huffman@24481: huffman@24481: end; huffman@24481: *} huffman@24481: huffman@24481: simproc_setup binary_int_div ("number_of m div number_of n :: int") = huffman@24481: {* K (divmod_proc (@{thm quorem_div_eq})) *} huffman@24481: huffman@24481: simproc_setup binary_int_mod ("number_of m mod number_of n :: int") = huffman@24481: {* K (divmod_proc (@{thm quorem_mod_eq})) *} huffman@24481: huffman@24481: (* The following 8 lemmas are made unnecessary by the above simprocs: *) huffman@24481: huffman@24481: lemmas div_pos_pos_number_of = wenzelm@23164: div_pos_pos [of "number_of v" "number_of w", standard] wenzelm@23164: huffman@24481: lemmas div_neg_pos_number_of = wenzelm@23164: div_neg_pos [of "number_of v" "number_of w", standard] wenzelm@23164: huffman@24481: lemmas div_pos_neg_number_of = wenzelm@23164: div_pos_neg [of "number_of v" "number_of w", standard] wenzelm@23164: huffman@24481: lemmas div_neg_neg_number_of = wenzelm@23164: div_neg_neg [of "number_of v" "number_of w", standard] wenzelm@23164: wenzelm@23164: huffman@24481: lemmas mod_pos_pos_number_of = wenzelm@23164: mod_pos_pos [of "number_of v" "number_of w", standard] wenzelm@23164: huffman@24481: lemmas mod_neg_pos_number_of = wenzelm@23164: mod_neg_pos [of "number_of v" "number_of w", standard] wenzelm@23164: huffman@24481: lemmas mod_pos_neg_number_of = wenzelm@23164: mod_pos_neg [of "number_of v" "number_of w", standard] wenzelm@23164: huffman@24481: lemmas mod_neg_neg_number_of = wenzelm@23164: mod_neg_neg [of "number_of v" "number_of w", standard] wenzelm@23164: wenzelm@23164: wenzelm@23164: lemmas posDivAlg_eqn_number_of [simp] = wenzelm@23164: posDivAlg_eqn [of "number_of v" "number_of w", standard] wenzelm@23164: wenzelm@23164: lemmas negDivAlg_eqn_number_of [simp] = wenzelm@23164: negDivAlg_eqn [of "number_of v" "number_of w", standard] wenzelm@23164: wenzelm@23164: wenzelm@23164: text{*Special-case simplification *} wenzelm@23164: wenzelm@23164: lemma zmod_1 [simp]: "a mod (1::int) = 0" wenzelm@23164: apply (cut_tac a = a and b = 1 in pos_mod_sign) wenzelm@23164: apply (cut_tac [2] a = a and b = 1 in pos_mod_bound) wenzelm@23164: apply (auto simp del:pos_mod_bound pos_mod_sign) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_1 [simp]: "a div (1::int) = a" wenzelm@23164: by (cut_tac a = a and b = 1 in zmod_zdiv_equality, auto) wenzelm@23164: wenzelm@23164: lemma zmod_minus1_right [simp]: "a mod (-1::int) = 0" wenzelm@23164: apply (cut_tac a = a and b = "-1" in neg_mod_sign) wenzelm@23164: apply (cut_tac [2] a = a and b = "-1" in neg_mod_bound) wenzelm@23164: apply (auto simp del: neg_mod_sign neg_mod_bound) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_minus1_right [simp]: "a div (-1::int) = -a" wenzelm@23164: by (cut_tac a = a and b = "-1" in zmod_zdiv_equality, auto) wenzelm@23164: wenzelm@23164: (** The last remaining special cases for constant arithmetic: wenzelm@23164: 1 div z and 1 mod z **) wenzelm@23164: wenzelm@23164: lemmas div_pos_pos_1_number_of [simp] = wenzelm@23164: div_pos_pos [OF int_0_less_1, of "number_of w", standard] wenzelm@23164: wenzelm@23164: lemmas div_pos_neg_1_number_of [simp] = wenzelm@23164: div_pos_neg [OF int_0_less_1, of "number_of w", standard] wenzelm@23164: wenzelm@23164: lemmas mod_pos_pos_1_number_of [simp] = wenzelm@23164: mod_pos_pos [OF int_0_less_1, of "number_of w", standard] wenzelm@23164: wenzelm@23164: lemmas mod_pos_neg_1_number_of [simp] = wenzelm@23164: mod_pos_neg [OF int_0_less_1, of "number_of w", standard] wenzelm@23164: wenzelm@23164: wenzelm@23164: lemmas posDivAlg_eqn_1_number_of [simp] = wenzelm@23164: posDivAlg_eqn [of concl: 1 "number_of w", standard] wenzelm@23164: wenzelm@23164: lemmas negDivAlg_eqn_1_number_of [simp] = wenzelm@23164: negDivAlg_eqn [of concl: 1 "number_of w", standard] wenzelm@23164: wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Monotonicity in the First Argument (Dividend)*} wenzelm@23164: wenzelm@23164: lemma zdiv_mono1: "[| a \ a'; 0 < (b::int) |] ==> a div b \ a' div b" wenzelm@23164: apply (cut_tac a = a and b = b in zmod_zdiv_equality) wenzelm@23164: apply (cut_tac a = a' and b = b in zmod_zdiv_equality) wenzelm@23164: apply (rule unique_quotient_lemma) wenzelm@23164: apply (erule subst) wenzelm@23164: apply (erule subst, simp_all) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_mono1_neg: "[| a \ a'; (b::int) < 0 |] ==> a' div b \ a div b" wenzelm@23164: apply (cut_tac a = a and b = b in zmod_zdiv_equality) wenzelm@23164: apply (cut_tac a = a' and b = b in zmod_zdiv_equality) wenzelm@23164: apply (rule unique_quotient_lemma_neg) wenzelm@23164: apply (erule subst) wenzelm@23164: apply (erule subst, simp_all) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Monotonicity in the Second Argument (Divisor)*} wenzelm@23164: wenzelm@23164: lemma q_pos_lemma: wenzelm@23164: "[| 0 \ b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \ (q'::int)" wenzelm@23164: apply (subgoal_tac "0 < b'* (q' + 1) ") wenzelm@23164: apply (simp add: zero_less_mult_iff) wenzelm@23164: apply (simp add: right_distrib) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_mono2_lemma: wenzelm@23164: "[| b*q + r = b'*q' + r'; 0 \ b'*q' + r'; wenzelm@23164: r' < b'; 0 \ r; 0 < b'; b' \ b |] wenzelm@23164: ==> q \ (q'::int)" wenzelm@23164: apply (frule q_pos_lemma, assumption+) wenzelm@23164: apply (subgoal_tac "b*q < b* (q' + 1) ") wenzelm@23164: apply (simp add: mult_less_cancel_left) wenzelm@23164: apply (subgoal_tac "b*q = r' - r + b'*q'") wenzelm@23164: prefer 2 apply simp wenzelm@23164: apply (simp (no_asm_simp) add: right_distrib) wenzelm@23164: apply (subst add_commute, rule zadd_zless_mono, arith) wenzelm@23164: apply (rule mult_right_mono, auto) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_mono2: wenzelm@23164: "[| (0::int) \ a; 0 < b'; b' \ b |] ==> a div b \ a div b'" wenzelm@23164: apply (subgoal_tac "b \ 0") wenzelm@23164: prefer 2 apply arith wenzelm@23164: apply (cut_tac a = a and b = b in zmod_zdiv_equality) wenzelm@23164: apply (cut_tac a = a and b = b' in zmod_zdiv_equality) wenzelm@23164: apply (rule zdiv_mono2_lemma) wenzelm@23164: apply (erule subst) wenzelm@23164: apply (erule subst, simp_all) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma q_neg_lemma: wenzelm@23164: "[| b'*q' + r' < 0; 0 \ r'; 0 < b' |] ==> q' \ (0::int)" wenzelm@23164: apply (subgoal_tac "b'*q' < 0") wenzelm@23164: apply (simp add: mult_less_0_iff, arith) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_mono2_neg_lemma: wenzelm@23164: "[| b*q + r = b'*q' + r'; b'*q' + r' < 0; wenzelm@23164: r < b; 0 \ r'; 0 < b'; b' \ b |] wenzelm@23164: ==> q' \ (q::int)" wenzelm@23164: apply (frule q_neg_lemma, assumption+) wenzelm@23164: apply (subgoal_tac "b*q' < b* (q + 1) ") wenzelm@23164: apply (simp add: mult_less_cancel_left) wenzelm@23164: apply (simp add: right_distrib) wenzelm@23164: apply (subgoal_tac "b*q' \ b'*q'") wenzelm@23164: prefer 2 apply (simp add: mult_right_mono_neg, arith) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_mono2_neg: wenzelm@23164: "[| a < (0::int); 0 < b'; b' \ b |] ==> a div b' \ a div b" wenzelm@23164: apply (cut_tac a = a and b = b in zmod_zdiv_equality) wenzelm@23164: apply (cut_tac a = a and b = b' in zmod_zdiv_equality) wenzelm@23164: apply (rule zdiv_mono2_neg_lemma) wenzelm@23164: apply (erule subst) wenzelm@23164: apply (erule subst, simp_all) wenzelm@23164: done wenzelm@23164: haftmann@25942: wenzelm@23164: subsection{*More Algebraic Laws for div and mod*} wenzelm@23164: wenzelm@23164: text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *} wenzelm@23164: wenzelm@23164: lemma zmult1_lemma: wenzelm@23164: "[| quorem((b,c),(q,r)); c \ 0 |] wenzelm@23164: ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))" wenzelm@23164: by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib) wenzelm@23164: wenzelm@23164: lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)" wenzelm@23164: apply (case_tac "c = 0", simp) wenzelm@23164: apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_div]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zmult1_eq: "(a*b) mod c = a*(b mod c) mod (c::int)" wenzelm@23164: apply (case_tac "c = 0", simp) wenzelm@23164: apply (blast intro: quorem_div_mod [THEN zmult1_lemma, THEN quorem_mod]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zmult1_eq': "(a*b) mod (c::int) = ((a mod c) * b) mod c" wenzelm@23164: apply (rule trans) wenzelm@23164: apply (rule_tac s = "b*a mod c" in trans) wenzelm@23164: apply (rule_tac [2] zmod_zmult1_eq) wenzelm@23164: apply (simp_all add: mult_commute) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zmult_distrib: "(a*b) mod (c::int) = ((a mod c) * (b mod c)) mod c" wenzelm@23164: apply (rule zmod_zmult1_eq' [THEN trans]) wenzelm@23164: apply (rule zmod_zmult1_eq) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_zmult_self1 [simp]: "b \ (0::int) ==> (a*b) div b = a" wenzelm@23164: by (simp add: zdiv_zmult1_eq) wenzelm@23164: haftmann@27651: lemma mod_div_trivial [simp]: "(a mod b) div b = (0::int)" haftmann@27651: apply (case_tac "b = 0", simp) haftmann@27651: apply (auto simp add: linorder_neq_iff div_pos_pos_trivial div_neg_neg_trivial) haftmann@27651: done haftmann@27651: haftmann@27651: lemma mod_mod_trivial [simp]: "(a mod b) mod b = a mod (b::int)" haftmann@27651: apply (case_tac "b = 0", simp) haftmann@27651: apply (force simp add: linorder_neq_iff mod_pos_pos_trivial mod_neg_neg_trivial) haftmann@27651: done haftmann@27651: haftmann@27651: text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *} haftmann@27651: haftmann@27651: lemma zadd1_lemma: haftmann@27651: "[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c \ 0 |] haftmann@27651: ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))" haftmann@27651: by (force simp add: split_ifs quorem_def linorder_neq_iff right_distrib) haftmann@27651: haftmann@27651: (*NOT suitable for rewriting: the RHS has an instance of the LHS*) haftmann@27651: lemma zdiv_zadd1_eq: haftmann@27651: "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)" haftmann@27651: apply (case_tac "c = 0", simp) haftmann@27651: apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_div) haftmann@27651: done haftmann@27651: haftmann@27651: lemma zmod_zadd1_eq: "(a+b) mod (c::int) = (a mod c + b mod c) mod c" haftmann@27651: apply (case_tac "c = 0", simp) haftmann@27651: apply (blast intro: zadd1_lemma [OF quorem_div_mod quorem_div_mod] quorem_mod) haftmann@27651: done haftmann@27651: haftmann@27651: lemma zdiv_zadd_self1[simp]: "a \ (0::int) ==> (a+b) div a = b div a + 1" haftmann@27651: by (simp add: zdiv_zadd1_eq) haftmann@27651: haftmann@27651: lemma zdiv_zadd_self2[simp]: "a \ (0::int) ==> (b+a) div a = b div a + 1" haftmann@27651: by (simp add: zdiv_zadd1_eq) haftmann@27651: haftmann@25942: instance int :: semiring_div haftmann@27651: proof haftmann@27651: fix a b c :: int haftmann@27651: assume not0: "b \ 0" haftmann@27651: show "(a + c * b) div b = c + a div b" haftmann@27651: unfolding zdiv_zadd1_eq [of a "c * b"] using not0 haftmann@27651: by (simp add: zmod_zmult1_eq) haftmann@27651: qed auto haftmann@25942: wenzelm@23164: lemma zdiv_zmult_self2 [simp]: "b \ (0::int) ==> (b*a) div b = a" wenzelm@23164: by (subst mult_commute, erule zdiv_zmult_self1) wenzelm@23164: wenzelm@23164: lemma zmod_zmult_self1 [simp]: "(a*b) mod b = (0::int)" wenzelm@23164: by (simp add: zmod_zmult1_eq) wenzelm@23164: wenzelm@23164: lemma zmod_zmult_self2 [simp]: "(b*a) mod b = (0::int)" wenzelm@23164: by (simp add: mult_commute zmod_zmult1_eq) wenzelm@23164: wenzelm@23164: lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)" wenzelm@23164: proof wenzelm@23164: assume "m mod d = 0" wenzelm@23164: with zmod_zdiv_equality[of m d] show "EX q::int. m = d*q" by auto wenzelm@23164: next wenzelm@23164: assume "EX q::int. m = d*q" wenzelm@23164: thus "m mod d = 0" by auto wenzelm@23164: qed wenzelm@23164: wenzelm@23164: lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1] wenzelm@23164: wenzelm@23164: lemma zmod_zadd_left_eq: "(a+b) mod (c::int) = ((a mod c) + b) mod c" wenzelm@23164: apply (rule trans [symmetric]) wenzelm@23164: apply (rule zmod_zadd1_eq, simp) wenzelm@23164: apply (rule zmod_zadd1_eq [symmetric]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zadd_right_eq: "(a+b) mod (c::int) = (a + (b mod c)) mod c" wenzelm@23164: apply (rule trans [symmetric]) wenzelm@23164: apply (rule zmod_zadd1_eq, simp) wenzelm@23164: apply (rule zmod_zadd1_eq [symmetric]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zadd_self1[simp]: "(a+b) mod a = b mod (a::int)" wenzelm@23164: apply (case_tac "a = 0", simp) wenzelm@23164: apply (simp add: zmod_zadd1_eq) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zadd_self2[simp]: "(b+a) mod a = b mod (a::int)" wenzelm@23164: apply (case_tac "a = 0", simp) wenzelm@23164: apply (simp add: zmod_zadd1_eq) wenzelm@23164: done wenzelm@23164: wenzelm@23164: nipkow@23983: lemma zmod_zdiff1_eq: fixes a::int nipkow@23983: shows "(a - b) mod c = (a mod c - b mod c) mod c" (is "?l = ?r") nipkow@23983: proof - nipkow@23983: have "?l = (c + (a mod c - b mod c)) mod c" nipkow@23983: using zmod_zadd1_eq[of a "-b" c] by(simp add:ring_simps zmod_zminus1_eq_if) nipkow@23983: also have "\ = ?r" by simp nipkow@23983: finally show ?thesis . nipkow@23983: qed nipkow@23983: wenzelm@23164: subsection{*Proving @{term "a div (b*c) = (a div b) div c"} *} wenzelm@23164: wenzelm@23164: (*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but wenzelm@23164: 7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems wenzelm@23164: to cause particular problems.*) wenzelm@23164: wenzelm@23164: text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *} wenzelm@23164: wenzelm@23164: lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \ 0 |] ==> b*c < b*(q mod c) + r" wenzelm@23164: apply (subgoal_tac "b * (c - q mod c) < r * 1") wenzelm@23164: apply (simp add: right_diff_distrib) wenzelm@23164: apply (rule order_le_less_trans) wenzelm@23164: apply (erule_tac [2] mult_strict_right_mono) wenzelm@23164: apply (rule mult_left_mono_neg) wenzelm@23164: apply (auto simp add: compare_rls add_commute [of 1] wenzelm@23164: add1_zle_eq pos_mod_bound) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmult2_lemma_aux2: wenzelm@23164: "[| (0::int) < c; b < r; r \ 0 |] ==> b * (q mod c) + r \ 0" wenzelm@23164: apply (subgoal_tac "b * (q mod c) \ 0") wenzelm@23164: apply arith wenzelm@23164: apply (simp add: mult_le_0_iff) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \ r; r < b |] ==> 0 \ b * (q mod c) + r" wenzelm@23164: apply (subgoal_tac "0 \ b * (q mod c) ") wenzelm@23164: apply arith wenzelm@23164: apply (simp add: zero_le_mult_iff) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \ r; r < b |] ==> b * (q mod c) + r < b * c" wenzelm@23164: apply (subgoal_tac "r * 1 < b * (c - q mod c) ") wenzelm@23164: apply (simp add: right_diff_distrib) wenzelm@23164: apply (rule order_less_le_trans) wenzelm@23164: apply (erule mult_strict_right_mono) wenzelm@23164: apply (rule_tac [2] mult_left_mono) wenzelm@23164: apply (auto simp add: compare_rls add_commute [of 1] wenzelm@23164: add1_zle_eq pos_mod_bound) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmult2_lemma: "[| quorem ((a,b), (q,r)); b \ 0; 0 < c |] wenzelm@23164: ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))" wenzelm@23164: by (auto simp add: mult_ac quorem_def linorder_neq_iff wenzelm@23164: zero_less_mult_iff right_distrib [symmetric] wenzelm@23164: zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4) wenzelm@23164: wenzelm@23164: lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_div]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zmult2_eq: wenzelm@23164: "(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (force simp add: quorem_div_mod [THEN zmult2_lemma, THEN quorem_mod]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Cancellation of Common Factors in div*} wenzelm@23164: wenzelm@23164: lemma zdiv_zmult_zmult1_aux1: wenzelm@23164: "[| (0::int) < b; c \ 0 |] ==> (c*a) div (c*b) = a div b" wenzelm@23164: by (subst zdiv_zmult2_eq, auto) wenzelm@23164: wenzelm@23164: lemma zdiv_zmult_zmult1_aux2: wenzelm@23164: "[| b < (0::int); c \ 0 |] ==> (c*a) div (c*b) = a div b" wenzelm@23164: apply (subgoal_tac " (c * (-a)) div (c * (-b)) = (-a) div (-b) ") wenzelm@23164: apply (rule_tac [2] zdiv_zmult_zmult1_aux1, auto) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdiv_zmult_zmult1: "c \ (0::int) ==> (c*a) div (c*b) = a div b" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (auto simp add: linorder_neq_iff zdiv_zmult_zmult1_aux1 zdiv_zmult_zmult1_aux2) wenzelm@23164: done wenzelm@23164: nipkow@23401: lemma zdiv_zmult_zmult1_if[simp]: nipkow@23401: "(k*m) div (k*n) = (if k = (0::int) then 0 else m div n)" nipkow@23401: by (simp add:zdiv_zmult_zmult1) nipkow@23401: nipkow@23401: (* wenzelm@23164: lemma zdiv_zmult_zmult2: "c \ (0::int) ==> (a*c) div (b*c) = a div b" wenzelm@23164: apply (drule zdiv_zmult_zmult1) wenzelm@23164: apply (auto simp add: mult_commute) wenzelm@23164: done nipkow@23401: *) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Distribution of Factors over mod*} wenzelm@23164: wenzelm@23164: lemma zmod_zmult_zmult1_aux1: wenzelm@23164: "[| (0::int) < b; c \ 0 |] ==> (c*a) mod (c*b) = c * (a mod b)" wenzelm@23164: by (subst zmod_zmult2_eq, auto) wenzelm@23164: wenzelm@23164: lemma zmod_zmult_zmult1_aux2: wenzelm@23164: "[| b < (0::int); c \ 0 |] ==> (c*a) mod (c*b) = c * (a mod b)" wenzelm@23164: apply (subgoal_tac " (c * (-a)) mod (c * (-b)) = c * ((-a) mod (-b))") wenzelm@23164: apply (rule_tac [2] zmod_zmult_zmult1_aux1, auto) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zmult_zmult1: "(c*a) mod (c*b) = (c::int) * (a mod b)" wenzelm@23164: apply (case_tac "b = 0", simp) wenzelm@23164: apply (case_tac "c = 0", simp) wenzelm@23164: apply (auto simp add: linorder_neq_iff zmod_zmult_zmult1_aux1 zmod_zmult_zmult1_aux2) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_zmult_zmult2: "(a*c) mod (b*c) = (a mod b) * (c::int)" wenzelm@23164: apply (cut_tac c = c in zmod_zmult_zmult1) wenzelm@23164: apply (auto simp add: mult_commute) wenzelm@23164: done wenzelm@23164: nipkow@24490: lemma zmod_zmod_cancel: nipkow@24490: assumes "n dvd m" shows "(k::int) mod m mod n = k mod n" nipkow@24490: proof - nipkow@24490: from `n dvd m` obtain r where "m = n*r" by(auto simp:dvd_def) nipkow@24490: have "k mod n = (m * (k div m) + k mod m) mod n" nipkow@24490: using zmod_zdiv_equality[of k m] by simp nipkow@24490: also have "\ = (m * (k div m) mod n + k mod m mod n) mod n" nipkow@24490: by(subst zmod_zadd1_eq, rule refl) nipkow@24490: also have "m * (k div m) mod n = 0" using `m = n*r` nipkow@24490: by(simp add:mult_ac) nipkow@24490: finally show ?thesis by simp nipkow@24490: qed nipkow@24490: wenzelm@23164: wenzelm@23164: subsection {*Splitting Rules for div and mod*} wenzelm@23164: wenzelm@23164: text{*The proofs of the two lemmas below are essentially identical*} wenzelm@23164: wenzelm@23164: lemma split_pos_lemma: wenzelm@23164: "0 wenzelm@23164: P(n div k :: int)(n mod k) = (\i j. 0\j & j P i j)" wenzelm@23164: apply (rule iffI, clarify) wenzelm@23164: apply (erule_tac P="P ?x ?y" in rev_mp) wenzelm@23164: apply (subst zmod_zadd1_eq) wenzelm@23164: apply (subst zdiv_zadd1_eq) wenzelm@23164: apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial) wenzelm@23164: txt{*converse direction*} wenzelm@23164: apply (drule_tac x = "n div k" in spec) wenzelm@23164: apply (drule_tac x = "n mod k" in spec, simp) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma split_neg_lemma: wenzelm@23164: "k<0 ==> wenzelm@23164: P(n div k :: int)(n mod k) = (\i j. k0 & n = k*i + j --> P i j)" wenzelm@23164: apply (rule iffI, clarify) wenzelm@23164: apply (erule_tac P="P ?x ?y" in rev_mp) wenzelm@23164: apply (subst zmod_zadd1_eq) wenzelm@23164: apply (subst zdiv_zadd1_eq) wenzelm@23164: apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial) wenzelm@23164: txt{*converse direction*} wenzelm@23164: apply (drule_tac x = "n div k" in spec) wenzelm@23164: apply (drule_tac x = "n mod k" in spec, simp) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma split_zdiv: wenzelm@23164: "P(n div k :: int) = wenzelm@23164: ((k = 0 --> P 0) & wenzelm@23164: (0 (\i j. 0\j & j P i)) & wenzelm@23164: (k<0 --> (\i j. k0 & n = k*i + j --> P i)))" wenzelm@23164: apply (case_tac "k=0", simp) wenzelm@23164: apply (simp only: linorder_neq_iff) wenzelm@23164: apply (erule disjE) wenzelm@23164: apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] wenzelm@23164: split_neg_lemma [of concl: "%x y. P x"]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma split_zmod: wenzelm@23164: "P(n mod k :: int) = wenzelm@23164: ((k = 0 --> P n) & wenzelm@23164: (0 (\i j. 0\j & j P j)) & wenzelm@23164: (k<0 --> (\i j. k0 & n = k*i + j --> P j)))" wenzelm@23164: apply (case_tac "k=0", simp) wenzelm@23164: apply (simp only: linorder_neq_iff) wenzelm@23164: apply (erule disjE) wenzelm@23164: apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] wenzelm@23164: split_neg_lemma [of concl: "%x y. P y"]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: (* Enable arith to deal with div 2 and mod 2: *) wenzelm@23164: declare split_zdiv [of _ _ "number_of k", simplified, standard, arith_split] wenzelm@23164: declare split_zmod [of _ _ "number_of k", simplified, standard, arith_split] wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Speeding up the Division Algorithm with Shifting*} wenzelm@23164: wenzelm@23164: text{*computing div by shifting *} wenzelm@23164: wenzelm@23164: lemma pos_zdiv_mult_2: "(0::int) \ a ==> (1 + 2*b) div (2*a) = b div a" wenzelm@23164: proof cases wenzelm@23164: assume "a=0" wenzelm@23164: thus ?thesis by simp wenzelm@23164: next wenzelm@23164: assume "a\0" and le_a: "0\a" wenzelm@23164: hence a_pos: "1 \ a" by arith wenzelm@23164: hence one_less_a2: "1 < 2*a" by arith wenzelm@23164: hence le_2a: "2 * (1 + b mod a) \ 2 * a" wenzelm@23164: by (simp add: mult_le_cancel_left add_commute [of 1] add1_zle_eq) wenzelm@23164: with a_pos have "0 \ b mod a" by simp wenzelm@23164: hence le_addm: "0 \ 1 mod (2*a) + 2*(b mod a)" wenzelm@23164: by (simp add: mod_pos_pos_trivial one_less_a2) wenzelm@23164: with le_2a wenzelm@23164: have "(1 mod (2*a) + 2*(b mod a)) div (2*a) = 0" wenzelm@23164: by (simp add: div_pos_pos_trivial le_addm mod_pos_pos_trivial one_less_a2 wenzelm@23164: right_distrib) wenzelm@23164: thus ?thesis wenzelm@23164: by (subst zdiv_zadd1_eq, wenzelm@23164: simp add: zdiv_zmult_zmult1 zmod_zmult_zmult1 one_less_a2 wenzelm@23164: div_pos_pos_trivial) wenzelm@23164: qed wenzelm@23164: wenzelm@23164: lemma neg_zdiv_mult_2: "a \ (0::int) ==> (1 + 2*b) div (2*a) = (b+1) div a" wenzelm@23164: apply (subgoal_tac " (1 + 2* (-b - 1)) div (2 * (-a)) = (-b - 1) div (-a) ") wenzelm@23164: apply (rule_tac [2] pos_zdiv_mult_2) wenzelm@23164: apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib) wenzelm@23164: apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))") wenzelm@23164: apply (simp only: zdiv_zminus_zminus diff_minus minus_add_distrib [symmetric], wenzelm@23164: simp) wenzelm@23164: done wenzelm@23164: wenzelm@23164: (*Not clear why this must be proved separately; probably number_of causes wenzelm@23164: simplification problems*) wenzelm@23164: lemma not_0_le_lemma: "~ 0 \ x ==> x \ (0::int)" wenzelm@23164: by auto wenzelm@23164: huffman@26086: lemma zdiv_number_of_Bit0 [simp]: huffman@26086: "number_of (Int.Bit0 v) div number_of (Int.Bit0 w) = huffman@26086: number_of v div (number_of w :: int)" huffman@26086: by (simp only: number_of_eq numeral_simps) simp huffman@26086: huffman@26086: lemma zdiv_number_of_Bit1 [simp]: huffman@26086: "number_of (Int.Bit1 v) div number_of (Int.Bit0 w) = huffman@26086: (if (0::int) \ number_of w wenzelm@23164: then number_of v div (number_of w) wenzelm@23164: else (number_of v + (1::int)) div (number_of w))" wenzelm@23164: apply (simp only: number_of_eq numeral_simps UNIV_I split: split_if) huffman@26086: apply (simp add: zdiv_zmult_zmult1 pos_zdiv_mult_2 neg_zdiv_mult_2 add_ac) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Computing mod by Shifting (proofs resemble those for div)*} wenzelm@23164: wenzelm@23164: lemma pos_zmod_mult_2: wenzelm@23164: "(0::int) \ a ==> (1 + 2*b) mod (2*a) = 1 + 2 * (b mod a)" wenzelm@23164: apply (case_tac "a = 0", simp) wenzelm@23164: apply (subgoal_tac "1 < a * 2") wenzelm@23164: prefer 2 apply arith wenzelm@23164: apply (subgoal_tac "2* (1 + b mod a) \ 2*a") wenzelm@23164: apply (rule_tac [2] mult_left_mono) wenzelm@23164: apply (auto simp add: add_commute [of 1] mult_commute add1_zle_eq wenzelm@23164: pos_mod_bound) wenzelm@23164: apply (subst zmod_zadd1_eq) wenzelm@23164: apply (simp add: zmod_zmult_zmult2 mod_pos_pos_trivial) wenzelm@23164: apply (rule mod_pos_pos_trivial) huffman@26086: apply (auto simp add: mod_pos_pos_trivial ring_distribs) wenzelm@23164: apply (subgoal_tac "0 \ b mod a", arith, simp) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma neg_zmod_mult_2: wenzelm@23164: "a \ (0::int) ==> (1 + 2*b) mod (2*a) = 2 * ((b+1) mod a) - 1" wenzelm@23164: apply (subgoal_tac "(1 + 2* (-b - 1)) mod (2* (-a)) = wenzelm@23164: 1 + 2* ((-b - 1) mod (-a))") wenzelm@23164: apply (rule_tac [2] pos_zmod_mult_2) wenzelm@23164: apply (auto simp add: minus_mult_right [symmetric] right_diff_distrib) wenzelm@23164: apply (subgoal_tac " (-1 - (2 * b)) = - (1 + (2 * b))") wenzelm@23164: prefer 2 apply simp wenzelm@23164: apply (simp only: zmod_zminus_zminus diff_minus minus_add_distrib [symmetric]) wenzelm@23164: done wenzelm@23164: huffman@26086: lemma zmod_number_of_Bit0 [simp]: huffman@26086: "number_of (Int.Bit0 v) mod number_of (Int.Bit0 w) = huffman@26086: (2::int) * (number_of v mod number_of w)" huffman@26086: apply (simp only: number_of_eq numeral_simps) huffman@26086: apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2 huffman@26086: not_0_le_lemma neg_zmod_mult_2 add_ac) huffman@26086: done huffman@26086: huffman@26086: lemma zmod_number_of_Bit1 [simp]: huffman@26086: "number_of (Int.Bit1 v) mod number_of (Int.Bit0 w) = huffman@26086: (if (0::int) \ number_of w wenzelm@23164: then 2 * (number_of v mod number_of w) + 1 wenzelm@23164: else 2 * ((number_of v + (1::int)) mod number_of w) - 1)" huffman@26086: apply (simp only: number_of_eq numeral_simps) wenzelm@23164: apply (simp add: zmod_zmult_zmult1 pos_zmod_mult_2 wenzelm@23164: not_0_le_lemma neg_zmod_mult_2 add_ac) wenzelm@23164: done wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection{*Quotients of Signs*} wenzelm@23164: wenzelm@23164: lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0" wenzelm@23164: apply (subgoal_tac "a div b \ -1", force) wenzelm@23164: apply (rule order_trans) wenzelm@23164: apply (rule_tac a' = "-1" in zdiv_mono1) wenzelm@23164: apply (auto simp add: zdiv_minus1) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma div_nonneg_neg_le0: "[| (0::int) \ a; b < 0 |] ==> a div b \ 0" wenzelm@23164: by (drule zdiv_mono1_neg, auto) wenzelm@23164: wenzelm@23164: lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \ a div b) = (0 \ a)" wenzelm@23164: apply auto wenzelm@23164: apply (drule_tac [2] zdiv_mono1) wenzelm@23164: apply (auto simp add: linorder_neq_iff) wenzelm@23164: apply (simp (no_asm_use) add: linorder_not_less [symmetric]) wenzelm@23164: apply (blast intro: div_neg_pos_less0) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma neg_imp_zdiv_nonneg_iff: wenzelm@23164: "b < (0::int) ==> (0 \ a div b) = (a \ (0::int))" wenzelm@23164: apply (subst zdiv_zminus_zminus [symmetric]) wenzelm@23164: apply (subst pos_imp_zdiv_nonneg_iff, auto) wenzelm@23164: done wenzelm@23164: wenzelm@23164: (*But not (a div b \ 0 iff a\0); consider a=1, b=2 when a div b = 0.*) wenzelm@23164: lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)" wenzelm@23164: by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff) wenzelm@23164: wenzelm@23164: (*Again the law fails for \: consider a = -1, b = -2 when a div b = 0*) wenzelm@23164: lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)" wenzelm@23164: by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff) wenzelm@23164: wenzelm@23164: wenzelm@23164: subsection {* The Divides Relation *} wenzelm@23164: wenzelm@23164: lemma zdvd_iff_zmod_eq_0: "(m dvd n) = (n mod m = (0::int))" haftmann@23512: by (simp add: dvd_def zmod_eq_0_iff) haftmann@23512: wenzelm@23164: lemmas zdvd_iff_zmod_eq_0_number_of [simp] = wenzelm@23164: zdvd_iff_zmod_eq_0 [of "number_of x" "number_of y", standard] wenzelm@23164: wenzelm@23164: lemma zdvd_0_right [iff]: "(m::int) dvd 0" haftmann@23512: by (simp add: dvd_def) wenzelm@23164: paulson@24286: lemma zdvd_0_left [iff,noatp]: "(0 dvd (m::int)) = (m = 0)" wenzelm@23164: by (simp add: dvd_def) wenzelm@23164: wenzelm@23164: lemma zdvd_1_left [iff]: "1 dvd (m::int)" wenzelm@23164: by (simp add: dvd_def) wenzelm@23164: wenzelm@23164: lemma zdvd_refl [simp]: "m dvd (m::int)" haftmann@23512: by (auto simp add: dvd_def intro: zmult_1_right [symmetric]) wenzelm@23164: wenzelm@23164: lemma zdvd_trans: "m dvd n ==> n dvd k ==> m dvd (k::int)" haftmann@23512: by (auto simp add: dvd_def intro: mult_assoc) wenzelm@23164: haftmann@27651: lemma zdvd_zminus_iff: "m dvd -n \ m dvd (n::int)" haftmann@27651: proof haftmann@27651: assume "m dvd - n" haftmann@27651: then obtain k where "- n = m * k" .. haftmann@27651: then have "n = m * - k" by simp haftmann@27651: then show "m dvd n" .. haftmann@27651: next haftmann@27651: assume "m dvd n" haftmann@27651: then have "m dvd n * -1" by (rule dvd_mult2) haftmann@27651: then show "m dvd - n" by simp haftmann@27651: qed wenzelm@23164: haftmann@27651: lemma zdvd_zminus2_iff: "-m dvd n \ m dvd (n::int)" haftmann@27651: proof haftmann@27651: assume "- m dvd n" haftmann@27651: then obtain k where "n = - m * k" .. haftmann@27651: then have "n = m * - k" by simp haftmann@27651: then show "m dvd n" .. haftmann@27651: next haftmann@27651: assume "m dvd n" haftmann@27651: then obtain k where "n = m * k" .. haftmann@27651: then have "n = - m * - k" by simp haftmann@27651: then show "- m dvd n" .. haftmann@27651: qed haftmann@27651: wenzelm@23164: lemma zdvd_abs1: "( \i::int\ dvd j) = (i dvd j)" haftmann@27651: by (cases "i > 0") (simp_all add: zdvd_zminus2_iff) haftmann@27651: wenzelm@23164: lemma zdvd_abs2: "( (i::int) dvd \j\) = (i dvd j)" haftmann@27651: by (cases "j > 0") (simp_all add: zdvd_zminus_iff) wenzelm@23164: wenzelm@23164: lemma zdvd_anti_sym: wenzelm@23164: "0 < m ==> 0 < n ==> m dvd n ==> n dvd m ==> m = (n::int)" wenzelm@23164: apply (simp add: dvd_def, auto) wenzelm@23164: apply (simp add: mult_assoc zero_less_mult_iff zmult_eq_1_iff) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zadd: "k dvd m ==> k dvd n ==> k dvd (m + n :: int)" wenzelm@23164: apply (simp add: dvd_def) wenzelm@23164: apply (blast intro: right_distrib [symmetric]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_dvd_eq: assumes anz:"a \ 0" and ab: "(a::int) dvd b" and ba:"b dvd a" wenzelm@23164: shows "\a\ = \b\" wenzelm@23164: proof- wenzelm@23164: from ab obtain k where k:"b = a*k" unfolding dvd_def by blast wenzelm@23164: from ba obtain k' where k':"a = b*k'" unfolding dvd_def by blast wenzelm@23164: from k k' have "a = a*k*k'" by simp wenzelm@23164: with mult_cancel_left1[where c="a" and b="k*k'"] wenzelm@23164: have kk':"k*k' = 1" using anz by (simp add: mult_assoc) wenzelm@23164: hence "k = 1 \ k' = 1 \ k = -1 \ k' = -1" by (simp add: zmult_eq_1_iff) wenzelm@23164: thus ?thesis using k k' by auto wenzelm@23164: qed wenzelm@23164: wenzelm@23164: lemma zdvd_zdiff: "k dvd m ==> k dvd n ==> k dvd (m - n :: int)" wenzelm@23164: apply (simp add: dvd_def) wenzelm@23164: apply (blast intro: right_diff_distrib [symmetric]) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zdiffD: "k dvd m - n ==> k dvd n ==> k dvd (m::int)" wenzelm@23164: apply (subgoal_tac "m = n + (m - n)") wenzelm@23164: apply (erule ssubst) wenzelm@23164: apply (blast intro: zdvd_zadd, simp) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zmult: "k dvd (n::int) ==> k dvd m * n" wenzelm@23164: apply (simp add: dvd_def) wenzelm@23164: apply (blast intro: mult_left_commute) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zmult2: "k dvd (m::int) ==> k dvd m * n" wenzelm@23164: apply (subst mult_commute) wenzelm@23164: apply (erule zdvd_zmult) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_triv_right [iff]: "(k::int) dvd m * k" wenzelm@23164: apply (rule zdvd_zmult) wenzelm@23164: apply (rule zdvd_refl) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_triv_left [iff]: "(k::int) dvd k * m" wenzelm@23164: apply (rule zdvd_zmult2) wenzelm@23164: apply (rule zdvd_refl) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zmultD2: "j * k dvd n ==> j dvd (n::int)" wenzelm@23164: apply (simp add: dvd_def) wenzelm@23164: apply (simp add: mult_assoc, blast) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zmultD: "j * k dvd n ==> k dvd (n::int)" wenzelm@23164: apply (rule zdvd_zmultD2) wenzelm@23164: apply (subst mult_commute, assumption) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zmult_mono: "i dvd m ==> j dvd (n::int) ==> i * j dvd m * n" haftmann@27651: by (rule mult_dvd_mono) wenzelm@23164: wenzelm@23164: lemma zdvd_reduce: "(k dvd n + k * m) = (k dvd (n::int))" wenzelm@23164: apply (rule iffI) wenzelm@23164: apply (erule_tac [2] zdvd_zadd) wenzelm@23164: apply (subgoal_tac "n = (n + k * m) - k * m") wenzelm@23164: apply (erule ssubst) wenzelm@23164: apply (erule zdvd_zdiff, simp_all) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zmod: "f dvd m ==> f dvd (n::int) ==> f dvd m mod n" wenzelm@23164: apply (simp add: dvd_def) wenzelm@23164: apply (auto simp add: zmod_zmult_zmult1) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_zmod_imp_zdvd: "k dvd m mod n ==> k dvd n ==> k dvd (m::int)" wenzelm@23164: apply (subgoal_tac "k dvd n * (m div n) + m mod n") wenzelm@23164: apply (simp add: zmod_zdiv_equality [symmetric]) wenzelm@23164: apply (simp only: zdvd_zadd zdvd_zmult2) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_not_zless: "0 < m ==> m < n ==> \ n dvd (m::int)" haftmann@27651: apply (auto elim!: dvdE) wenzelm@23164: apply (subgoal_tac "0 < n") wenzelm@23164: prefer 2 wenzelm@23164: apply (blast intro: order_less_trans) wenzelm@23164: apply (simp add: zero_less_mult_iff) wenzelm@23164: apply (subgoal_tac "n * k < n * 1") wenzelm@23164: apply (drule mult_less_cancel_left [THEN iffD1], auto) wenzelm@23164: done haftmann@27651: wenzelm@23164: lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)" wenzelm@23164: using zmod_zdiv_equality[where a="m" and b="n"] nipkow@23477: by (simp add: ring_simps) wenzelm@23164: wenzelm@23164: lemma zdvd_mult_div_cancel:"(n::int) dvd m \ n * (m div n) = m" wenzelm@23164: apply (subgoal_tac "m mod n = 0") wenzelm@23164: apply (simp add: zmult_div_cancel) wenzelm@23164: apply (simp only: zdvd_iff_zmod_eq_0) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zdvd_mult_cancel: assumes d:"k * m dvd k * n" and kz:"k \ (0::int)" wenzelm@23164: shows "m dvd n" wenzelm@23164: proof- wenzelm@23164: from d obtain h where h: "k*n = k*m * h" unfolding dvd_def by blast wenzelm@23164: {assume "n \ m*h" hence "k* n \ k* (m*h)" using kz by simp wenzelm@23164: with h have False by (simp add: mult_assoc)} wenzelm@23164: hence "n = m * h" by blast wenzelm@23164: thus ?thesis by blast wenzelm@23164: qed wenzelm@23164: nipkow@23969: lemma zdvd_zmult_cancel_disj[simp]: nipkow@23969: "(k*m) dvd (k*n) = (k=0 | m dvd (n::int))" nipkow@23969: by (auto simp: zdvd_zmult_mono dest: zdvd_mult_cancel) nipkow@23969: nipkow@23969: wenzelm@23164: theorem ex_nat: "(\x::nat. P x) = (\x::int. 0 <= x \ P (nat x))" nipkow@25134: apply (simp split add: split_nat) nipkow@25134: apply (rule iffI) nipkow@25134: apply (erule exE) nipkow@25134: apply (rule_tac x = "int x" in exI) nipkow@25134: apply simp nipkow@25134: apply (erule exE) nipkow@25134: apply (rule_tac x = "nat x" in exI) nipkow@25134: apply (erule conjE) nipkow@25134: apply (erule_tac x = "nat x" in allE) nipkow@25134: apply simp nipkow@25134: done wenzelm@23164: huffman@23365: theorem zdvd_int: "(x dvd y) = (int x dvd int y)" haftmann@27651: proof - haftmann@27651: have "\k. int y = int x * k \ x dvd y" haftmann@27651: proof - haftmann@27651: fix k haftmann@27651: assume A: "int y = int x * k" haftmann@27651: then show "x dvd y" proof (cases k) haftmann@27651: case (1 n) with A have "y = x * n" by (simp add: zmult_int) haftmann@27651: then show ?thesis .. haftmann@27651: next haftmann@27651: case (2 n) with A have "int y = int x * (- int (Suc n))" by simp haftmann@27651: also have "\ = - (int x * int (Suc n))" by (simp only: mult_minus_right) haftmann@27651: also have "\ = - int (x * Suc n)" by (simp only: zmult_int) haftmann@27651: finally have "- int (x * Suc n) = int y" .. haftmann@27651: then show ?thesis by (simp only: negative_eq_positive) auto haftmann@27651: qed haftmann@27651: qed haftmann@27651: then show ?thesis by (auto elim!: dvdE simp only: zmult_int [symmetric]) haftmann@27651: qed wenzelm@23164: wenzelm@23164: lemma zdvd1_eq[simp]: "(x::int) dvd 1 = ( \x\ = 1)" wenzelm@23164: proof wenzelm@23164: assume d: "x dvd 1" hence "int (nat \x\) dvd int (nat 1)" by (simp add: zdvd_abs1) wenzelm@23164: hence "nat \x\ dvd 1" by (simp add: zdvd_int) wenzelm@23164: hence "nat \x\ = 1" by simp wenzelm@23164: thus "\x\ = 1" by (cases "x < 0", auto) wenzelm@23164: next wenzelm@23164: assume "\x\=1" thus "x dvd 1" wenzelm@23164: by(cases "x < 0",simp_all add: minus_equation_iff zdvd_iff_zmod_eq_0) wenzelm@23164: qed wenzelm@23164: lemma zdvd_mult_cancel1: wenzelm@23164: assumes mp:"m \(0::int)" shows "(m * n dvd m) = (\n\ = 1)" wenzelm@23164: proof wenzelm@23164: assume n1: "\n\ = 1" thus "m * n dvd m" wenzelm@23164: by (cases "n >0", auto simp add: zdvd_zminus2_iff minus_equation_iff) wenzelm@23164: next wenzelm@23164: assume H: "m * n dvd m" hence H2: "m * n dvd m * 1" by simp wenzelm@23164: from zdvd_mult_cancel[OF H2 mp] show "\n\ = 1" by (simp only: zdvd1_eq) wenzelm@23164: qed wenzelm@23164: huffman@23365: lemma int_dvd_iff: "(int m dvd z) = (m dvd nat (abs z))" haftmann@27651: unfolding zdvd_int by (cases "z \ 0") (simp_all add: zdvd_zminus_iff) huffman@23306: huffman@23365: lemma dvd_int_iff: "(z dvd int m) = (nat (abs z) dvd m)" haftmann@27651: unfolding zdvd_int by (cases "z \ 0") (simp_all add: zdvd_zminus2_iff) wenzelm@23164: wenzelm@23164: lemma nat_dvd_iff: "(nat z dvd m) = (if 0 \ z then (z dvd int m) else m = 0)" haftmann@27651: by (auto simp add: dvd_int_iff) wenzelm@23164: wenzelm@23164: lemma zminus_dvd_iff [iff]: "(-z dvd w) = (z dvd (w::int))" haftmann@27651: by (simp add: zdvd_zminus2_iff) wenzelm@23164: wenzelm@23164: lemma dvd_zminus_iff [iff]: "(z dvd -w) = (z dvd (w::int))" haftmann@27651: by (simp add: zdvd_zminus_iff) wenzelm@23164: wenzelm@23164: lemma zdvd_imp_le: "[| z dvd n; 0 < n |] ==> z \ (n::int)" huffman@23365: apply (rule_tac z=n in int_cases) huffman@23365: apply (auto simp add: dvd_int_iff) huffman@23365: apply (rule_tac z=z in int_cases) huffman@23307: apply (auto simp add: dvd_imp_le) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zpower_zmod: "((x::int) mod m)^y mod m = x^y mod m" wenzelm@23164: apply (induct "y", auto) wenzelm@23164: apply (rule zmod_zmult1_eq [THEN trans]) wenzelm@23164: apply (simp (no_asm_simp)) wenzelm@23164: apply (rule zmod_zmult_distrib [symmetric]) wenzelm@23164: done wenzelm@23164: huffman@23365: lemma zdiv_int: "int (a div b) = (int a) div (int b)" wenzelm@23164: apply (subst split_div, auto) wenzelm@23164: apply (subst split_zdiv, auto) huffman@23365: apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient) huffman@23431: apply (auto simp add: IntDiv.quorem_def of_nat_mult) wenzelm@23164: done wenzelm@23164: wenzelm@23164: lemma zmod_int: "int (a mod b) = (int a) mod (int b)" huffman@23365: apply (subst split_mod, auto) huffman@23365: apply (subst split_zmod, auto) huffman@23365: apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia huffman@23365: in unique_remainder) huffman@23431: apply (auto simp add: IntDiv.quorem_def of_nat_mult) huffman@23365: done wenzelm@23164: wenzelm@23164: text{*Suggested by Matthias Daum*} wenzelm@23164: lemma int_power_div_base: wenzelm@23164: "\0 < m; 0 < k\ \ k ^ m div k = (k::int) ^ (m - Suc 0)" wenzelm@23164: apply (subgoal_tac "k ^ m = k ^ ((m - 1) + 1)") wenzelm@23164: apply (erule ssubst) wenzelm@23164: apply (simp only: power_add) wenzelm@23164: apply simp_all wenzelm@23164: done wenzelm@23164: haftmann@23853: text {* by Brian Huffman *} haftmann@23853: lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m" haftmann@23853: by (simp only: zmod_zminus1_eq_if mod_mod_trivial) haftmann@23853: haftmann@23853: lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)" haftmann@23853: by (simp only: diff_def zmod_zadd_left_eq [symmetric]) haftmann@23853: haftmann@23853: lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)" haftmann@23853: proof - haftmann@23853: have "(x + - (y mod m) mod m) mod m = (x + - y mod m) mod m" haftmann@23853: by (simp only: zminus_zmod) haftmann@23853: hence "(x + - (y mod m)) mod m = (x + - y) mod m" haftmann@23853: by (simp only: zmod_zadd_right_eq [symmetric]) haftmann@23853: thus "(x - y mod m) mod m = (x - y) mod m" haftmann@23853: by (simp only: diff_def) haftmann@23853: qed haftmann@23853: haftmann@23853: lemmas zmod_simps = haftmann@23853: IntDiv.zmod_zadd_left_eq [symmetric] haftmann@23853: IntDiv.zmod_zadd_right_eq [symmetric] haftmann@23853: IntDiv.zmod_zmult1_eq [symmetric] haftmann@23853: IntDiv.zmod_zmult1_eq' [symmetric] haftmann@23853: IntDiv.zpower_zmod haftmann@23853: zminus_zmod zdiff_zmod_left zdiff_zmod_right haftmann@23853: huffman@29045: text {* Distributive laws for function @{text nat}. *} huffman@29045: huffman@29045: lemma nat_div_distrib: "0 \ x \ nat (x div y) = nat x div nat y" huffman@29045: apply (rule linorder_cases [of y 0]) huffman@29045: apply (simp add: div_nonneg_neg_le0) huffman@29045: apply simp huffman@29045: apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int) huffman@29045: done huffman@29045: huffman@29045: (*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*) huffman@29045: lemma nat_mod_distrib: huffman@29045: "\0 \ x; 0 \ y\ \ nat (x mod y) = nat x mod nat y" huffman@29045: apply (case_tac "y = 0", simp add: DIVISION_BY_ZERO) huffman@29045: apply (simp add: nat_eq_iff zmod_int) huffman@29045: done huffman@29045: huffman@29045: text{*Suggested by Matthias Daum*} huffman@29045: lemma int_div_less_self: "\0 < x; 1 < k\ \ x div k < (x::int)" huffman@29045: apply (subgoal_tac "nat x div nat k < nat x") huffman@29045: apply (simp (asm_lr) add: nat_div_distrib [symmetric]) huffman@29045: apply (rule Divides.div_less_dividend, simp_all) huffman@29045: done huffman@29045: haftmann@23853: text {* code generator setup *} wenzelm@23164: haftmann@26507: context ring_1 haftmann@26507: begin haftmann@26507: haftmann@28562: lemma of_int_num [code]: haftmann@26507: "of_int k = (if k = 0 then 0 else if k < 0 then haftmann@26507: - of_int (- k) else let haftmann@26507: (l, m) = divAlg (k, 2); haftmann@26507: l' = of_int l haftmann@26507: in if m = 0 then l' + l' else l' + l' + 1)" haftmann@26507: proof - haftmann@26507: have aux1: "k mod (2\int) \ (0\int) \ haftmann@26507: of_int k = of_int (k div 2 * 2 + 1)" haftmann@26507: proof - haftmann@26507: have "k mod 2 < 2" by (auto intro: pos_mod_bound) haftmann@26507: moreover have "0 \ k mod 2" by (auto intro: pos_mod_sign) haftmann@26507: moreover assume "k mod 2 \ 0" haftmann@26507: ultimately have "k mod 2 = 1" by arith haftmann@26507: moreover have "of_int k = of_int (k div 2 * 2 + k mod 2)" by simp haftmann@26507: ultimately show ?thesis by auto haftmann@26507: qed haftmann@26507: have aux2: "\x. of_int 2 * x = x + x" haftmann@26507: proof - haftmann@26507: fix x haftmann@26507: have int2: "(2::int) = 1 + 1" by arith haftmann@26507: show "of_int 2 * x = x + x" haftmann@26507: unfolding int2 of_int_add left_distrib by simp haftmann@26507: qed haftmann@26507: have aux3: "\x. x * of_int 2 = x + x" haftmann@26507: proof - haftmann@26507: fix x haftmann@26507: have int2: "(2::int) = 1 + 1" by arith haftmann@26507: show "x * of_int 2 = x + x" haftmann@26507: unfolding int2 of_int_add right_distrib by simp haftmann@26507: qed haftmann@26507: from aux1 show ?thesis by (auto simp add: divAlg_mod_div Let_def aux2 aux3) haftmann@26507: qed haftmann@26507: haftmann@26507: end haftmann@26507: chaieb@27667: lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \ n dvd x - y" chaieb@27667: proof chaieb@27667: assume H: "x mod n = y mod n" chaieb@27667: hence "x mod n - y mod n = 0" by simp chaieb@27667: hence "(x mod n - y mod n) mod n = 0" by simp chaieb@27667: hence "(x - y) mod n = 0" by (simp add: zmod_zdiff1_eq[symmetric]) chaieb@27667: thus "n dvd x - y" by (simp add: zdvd_iff_zmod_eq_0) chaieb@27667: next chaieb@27667: assume H: "n dvd x - y" chaieb@27667: then obtain k where k: "x-y = n*k" unfolding dvd_def by blast chaieb@27667: hence "x = n*k + y" by simp chaieb@27667: hence "x mod n = (n*k + y) mod n" by simp chaieb@27667: thus "x mod n = y mod n" by (simp add: zmod_zadd_left_eq) chaieb@27667: qed chaieb@27667: chaieb@27667: lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \ x" chaieb@27667: shows "\q. x = y + n * q" chaieb@27667: proof- chaieb@27667: from xy have th: "int x - int y = int (x - y)" by simp chaieb@27667: from xyn have "int x mod int n = int y mod int n" chaieb@27667: by (simp add: zmod_int[symmetric]) chaieb@27667: hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric]) chaieb@27667: hence "n dvd x - y" by (simp add: th zdvd_int) chaieb@27667: then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith chaieb@27667: qed chaieb@27667: chaieb@27667: lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \ (\q1 q2. x + n * q1 = y + n * q2)" chaieb@27667: (is "?lhs = ?rhs") chaieb@27667: proof chaieb@27667: assume H: "x mod n = y mod n" chaieb@27667: {assume xy: "x \ y" chaieb@27667: from H have th: "y mod n = x mod n" by simp chaieb@27667: from nat_mod_eq_lemma[OF th xy] have ?rhs chaieb@27667: apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)} chaieb@27667: moreover chaieb@27667: {assume xy: "y \ x" chaieb@27667: from nat_mod_eq_lemma[OF H xy] have ?rhs chaieb@27667: apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)} chaieb@27667: ultimately show ?rhs using linear[of x y] by blast chaieb@27667: next chaieb@27667: assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast chaieb@27667: hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp chaieb@27667: thus ?lhs by simp chaieb@27667: qed chaieb@27667: wenzelm@23164: code_modulename SML wenzelm@23164: IntDiv Integer wenzelm@23164: wenzelm@23164: code_modulename OCaml wenzelm@23164: IntDiv Integer wenzelm@23164: wenzelm@23164: code_modulename Haskell haftmann@24195: IntDiv Integer wenzelm@23164: wenzelm@23164: end