paulson@12196: (* Title : NthRoot.thy paulson@12196: Author : Jacques D. Fleuriot paulson@12196: Copyright : 1998 University of Cambridge paulson@12196: Description : Existence of nth root. Adapted from paulson@12196: http://www.math.unl.edu/~webnotes paulson@12196: *) paulson@12196: paulson@14324: header{*Existence of Nth Root*} paulson@14324: paulson@14324: theory NthRoot = SEQ + HSeries: paulson@14324: paulson@14324: text{*Various lemmas needed for this result. We follow the proof paulson@14324: given by John Lindsay Orr (jorr@math.unl.edu) in his Analysis paulson@14324: Webnotes available on the www at http://www.math.unl.edu/~webnotes paulson@14324: Lemmas about sequences of reals are used to reach the result.*} paulson@14324: paulson@14324: lemma lemma_nth_realpow_non_empty: paulson@14324: "[| (0::real) < a; 0 < n |] ==> \s. s : {x. x ^ n <= a & 0 < x}" paulson@14324: apply (case_tac "1 <= a") paulson@14324: apply (rule_tac x = "1" in exI) paulson@14334: apply (drule_tac [2] linorder_not_le [THEN iffD1]) paulson@14324: apply (drule_tac [2] less_not_refl2 [THEN not0_implies_Suc]) paulson@14348: apply (simp add: ); paulson@14348: apply (force intro!: realpow_Suc_le_self simp del: realpow_Suc) paulson@14324: done paulson@14324: paulson@14348: text{*Used only just below*} paulson@14348: lemma realpow_ge_self2: "[| (1::real) \ r; 0 < n |] ==> r \ r ^ n" paulson@14348: by (insert power_increasing [of 1 n r], simp) paulson@14348: paulson@14324: lemma lemma_nth_realpow_isUb_ex: paulson@14324: "[| (0::real) < a; 0 < n |] paulson@14324: ==> \u. isUb (UNIV::real set) {x. x ^ n <= a & 0 < x} u" paulson@14324: apply (case_tac "1 <= a") paulson@14324: apply (rule_tac x = "a" in exI) paulson@14334: apply (drule_tac [2] linorder_not_le [THEN iffD1]) paulson@14324: apply (rule_tac [2] x = "1" in exI) paulson@14324: apply (rule_tac [!] setleI [THEN isUbI]) paulson@14324: apply safe paulson@14324: apply (simp_all (no_asm)) paulson@14324: apply (rule_tac [!] ccontr) paulson@14334: apply (drule_tac [!] linorder_not_le [THEN iffD1]) paulson@14324: apply (drule realpow_ge_self2 , assumption) paulson@14324: apply (drule_tac n = "n" in realpow_less) paulson@14324: apply (assumption+) paulson@14324: apply (drule real_le_trans , assumption) paulson@14324: apply (drule_tac y = "y ^ n" in order_less_le_trans) paulson@14365: apply (assumption) paulson@14365: apply (simp); paulson@14334: apply (drule_tac n = "n" in zero_less_one [THEN realpow_less]) paulson@14324: apply auto paulson@14324: done paulson@14324: paulson@14324: lemma nth_realpow_isLub_ex: paulson@14324: "[| (0::real) < a; 0 < n |] paulson@14324: ==> \u. isLub (UNIV::real set) {x. x ^ n <= a & 0 < x} u" paulson@14365: by (blast intro: lemma_nth_realpow_isUb_ex lemma_nth_realpow_non_empty reals_complete) paulson@14365: paulson@14324: paulson@14324: subsection{*First Half -- Lemmas First*} paulson@14324: paulson@14324: lemma lemma_nth_realpow_seq: paulson@14324: "isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u paulson@14324: ==> u + inverse(real (Suc k)) ~: {x. x ^ n <= a & 0 < x}" paulson@14324: apply (safe , drule isLubD2 , blast) paulson@14365: apply (simp add: linorder_not_less [symmetric]) paulson@14324: done paulson@14324: paulson@14324: lemma lemma_nth_realpow_isLub_gt_zero: paulson@14324: "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u; paulson@14324: 0 < a; 0 < n |] ==> 0 < u" paulson@14324: apply (drule lemma_nth_realpow_non_empty , auto) paulson@14324: apply (drule_tac y = "s" in isLub_isUb [THEN isUbD]) paulson@14324: apply (auto intro: order_less_le_trans) paulson@14324: done paulson@14324: paulson@14324: lemma lemma_nth_realpow_isLub_ge: paulson@14324: "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u; paulson@14324: 0 < a; 0 < n |] ==> ALL k. a <= (u + inverse(real (Suc k))) ^ n" paulson@14324: apply (safe) paulson@14324: apply (frule lemma_nth_realpow_seq , safe) paulson@14365: apply (auto elim: order_less_asym simp add: linorder_not_less [symmetric]) paulson@14365: apply (simp add: linorder_not_less) paulson@14324: apply (rule order_less_trans [of _ 0]) paulson@14325: apply (auto intro: lemma_nth_realpow_isLub_gt_zero) paulson@14324: done paulson@14324: paulson@14324: text{*First result we want*} paulson@14324: lemma realpow_nth_ge: paulson@14324: "[| (0::real) < a; 0 < n; paulson@14324: isLub (UNIV::real set) paulson@14324: {x. x ^ n <= a & 0 < x} u |] ==> a <= u ^ n" paulson@14324: apply (frule lemma_nth_realpow_isLub_ge , safe) paulson@14324: apply (rule LIMSEQ_inverse_real_of_nat_add [THEN LIMSEQ_pow, THEN LIMSEQ_le_const]) paulson@14334: apply (auto simp add: real_of_nat_def) paulson@14324: done paulson@14324: paulson@14324: subsection{*Second Half*} paulson@14324: paulson@14324: lemma less_isLub_not_isUb: paulson@14324: "[| isLub (UNIV::real set) S u; x < u |] paulson@14324: ==> ~ isUb (UNIV::real set) S x" paulson@14324: apply (safe) paulson@14324: apply (drule isLub_le_isUb) paulson@14324: apply assumption paulson@14324: apply (drule order_less_le_trans) paulson@14365: apply (auto) paulson@14324: done paulson@14324: paulson@14324: lemma not_isUb_less_ex: paulson@14324: "~ isUb (UNIV::real set) S u ==> \x \ S. u < x" paulson@14324: apply (rule ccontr , erule swap) paulson@14324: apply (rule setleI [THEN isUbI]) paulson@14365: apply (auto simp add: linorder_not_less [symmetric]) paulson@14324: done paulson@14324: paulson@14325: lemma real_mult_less_self: "0 < r ==> r * (1 + -inverse(real (Suc n))) < r" paulson@14334: apply (simp (no_asm) add: right_distrib) paulson@14334: apply (rule add_less_cancel_left [of "-r", THEN iffD1]) paulson@14334: apply (auto intro: mult_pos paulson@14334: simp add: add_assoc [symmetric] neg_less_0_iff_less) paulson@14325: done paulson@14325: paulson@14325: lemma real_mult_add_one_minus_ge_zero: paulson@14325: "0 < r ==> 0 <= r*(1 + -inverse(real (Suc n)))" nipkow@14355: apply (simp add: zero_le_mult_iff real_of_nat_inverse_le_iff) paulson@14325: done paulson@14325: paulson@14324: lemma lemma_nth_realpow_isLub_le: paulson@14324: "[| isLub (UNIV::real set) {x. x ^ n <= a & (0::real) < x} u; paulson@14325: 0 < a; 0 < n |] ==> ALL k. (u*(1 + -inverse(real (Suc k)))) ^ n <= a" paulson@14324: apply (safe) paulson@14324: apply (frule less_isLub_not_isUb [THEN not_isUb_less_ex]) paulson@14324: apply (rule_tac n = "k" in real_mult_less_self) paulson@14324: apply (blast intro: lemma_nth_realpow_isLub_gt_zero) paulson@14324: apply (safe) paulson@14348: apply (drule_tac n = "k" in paulson@14348: lemma_nth_realpow_isLub_gt_zero [THEN real_mult_add_one_minus_ge_zero]) paulson@14348: apply assumption+ paulson@14348: apply (blast intro: order_trans order_less_imp_le power_mono) paulson@14324: done paulson@14324: paulson@14324: text{*Second result we want*} paulson@14324: lemma realpow_nth_le: paulson@14324: "[| (0::real) < a; 0 < n; paulson@14324: isLub (UNIV::real set) paulson@14324: {x. x ^ n <= a & 0 < x} u |] ==> u ^ n <= a" paulson@14324: apply (frule lemma_nth_realpow_isLub_le , safe) paulson@14348: apply (rule LIMSEQ_inverse_real_of_nat_add_minus_mult paulson@14348: [THEN LIMSEQ_pow, THEN LIMSEQ_le_const2]) paulson@14334: apply (auto simp add: real_of_nat_def) paulson@14324: done paulson@14324: paulson@14348: text{*The theorem at last!*} paulson@14324: lemma realpow_nth: "[| (0::real) < a; 0 < n |] ==> \r. r ^ n = a" paulson@14324: apply (frule nth_realpow_isLub_ex , auto) paulson@14324: apply (auto intro: realpow_nth_le realpow_nth_ge real_le_anti_sym) paulson@14324: done paulson@14324: paulson@14324: (* positive only *) paulson@14324: lemma realpow_pos_nth: "[| (0::real) < a; 0 < n |] ==> \r. 0 < r & r ^ n = a" paulson@14324: apply (frule nth_realpow_isLub_ex , auto) paulson@14324: apply (auto intro: realpow_nth_le realpow_nth_ge real_le_anti_sym lemma_nth_realpow_isLub_gt_zero) paulson@14324: done paulson@14324: paulson@14324: lemma realpow_pos_nth2: "(0::real) < a ==> \r. 0 < r & r ^ Suc n = a" paulson@14324: apply (blast intro: realpow_pos_nth) paulson@14324: done paulson@14324: paulson@14324: (* uniqueness of nth positive root *) paulson@14324: lemma realpow_pos_nth_unique: paulson@14324: "[| (0::real) < a; 0 < n |] ==> EX! r. 0 < r & r ^ n = a" paulson@14324: apply (auto intro!: realpow_pos_nth) paulson@14324: apply (cut_tac x = "r" and y = "y" in linorder_less_linear) paulson@14324: apply auto paulson@14324: apply (drule_tac x = "r" in realpow_less) paulson@14324: apply (drule_tac [4] x = "y" in realpow_less) paulson@14365: apply (auto) paulson@14324: done paulson@14324: paulson@14324: ML paulson@14324: {* paulson@14324: val nth_realpow_isLub_ex = thm"nth_realpow_isLub_ex"; paulson@14324: val realpow_nth_ge = thm"realpow_nth_ge"; paulson@14324: val less_isLub_not_isUb = thm"less_isLub_not_isUb"; paulson@14324: val not_isUb_less_ex = thm"not_isUb_less_ex"; paulson@14324: val realpow_nth_le = thm"realpow_nth_le"; paulson@14324: val realpow_nth = thm"realpow_nth"; paulson@14324: val realpow_pos_nth = thm"realpow_pos_nth"; paulson@14324: val realpow_pos_nth2 = thm"realpow_pos_nth2"; paulson@14324: val realpow_pos_nth_unique = thm"realpow_pos_nth_unique"; paulson@14324: *} paulson@14324: paulson@14324: end