obua@16782: (* Title: HOL/Real/Float.thy obua@16782: ID: $Id$ obua@16782: Author: Steven Obua obua@16782: *) obua@16782: huffman@20717: header {* Floating Point Representation of the Reals *} huffman@20717: haftmann@20485: theory Float wenzelm@21256: imports Real Parity wenzelm@20771: uses ("float.ML") haftmann@20485: begin obua@16782: wenzelm@19765: definition obua@16782: pow2 :: "int \ real" wenzelm@19765: "pow2 a = (if (0 <= a) then (2^(nat a)) else (inverse (2^(nat (-a)))))" obua@16782: float :: "int * int \ real" wenzelm@19765: "float x = real (fst x) * pow2 (snd x)" obua@16782: obua@16782: lemma pow2_0[simp]: "pow2 0 = 1" obua@16782: by (simp add: pow2_def) obua@16782: obua@16782: lemma pow2_1[simp]: "pow2 1 = 2" obua@16782: by (simp add: pow2_def) obua@16782: obua@16782: lemma pow2_neg: "pow2 x = inverse (pow2 (-x))" obua@16782: by (simp add: pow2_def) obua@16782: wenzelm@19765: lemma pow2_add1: "pow2 (1 + a) = 2 * (pow2 a)" obua@16782: proof - obua@16782: have h: "! n. nat (2 + int n) - Suc 0 = nat (1 + int n)" by arith obua@16782: have g: "! a b. a - -1 = a + (1::int)" by arith obua@16782: have pos: "! n. pow2 (int n + 1) = 2 * pow2 (int n)" obua@16782: apply (auto, induct_tac n) obua@16782: apply (simp_all add: pow2_def) obua@16782: apply (rule_tac m1="2" and n1="nat (2 + int na)" in ssubst[OF realpow_num_eq_if]) webertj@20217: by (auto simp add: h) obua@16782: show ?thesis obua@16782: proof (induct a) obua@16782: case (1 n) obua@16782: from pos show ?case by (simp add: ring_eq_simps) obua@16782: next obua@16782: case (2 n) obua@16782: show ?case obua@16782: apply (auto) obua@16782: apply (subst pow2_neg[of "- int n"]) obua@16782: apply (subst pow2_neg[of "-1 - int n"]) obua@16782: apply (auto simp add: g pos) obua@16782: done wenzelm@19765: qed obua@16782: qed wenzelm@19765: obua@16782: lemma pow2_add: "pow2 (a+b) = (pow2 a) * (pow2 b)" obua@16782: proof (induct b) wenzelm@19765: case (1 n) obua@16782: show ?case obua@16782: proof (induct n) obua@16782: case 0 obua@16782: show ?case by simp obua@16782: next obua@16782: case (Suc m) obua@16782: show ?case by (auto simp add: ring_eq_simps pow2_add1 prems) obua@16782: qed obua@16782: next obua@16782: case (2 n) wenzelm@19765: show ?case obua@16782: proof (induct n) obua@16782: case 0 wenzelm@19765: show ?case obua@16782: apply (auto) obua@16782: apply (subst pow2_neg[of "a + -1"]) obua@16782: apply (subst pow2_neg[of "-1"]) obua@16782: apply (simp) obua@16782: apply (insert pow2_add1[of "-a"]) obua@16782: apply (simp add: ring_eq_simps) obua@16782: apply (subst pow2_neg[of "-a"]) obua@16782: apply (simp) obua@16782: done obua@16782: case (Suc m) wenzelm@19765: have a: "int m - (a + -2) = 1 + (int m - a + 1)" by arith obua@16782: have b: "int m - -2 = 1 + (int m + 1)" by arith obua@16782: show ?case obua@16782: apply (auto) obua@16782: apply (subst pow2_neg[of "a + (-2 - int m)"]) obua@16782: apply (subst pow2_neg[of "-2 - int m"]) obua@16782: apply (auto simp add: ring_eq_simps) obua@16782: apply (subst a) obua@16782: apply (subst b) obua@16782: apply (simp only: pow2_add1) obua@16782: apply (subst pow2_neg[of "int m - a + 1"]) obua@16782: apply (subst pow2_neg[of "int m + 1"]) obua@16782: apply auto obua@16782: apply (insert prems) obua@16782: apply (auto simp add: ring_eq_simps) obua@16782: done obua@16782: qed obua@16782: qed obua@16782: wenzelm@19765: lemma "float (a, e) + float (b, e) = float (a + b, e)" obua@16782: by (simp add: float_def ring_eq_simps) obua@16782: wenzelm@19765: definition obua@16782: int_of_real :: "real \ int" wenzelm@19765: "int_of_real x = (SOME y. real y = x)" obua@16782: real_is_int :: "real \ bool" wenzelm@19765: "real_is_int x = (EX (u::int). x = real u)" obua@16782: obua@16782: lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))" obua@16782: by (auto simp add: real_is_int_def int_of_real_def) obua@16782: obua@16782: lemma float_transfer: "real_is_int ((real a)*(pow2 c)) \ float (a, b) = float (int_of_real ((real a)*(pow2 c)), b - c)" obua@16782: by (simp add: float_def real_is_int_def2 pow2_add[symmetric]) obua@16782: obua@16782: lemma pow2_int: "pow2 (int c) = (2::real)^c" obua@16782: by (simp add: pow2_def) obua@16782: wenzelm@19765: lemma float_transfer_nat: "float (a, b) = float (a * 2^c, b - int c)" obua@16782: by (simp add: float_def pow2_int[symmetric] pow2_add[symmetric]) obua@16782: obua@16782: lemma real_is_int_real[simp]: "real_is_int (real (x::int))" obua@16782: by (auto simp add: real_is_int_def int_of_real_def) obua@16782: obua@16782: lemma int_of_real_real[simp]: "int_of_real (real x) = x" obua@16782: by (simp add: int_of_real_def) obua@16782: obua@16782: lemma real_int_of_real[simp]: "real_is_int x \ real (int_of_real x) = x" obua@16782: by (auto simp add: int_of_real_def real_is_int_def) obua@16782: obua@16782: lemma real_is_int_add_int_of_real: "real_is_int a \ real_is_int b \ (int_of_real (a+b)) = (int_of_real a) + (int_of_real b)" obua@16782: by (auto simp add: int_of_real_def real_is_int_def) obua@16782: obua@16782: lemma real_is_int_add[simp]: "real_is_int a \ real_is_int b \ real_is_int (a+b)" obua@16782: apply (subst real_is_int_def2) obua@16782: apply (simp add: real_is_int_add_int_of_real real_int_of_real) obua@16782: done obua@16782: obua@16782: lemma int_of_real_sub: "real_is_int a \ real_is_int b \ (int_of_real (a-b)) = (int_of_real a) - (int_of_real b)" obua@16782: by (auto simp add: int_of_real_def real_is_int_def) obua@16782: obua@16782: lemma real_is_int_sub[simp]: "real_is_int a \ real_is_int b \ real_is_int (a-b)" obua@16782: apply (subst real_is_int_def2) obua@16782: apply (simp add: int_of_real_sub real_int_of_real) obua@16782: done obua@16782: obua@16782: lemma real_is_int_rep: "real_is_int x \ ?! (a::int). real a = x" obua@16782: by (auto simp add: real_is_int_def) obua@16782: wenzelm@19765: lemma int_of_real_mult: obua@16782: assumes "real_is_int a" "real_is_int b" obua@16782: shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)" obua@16782: proof - obua@16782: from prems have a: "?! (a'::int). real a' = a" by (rule_tac real_is_int_rep, auto) obua@16782: from prems have b: "?! (b'::int). real b' = b" by (rule_tac real_is_int_rep, auto) obua@16782: from a obtain a'::int where a':"a = real a'" by auto obua@16782: from b obtain b'::int where b':"b = real b'" by auto obua@16782: have r: "real a' * real b' = real (a' * b')" by auto obua@16782: show ?thesis obua@16782: apply (simp add: a' b') obua@16782: apply (subst r) obua@16782: apply (simp only: int_of_real_real) obua@16782: done obua@16782: qed obua@16782: obua@16782: lemma real_is_int_mult[simp]: "real_is_int a \ real_is_int b \ real_is_int (a*b)" obua@16782: apply (subst real_is_int_def2) obua@16782: apply (simp add: int_of_real_mult) obua@16782: done obua@16782: obua@16782: lemma real_is_int_0[simp]: "real_is_int (0::real)" obua@16782: by (simp add: real_is_int_def int_of_real_def) obua@16782: obua@16782: lemma real_is_int_1[simp]: "real_is_int (1::real)" obua@16782: proof - obua@16782: have "real_is_int (1::real) = real_is_int(real (1::int))" by auto obua@16782: also have "\ = True" by (simp only: real_is_int_real) obua@16782: ultimately show ?thesis by auto obua@16782: qed obua@16782: obua@16782: lemma real_is_int_n1: "real_is_int (-1::real)" obua@16782: proof - obua@16782: have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto obua@16782: also have "\ = True" by (simp only: real_is_int_real) obua@16782: ultimately show ?thesis by auto obua@16782: qed obua@16782: haftmann@20485: lemma real_is_int_number_of[simp]: "real_is_int ((number_of \ int \ real) x)" obua@16782: proof - obua@16782: have neg1: "real_is_int (-1::real)" obua@16782: proof - obua@16782: have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto obua@16782: also have "\ = True" by (simp only: real_is_int_real) obua@16782: ultimately show ?thesis by auto obua@16782: qed wenzelm@19765: wenzelm@19765: { haftmann@20485: fix x :: int haftmann@20485: have "real_is_int ((number_of \ int \ real) x)" haftmann@20485: unfolding number_of_eq obua@16782: apply (induct x) obua@16782: apply (induct_tac n) obua@16782: apply (simp) obua@16782: apply (simp) obua@16782: apply (induct_tac n) obua@16782: apply (simp add: neg1) obua@16782: proof - obua@16782: fix n :: nat obua@16782: assume rn: "(real_is_int (of_int (- (int (Suc n)))))" obua@16782: have s: "-(int (Suc (Suc n))) = -1 + - (int (Suc n))" by simp obua@16782: show "real_is_int (of_int (- (int (Suc (Suc n)))))" wenzelm@19765: apply (simp only: s of_int_add) wenzelm@19765: apply (rule real_is_int_add) wenzelm@19765: apply (simp add: neg1) wenzelm@19765: apply (simp only: rn) wenzelm@19765: done obua@16782: qed obua@16782: } obua@16782: note Abs_Bin = this obua@16782: { haftmann@20485: fix x :: int haftmann@20485: have "? u. x = u" haftmann@20485: apply (rule exI[where x = "x"]) haftmann@20485: apply (simp) obua@16782: done obua@16782: } haftmann@20485: then obtain u::int where "x = u" by auto obua@16782: with Abs_Bin show ?thesis by auto obua@16782: qed obua@16782: obua@16782: lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)" obua@16782: by (simp add: int_of_real_def) obua@16782: obua@16782: lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)" wenzelm@19765: proof - obua@16782: have 1: "(1::real) = real (1::int)" by auto obua@16782: show ?thesis by (simp only: 1 int_of_real_real) obua@16782: qed obua@16782: obua@16782: lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b" obua@16782: proof - obua@16782: have "real_is_int (number_of b)" by simp obua@16782: then have uu: "?! u::int. number_of b = real u" by (auto simp add: real_is_int_rep) obua@16782: then obtain u::int where u:"number_of b = real u" by auto wenzelm@19765: have "number_of b = real ((number_of b)::int)" obua@16782: by (simp add: number_of_eq real_of_int_def) wenzelm@19765: have ub: "number_of b = real ((number_of b)::int)" obua@16782: by (simp add: number_of_eq real_of_int_def) obua@16782: from uu u ub have unb: "u = number_of b" obua@16782: by blast obua@16782: have "int_of_real (number_of b) = u" by (simp add: u) obua@16782: with unb show ?thesis by simp obua@16782: qed obua@16782: obua@16782: lemma float_transfer_even: "even a \ float (a, b) = float (a div 2, b+1)" obua@16782: apply (subst float_transfer[where a="a" and b="b" and c="-1", simplified]) obua@16782: apply (simp_all add: pow2_def even_def real_is_int_def ring_eq_simps) obua@16782: apply (auto) obua@16782: proof - obua@16782: fix q::int obua@16782: have a:"b - (-1\int) = (1\int) + b" by arith wenzelm@19765: show "(float (q, (b - (-1\int)))) = (float (q, ((1\int) + b)))" obua@16782: by (simp add: a) obua@16782: qed wenzelm@19765: obua@16782: consts obua@16782: norm_float :: "int*int \ int*int" obua@16782: obua@16782: lemma int_div_zdiv: "int (a div b) = (int a) div (int b)" obua@16782: apply (subst split_div, auto) obua@16782: apply (subst split_zdiv, auto) obua@16782: apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient) obua@16782: apply (auto simp add: IntDiv.quorem_def int_eq_of_nat) obua@16782: done obua@16782: obua@16782: lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)" obua@16782: apply (subst split_mod, auto) obua@16782: apply (subst split_zmod, auto) obua@16782: apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia in IntDiv.unique_remainder) obua@16782: apply (auto simp add: IntDiv.quorem_def int_eq_of_nat) obua@16782: done obua@16782: obua@16782: lemma abs_div_2_less: "a \ 0 \ a \ -1 \ abs((a::int) div 2) < abs a" obua@16782: by arith obua@16782: obua@16782: lemma terminating_norm_float: "\a. (a::int) \ 0 \ even a \ a \ 0 \ \a div 2\ < \a\" obua@16782: apply (auto) obua@16782: apply (rule abs_div_2_less) obua@16782: apply (auto) obua@16782: done obua@16782: wenzelm@19765: ML {* simp_depth_limit := 2 *} obua@16782: recdef norm_float "measure (% (a,b). nat (abs a))" obua@16782: "norm_float (a,b) = (if (a \ 0) & (even a) then norm_float (a div 2, b+1) else (if a=0 then (0,0) else (a,b)))" obua@16782: (hints simp: terminating_norm_float) obua@16782: ML {* simp_depth_limit := 1000 *} obua@16782: obua@16782: lemma norm_float: "float x = float (norm_float x)" obua@16782: proof - obua@16782: { wenzelm@19765: fix a b :: int wenzelm@19765: have norm_float_pair: "float (a,b) = float (norm_float (a,b))" obua@16782: proof (induct a b rule: norm_float.induct) obua@16782: case (1 u v) wenzelm@19765: show ?case obua@16782: proof cases wenzelm@19765: assume u: "u \ 0 \ even u" wenzelm@19765: with prems have ind: "float (u div 2, v + 1) = float (norm_float (u div 2, v + 1))" by auto wenzelm@19765: with u have "float (u,v) = float (u div 2, v+1)" by (simp add: float_transfer_even) wenzelm@19765: then show ?thesis wenzelm@19765: apply (subst norm_float.simps) wenzelm@19765: apply (simp add: ind) wenzelm@19765: done obua@16782: next wenzelm@19765: assume "~(u \ 0 \ even u)" wenzelm@19765: then show ?thesis wenzelm@19765: by (simp add: prems float_def) obua@16782: qed obua@16782: qed obua@16782: } obua@16782: note helper = this obua@16782: have "? a b. x = (a,b)" by auto obua@16782: then obtain a b where "x = (a, b)" by blast obua@16782: then show ?thesis by (simp only: helper) obua@16782: qed obua@16782: obua@16782: lemma pow2_int: "pow2 (int n) = 2^n" obua@16782: by (simp add: pow2_def) obua@16782: wenzelm@19765: lemma float_add: wenzelm@19765: "float (a1, e1) + float (a2, e2) = wenzelm@19765: (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1) obua@16782: else float (a1*2^(nat (e1-e2))+a2, e2))" obua@16782: apply (simp add: float_def ring_eq_simps) obua@16782: apply (auto simp add: pow2_int[symmetric] pow2_add[symmetric]) obua@16782: done obua@16782: obua@16782: lemma float_mult: wenzelm@19765: "float (a1, e1) * float (a2, e2) = obua@16782: (float (a1 * a2, e1 + e2))" obua@16782: by (simp add: float_def pow2_add) obua@16782: obua@16782: lemma float_minus: obua@16782: "- (float (a,b)) = float (-a, b)" obua@16782: by (simp add: float_def) obua@16782: obua@16782: lemma zero_less_pow2: obua@16782: "0 < pow2 x" obua@16782: proof - obua@16782: { obua@16782: fix y wenzelm@19765: have "0 <= y \ 0 < pow2 y" obua@16782: by (induct y, induct_tac n, simp_all add: pow2_add) obua@16782: } obua@16782: note helper=this obua@16782: show ?thesis obua@16782: apply (case_tac "0 <= x") obua@16782: apply (simp add: helper) obua@16782: apply (subst pow2_neg) obua@16782: apply (simp add: helper) obua@16782: done obua@16782: qed obua@16782: obua@16782: lemma zero_le_float: obua@16782: "(0 <= float (a,b)) = (0 <= a)" obua@16782: apply (auto simp add: float_def) wenzelm@19765: apply (auto simp add: zero_le_mult_iff zero_less_pow2) obua@16782: apply (insert zero_less_pow2[of b]) obua@16782: apply (simp_all) obua@16782: done obua@16782: obua@16782: lemma float_le_zero: obua@16782: "(float (a,b) <= 0) = (a <= 0)" obua@16782: apply (auto simp add: float_def) obua@16782: apply (auto simp add: mult_le_0_iff) obua@16782: apply (insert zero_less_pow2[of b]) obua@16782: apply auto obua@16782: done obua@16782: obua@16782: lemma float_abs: obua@16782: "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))" obua@16782: apply (auto simp add: abs_if) obua@16782: apply (simp_all add: zero_le_float[symmetric, of a b] float_minus) obua@16782: done obua@16782: obua@16782: lemma float_zero: obua@16782: "float (0, b) = 0" obua@16782: by (simp add: float_def) obua@16782: obua@16782: lemma float_pprt: obua@16782: "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))" obua@16782: by (auto simp add: zero_le_float float_le_zero float_zero) obua@16782: obua@16782: lemma float_nprt: obua@16782: "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))" obua@16782: by (auto simp add: zero_le_float float_le_zero float_zero) obua@16782: obua@16782: lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1" obua@16782: by auto wenzelm@19765: obua@16782: lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)" obua@16782: by simp obua@16782: obua@16782: lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)" obua@16782: by simp obua@16782: obua@16782: lemma mult_left_one: "1 * a = (a::'a::semiring_1)" obua@16782: by simp obua@16782: obua@16782: lemma mult_right_one: "a * 1 = (a::'a::semiring_1)" obua@16782: by simp obua@16782: obua@16782: lemma int_pow_0: "(a::int)^(Numeral0) = 1" obua@16782: by simp obua@16782: obua@16782: lemma int_pow_1: "(a::int)^(Numeral1) = a" obua@16782: by simp obua@16782: obua@16782: lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0" obua@16782: by simp obua@16782: obua@16782: lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1" obua@16782: by simp obua@16782: obua@16782: lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0" obua@16782: by simp obua@16782: obua@16782: lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1" obua@16782: by simp obua@16782: obua@16782: lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1" obua@16782: by simp obua@16782: obua@16782: lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1" obua@16782: proof - obua@16782: have 1:"((-1)::nat) = 0" obua@16782: by simp obua@16782: show ?thesis by (simp add: 1) obua@16782: qed obua@16782: obua@16782: lemma fst_cong: "a=a' \ fst (a,b) = fst (a',b)" obua@16782: by simp obua@16782: obua@16782: lemma snd_cong: "b=b' \ snd (a,b) = snd (a,b')" obua@16782: by simp obua@16782: obua@16782: lemma lift_bool: "x \ x=True" obua@16782: by simp obua@16782: obua@16782: lemma nlift_bool: "~x \ x=False" obua@16782: by simp obua@16782: obua@16782: lemma not_false_eq_true: "(~ False) = True" by simp obua@16782: obua@16782: lemma not_true_eq_false: "(~ True) = False" by simp obua@16782: wenzelm@19765: lemmas binarith = obua@16782: Pls_0_eq Min_1_eq haftmann@20485: pred_Pls pred_Min pred_1 pred_0 haftmann@20485: succ_Pls succ_Min succ_1 succ_0 haftmann@20485: add_Pls add_Min add_BIT_0 add_BIT_10 haftmann@20485: add_BIT_11 minus_Pls minus_Min minus_1 haftmann@20485: minus_0 mult_Pls mult_Min mult_num1 mult_num0 haftmann@20485: add_Pls_right add_Min_right obua@16782: haftmann@20485: lemma int_eq_number_of_eq: haftmann@20485: "(((number_of v)::int)=(number_of w)) = iszero ((number_of (v + uminus w))::int)" obua@16782: by simp obua@16782: wenzelm@19765: lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)" obua@16782: by (simp only: iszero_number_of_Pls) obua@16782: obua@16782: lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))" obua@16782: by simp obua@16782: obua@16782: lemma int_iszero_number_of_0: "iszero ((number_of (w BIT bit.B0))::int) = iszero ((number_of w)::int)" obua@16782: by simp obua@16782: wenzelm@19765: lemma int_iszero_number_of_1: "\ iszero ((number_of (w BIT bit.B1))::int)" obua@16782: by simp obua@16782: haftmann@20485: lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)" obua@16782: by simp obua@16782: wenzelm@19765: lemma int_not_neg_number_of_Pls: "\ (neg (Numeral0::int))" obua@16782: by simp obua@16782: obua@16782: lemma int_neg_number_of_Min: "neg (-1::int)" obua@16782: by simp obua@16782: obua@16782: lemma int_neg_number_of_BIT: "neg ((number_of (w BIT x))::int) = neg ((number_of w)::int)" obua@16782: by simp obua@16782: haftmann@20485: lemma int_le_number_of_eq: "(((number_of x)::int) \ number_of y) = (\ neg ((number_of (y + (uminus x)))::int))" obua@16782: by simp obua@16782: wenzelm@19765: lemmas intarithrel = wenzelm@19765: int_eq_number_of_eq wenzelm@19765: lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_0 obua@16782: lift_bool[OF int_iszero_number_of_1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min] obua@16782: int_neg_number_of_BIT int_le_number_of_eq obua@16782: haftmann@20485: lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)" obua@16782: by simp obua@16782: haftmann@20485: lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (v + (uminus w))" obua@16782: by simp obua@16782: haftmann@20485: lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (v * w)" obua@16782: by simp obua@16782: haftmann@20485: lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)" obua@16782: by simp obua@16782: obua@16782: lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym obua@16782: obua@16782: lemmas natarith = add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of obua@16782: wenzelm@19765: lemmas powerarith = nat_number_of zpower_number_of_even wenzelm@19765: zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring] obua@16782: zpower_Pls zpower_Min obua@16782: obua@16782: lemmas floatarith[simplified norm_0_1] = float_add float_mult float_minus float_abs zero_le_float float_pprt float_nprt obua@16782: obua@16782: (* for use with the compute oracle *) obua@16782: lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false obua@16782: wenzelm@20771: use "float.ML"; wenzelm@20771: obua@16782: end