huffman@20504: (* Title : RealVector.thy huffman@20504: ID: $Id$ huffman@20504: Author : Brian Huffman huffman@20504: *) huffman@20504: huffman@20504: header {* Vector Spaces and Algebras over the Reals *} huffman@20504: huffman@20504: theory RealVector huffman@20684: imports RealPow huffman@20504: begin huffman@20504: huffman@20504: subsection {* Locale for additive functions *} huffman@20504: huffman@20504: locale additive = huffman@20504: fixes f :: "'a::ab_group_add \ 'b::ab_group_add" huffman@20504: assumes add: "f (x + y) = f x + f y" huffman@20504: huffman@20504: lemma (in additive) zero: "f 0 = 0" huffman@20504: proof - huffman@20504: have "f 0 = f (0 + 0)" by simp huffman@20504: also have "\ = f 0 + f 0" by (rule add) huffman@20504: finally show "f 0 = 0" by simp huffman@20504: qed huffman@20504: huffman@20504: lemma (in additive) minus: "f (- x) = - f x" huffman@20504: proof - huffman@20504: have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) huffman@20504: also have "\ = - f x + f x" by (simp add: zero) huffman@20504: finally show "f (- x) = - f x" by (rule add_right_imp_eq) huffman@20504: qed huffman@20504: huffman@20504: lemma (in additive) diff: "f (x - y) = f x - f y" huffman@20504: by (simp add: diff_def add minus) huffman@20504: huffman@20504: huffman@20504: subsection {* Real vector spaces *} huffman@20504: huffman@20504: axclass scaleR < type huffman@20504: huffman@20504: consts huffman@20504: scaleR :: "real \ 'a \ 'a::scaleR" (infixr "*#" 75) huffman@20504: huffman@20763: abbreviation wenzelm@21404: divideR :: "'a \ real \ 'a::scaleR" (infixl "'/#" 70) where huffman@21809: "x /# r == scaleR (inverse r) x" huffman@20763: wenzelm@21210: notation (xsymbols) wenzelm@21404: scaleR (infixr "*\<^sub>R" 75) and huffman@20763: divideR (infixl "'/\<^sub>R" 70) huffman@20504: huffman@20554: instance real :: scaleR .. huffman@20554: huffman@20554: defs (overloaded) huffman@21809: real_scaleR_def: "scaleR a x \ a * x" huffman@20554: huffman@20504: axclass real_vector < scaleR, ab_group_add huffman@21809: scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y" huffman@21809: scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x" huffman@21809: scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x" huffman@21809: scaleR_one [simp]: "scaleR 1 x = x" huffman@20504: huffman@20504: axclass real_algebra < real_vector, ring huffman@21809: mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" huffman@21809: mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" huffman@20504: huffman@20554: axclass real_algebra_1 < real_algebra, ring_1 huffman@20554: huffman@20584: axclass real_div_algebra < real_algebra_1, division_ring huffman@20584: huffman@20584: axclass real_field < real_div_algebra, field huffman@20584: huffman@20584: instance real :: real_field huffman@20554: apply (intro_classes, unfold real_scaleR_def) huffman@20554: apply (rule right_distrib) huffman@20554: apply (rule left_distrib) huffman@20763: apply (rule mult_assoc [symmetric]) huffman@20554: apply (rule mult_1_left) huffman@20554: apply (rule mult_assoc) huffman@20554: apply (rule mult_left_commute) huffman@20554: done huffman@20554: huffman@20504: lemma scaleR_left_commute: huffman@20504: fixes x :: "'a::real_vector" huffman@21809: shows "scaleR a (scaleR b x) = scaleR b (scaleR a x)" huffman@20763: by (simp add: mult_commute) huffman@20504: huffman@21809: lemma additive_scaleR_right: "additive (\x. scaleR a x::'a::real_vector)" huffman@20504: by (rule additive.intro, rule scaleR_right_distrib) huffman@20504: huffman@21809: lemma additive_scaleR_left: "additive (\a. scaleR a x::'a::real_vector)" huffman@20504: by (rule additive.intro, rule scaleR_left_distrib) huffman@20504: huffman@20504: lemmas scaleR_zero_left [simp] = huffman@20504: additive.zero [OF additive_scaleR_left, standard] huffman@20504: huffman@20504: lemmas scaleR_zero_right [simp] = huffman@20504: additive.zero [OF additive_scaleR_right, standard] huffman@20504: huffman@20504: lemmas scaleR_minus_left [simp] = huffman@20504: additive.minus [OF additive_scaleR_left, standard] huffman@20504: huffman@20504: lemmas scaleR_minus_right [simp] = huffman@20504: additive.minus [OF additive_scaleR_right, standard] huffman@20504: huffman@20504: lemmas scaleR_left_diff_distrib = huffman@20504: additive.diff [OF additive_scaleR_left, standard] huffman@20504: huffman@20504: lemmas scaleR_right_diff_distrib = huffman@20504: additive.diff [OF additive_scaleR_right, standard] huffman@20504: huffman@20554: lemma scaleR_eq_0_iff: huffman@20554: fixes x :: "'a::real_vector" huffman@21809: shows "(scaleR a x = 0) = (a = 0 \ x = 0)" huffman@20554: proof cases huffman@20554: assume "a = 0" thus ?thesis by simp huffman@20554: next huffman@20554: assume anz [simp]: "a \ 0" huffman@21809: { assume "scaleR a x = 0" huffman@21809: hence "scaleR (inverse a) (scaleR a x) = 0" by simp huffman@20763: hence "x = 0" by simp } huffman@20554: thus ?thesis by force huffman@20554: qed huffman@20554: huffman@20554: lemma scaleR_left_imp_eq: huffman@20554: fixes x y :: "'a::real_vector" huffman@21809: shows "\a \ 0; scaleR a x = scaleR a y\ \ x = y" huffman@20554: proof - huffman@20554: assume nonzero: "a \ 0" huffman@21809: assume "scaleR a x = scaleR a y" huffman@21809: hence "scaleR a (x - y) = 0" huffman@20554: by (simp add: scaleR_right_diff_distrib) huffman@20554: hence "x - y = 0" huffman@20554: by (simp add: scaleR_eq_0_iff nonzero) huffman@20554: thus "x = y" by simp huffman@20554: qed huffman@20554: huffman@20554: lemma scaleR_right_imp_eq: huffman@20554: fixes x y :: "'a::real_vector" huffman@21809: shows "\x \ 0; scaleR a x = scaleR b x\ \ a = b" huffman@20554: proof - huffman@20554: assume nonzero: "x \ 0" huffman@21809: assume "scaleR a x = scaleR b x" huffman@21809: hence "scaleR (a - b) x = 0" huffman@20554: by (simp add: scaleR_left_diff_distrib) huffman@20554: hence "a - b = 0" huffman@20554: by (simp add: scaleR_eq_0_iff nonzero) huffman@20554: thus "a = b" by simp huffman@20554: qed huffman@20554: huffman@20554: lemma scaleR_cancel_left: huffman@20554: fixes x y :: "'a::real_vector" huffman@21809: shows "(scaleR a x = scaleR a y) = (x = y \ a = 0)" huffman@20554: by (auto intro: scaleR_left_imp_eq) huffman@20554: huffman@20554: lemma scaleR_cancel_right: huffman@20554: fixes x y :: "'a::real_vector" huffman@21809: shows "(scaleR a x = scaleR b x) = (a = b \ x = 0)" huffman@20554: by (auto intro: scaleR_right_imp_eq) huffman@20554: huffman@20584: lemma nonzero_inverse_scaleR_distrib: huffman@21809: fixes x :: "'a::real_div_algebra" shows huffman@21809: "\a \ 0; x \ 0\ \ inverse (scaleR a x) = scaleR (inverse a) (inverse x)" huffman@20763: by (rule inverse_unique, simp) huffman@20584: huffman@20584: lemma inverse_scaleR_distrib: huffman@20584: fixes x :: "'a::{real_div_algebra,division_by_zero}" huffman@21809: shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" huffman@20584: apply (case_tac "a = 0", simp) huffman@20584: apply (case_tac "x = 0", simp) huffman@20584: apply (erule (1) nonzero_inverse_scaleR_distrib) huffman@20584: done huffman@20584: huffman@20554: huffman@20554: subsection {* Embedding of the Reals into any @{text real_algebra_1}: huffman@20554: @{term of_real} *} huffman@20554: huffman@20554: definition wenzelm@21404: of_real :: "real \ 'a::real_algebra_1" where huffman@21809: "of_real r = scaleR r 1" huffman@20554: huffman@21809: lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" huffman@20763: by (simp add: of_real_def) huffman@20763: huffman@20554: lemma of_real_0 [simp]: "of_real 0 = 0" huffman@20554: by (simp add: of_real_def) huffman@20554: huffman@20554: lemma of_real_1 [simp]: "of_real 1 = 1" huffman@20554: by (simp add: of_real_def) huffman@20554: huffman@20554: lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" huffman@20554: by (simp add: of_real_def scaleR_left_distrib) huffman@20554: huffman@20554: lemma of_real_minus [simp]: "of_real (- x) = - of_real x" huffman@20554: by (simp add: of_real_def) huffman@20554: huffman@20554: lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" huffman@20554: by (simp add: of_real_def scaleR_left_diff_distrib) huffman@20554: huffman@20554: lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" huffman@20763: by (simp add: of_real_def mult_commute) huffman@20554: huffman@20584: lemma nonzero_of_real_inverse: huffman@20584: "x \ 0 \ of_real (inverse x) = huffman@20584: inverse (of_real x :: 'a::real_div_algebra)" huffman@20584: by (simp add: of_real_def nonzero_inverse_scaleR_distrib) huffman@20584: huffman@20584: lemma of_real_inverse [simp]: huffman@20584: "of_real (inverse x) = huffman@20584: inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})" huffman@20584: by (simp add: of_real_def inverse_scaleR_distrib) huffman@20584: huffman@20584: lemma nonzero_of_real_divide: huffman@20584: "y \ 0 \ of_real (x / y) = huffman@20584: (of_real x / of_real y :: 'a::real_field)" huffman@20584: by (simp add: divide_inverse nonzero_of_real_inverse) huffman@20722: huffman@20722: lemma of_real_divide [simp]: huffman@20584: "of_real (x / y) = huffman@20584: (of_real x / of_real y :: 'a::{real_field,division_by_zero})" huffman@20584: by (simp add: divide_inverse) huffman@20584: huffman@20722: lemma of_real_power [simp]: huffman@20722: "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n" wenzelm@20772: by (induct n) (simp_all add: power_Suc) huffman@20722: huffman@20554: lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" huffman@20554: by (simp add: of_real_def scaleR_cancel_right) huffman@20554: huffman@20584: lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] huffman@20554: huffman@20554: lemma of_real_eq_id [simp]: "of_real = (id :: real \ real)" huffman@20554: proof huffman@20554: fix r huffman@20554: show "of_real r = id r" huffman@20554: by (simp add: of_real_def real_scaleR_def) huffman@20554: qed huffman@20554: huffman@20554: text{*Collapse nested embeddings*} huffman@20554: lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" wenzelm@20772: by (induct n) auto huffman@20554: huffman@20554: lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" huffman@20554: by (cases z rule: int_diff_cases, simp) huffman@20554: huffman@20554: lemma of_real_number_of_eq: huffman@20554: "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})" huffman@20554: by (simp add: number_of_eq) huffman@20554: huffman@20554: huffman@20554: subsection {* The Set of Real Numbers *} huffman@20554: wenzelm@20772: definition wenzelm@21404: Reals :: "'a::real_algebra_1 set" where wenzelm@20772: "Reals \ range of_real" huffman@20554: wenzelm@21210: notation (xsymbols) huffman@20554: Reals ("\") huffman@20554: huffman@21809: lemma Reals_of_real [simp]: "of_real r \ Reals" huffman@20554: by (simp add: Reals_def) huffman@20554: huffman@21809: lemma Reals_of_int [simp]: "of_int z \ Reals" huffman@21809: by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) huffman@20718: huffman@21809: lemma Reals_of_nat [simp]: "of_nat n \ Reals" huffman@21809: by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) huffman@21809: huffman@21809: lemma Reals_number_of [simp]: huffman@21809: "(number_of w::'a::{number_ring,real_algebra_1}) \ Reals" huffman@21809: by (subst of_real_number_of_eq [symmetric], rule Reals_of_real) huffman@20718: huffman@20554: lemma Reals_0 [simp]: "0 \ Reals" huffman@20554: apply (unfold Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_0 [symmetric]) huffman@20554: done huffman@20554: huffman@20554: lemma Reals_1 [simp]: "1 \ Reals" huffman@20554: apply (unfold Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_1 [symmetric]) huffman@20554: done huffman@20554: huffman@20584: lemma Reals_add [simp]: "\a \ Reals; b \ Reals\ \ a + b \ Reals" huffman@20554: apply (auto simp add: Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_add [symmetric]) huffman@20554: done huffman@20554: huffman@20584: lemma Reals_minus [simp]: "a \ Reals \ - a \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_minus [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_diff [simp]: "\a \ Reals; b \ Reals\ \ a - b \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_diff [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_mult [simp]: "\a \ Reals; b \ Reals\ \ a * b \ Reals" huffman@20554: apply (auto simp add: Reals_def) huffman@20554: apply (rule range_eqI) huffman@20554: apply (rule of_real_mult [symmetric]) huffman@20554: done huffman@20554: huffman@20584: lemma nonzero_Reals_inverse: huffman@20584: fixes a :: "'a::real_div_algebra" huffman@20584: shows "\a \ Reals; a \ 0\ \ inverse a \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (erule nonzero_of_real_inverse [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_inverse [simp]: huffman@20584: fixes a :: "'a::{real_div_algebra,division_by_zero}" huffman@20584: shows "a \ Reals \ inverse a \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_inverse [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma nonzero_Reals_divide: huffman@20584: fixes a b :: "'a::real_field" huffman@20584: shows "\a \ Reals; b \ Reals; b \ 0\ \ a / b \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (erule nonzero_of_real_divide [symmetric]) huffman@20584: done huffman@20584: huffman@20584: lemma Reals_divide [simp]: huffman@20584: fixes a b :: "'a::{real_field,division_by_zero}" huffman@20584: shows "\a \ Reals; b \ Reals\ \ a / b \ Reals" huffman@20584: apply (auto simp add: Reals_def) huffman@20584: apply (rule range_eqI) huffman@20584: apply (rule of_real_divide [symmetric]) huffman@20584: done huffman@20584: huffman@20722: lemma Reals_power [simp]: huffman@20722: fixes a :: "'a::{real_algebra_1,recpower}" huffman@20722: shows "a \ Reals \ a ^ n \ Reals" huffman@20722: apply (auto simp add: Reals_def) huffman@20722: apply (rule range_eqI) huffman@20722: apply (rule of_real_power [symmetric]) huffman@20722: done huffman@20722: huffman@20554: lemma Reals_cases [cases set: Reals]: huffman@20554: assumes "q \ \" huffman@20554: obtains (of_real) r where "q = of_real r" huffman@20554: unfolding Reals_def huffman@20554: proof - huffman@20554: from `q \ \` have "q \ range of_real" unfolding Reals_def . huffman@20554: then obtain r where "q = of_real r" .. huffman@20554: then show thesis .. huffman@20554: qed huffman@20554: huffman@20554: lemma Reals_induct [case_names of_real, induct set: Reals]: huffman@20554: "q \ \ \ (\r. P (of_real r)) \ P q" huffman@20554: by (rule Reals_cases) auto huffman@20554: huffman@20504: huffman@20504: subsection {* Real normed vector spaces *} huffman@20504: huffman@20504: axclass norm < type huffman@20533: consts norm :: "'a::norm \ real" huffman@20504: huffman@20554: instance real :: norm .. huffman@20554: huffman@20554: defs (overloaded) huffman@20694: real_norm_def [simp]: "norm r \ \r\" huffman@20554: huffman@20554: axclass normed < plus, zero, norm huffman@20533: norm_ge_zero [simp]: "0 \ norm x" huffman@20533: norm_eq_zero [simp]: "(norm x = 0) = (x = 0)" huffman@20533: norm_triangle_ineq: "norm (x + y) \ norm x + norm y" huffman@20554: huffman@20554: axclass real_normed_vector < real_vector, normed huffman@21809: norm_scaleR: "norm (scaleR a x) = \a\ * norm x" huffman@20504: huffman@20584: axclass real_normed_algebra < real_algebra, real_normed_vector huffman@20533: norm_mult_ineq: "norm (x * y) \ norm x * norm y" huffman@20504: huffman@20584: axclass real_normed_div_algebra < real_div_algebra, normed huffman@20554: norm_of_real: "norm (of_real r) = abs r" huffman@20533: norm_mult: "norm (x * y) = norm x * norm y" huffman@20504: huffman@20584: axclass real_normed_field < real_field, real_normed_div_algebra huffman@20584: huffman@20504: instance real_normed_div_algebra < real_normed_algebra huffman@20554: proof huffman@20554: fix a :: real and x :: 'a huffman@21809: have "norm (scaleR a x) = norm (of_real a * x)" huffman@21809: by (simp add: of_real_def) huffman@20554: also have "\ = abs a * norm x" huffman@20554: by (simp add: norm_mult norm_of_real) huffman@21809: finally show "norm (scaleR a x) = abs a * norm x" . huffman@20554: next huffman@20554: fix x y :: 'a huffman@20554: show "norm (x * y) \ norm x * norm y" huffman@20554: by (simp add: norm_mult) huffman@20554: qed huffman@20554: huffman@20584: instance real :: real_normed_field huffman@20554: apply (intro_classes, unfold real_norm_def) huffman@20554: apply (rule abs_ge_zero) huffman@20554: apply (rule abs_eq_0) huffman@20554: apply (rule abs_triangle_ineq) huffman@20554: apply simp huffman@20554: apply (rule abs_mult) huffman@20554: done huffman@20504: huffman@20828: lemma norm_zero [simp]: "norm (0::'a::normed) = 0" huffman@20504: by simp huffman@20504: huffman@20828: lemma zero_less_norm_iff [simp]: "(0 < norm x) = (x \ (0::'a::normed))" huffman@20504: by (simp add: order_less_le) huffman@20504: huffman@20828: lemma norm_not_less_zero [simp]: "\ norm (x::'a::normed) < 0" huffman@20828: by (simp add: linorder_not_less) huffman@20828: huffman@20828: lemma norm_le_zero_iff [simp]: "(norm x \ 0) = (x = (0::'a::normed))" huffman@20828: by (simp add: order_le_less) huffman@20828: huffman@20504: lemma norm_minus_cancel [simp]: huffman@20584: fixes x :: "'a::real_normed_vector" huffman@20584: shows "norm (- x) = norm x" huffman@20504: proof - huffman@21809: have "norm (- x) = norm (scaleR (- 1) x)" huffman@20504: by (simp only: scaleR_minus_left scaleR_one) huffman@20533: also have "\ = \- 1\ * norm x" huffman@20504: by (rule norm_scaleR) huffman@20504: finally show ?thesis by simp huffman@20504: qed huffman@20504: huffman@20504: lemma norm_minus_commute: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20584: shows "norm (a - b) = norm (b - a)" huffman@20504: proof - huffman@20533: have "norm (a - b) = norm (- (a - b))" huffman@20533: by (simp only: norm_minus_cancel) huffman@20533: also have "\ = norm (b - a)" by simp huffman@20504: finally show ?thesis . huffman@20504: qed huffman@20504: huffman@20504: lemma norm_triangle_ineq2: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20533: shows "norm a - norm b \ norm (a - b)" huffman@20504: proof - huffman@20533: have "norm (a - b + b) \ norm (a - b) + norm b" huffman@20504: by (rule norm_triangle_ineq) huffman@20504: also have "(a - b + b) = a" huffman@20504: by simp huffman@20504: finally show ?thesis huffman@20504: by (simp add: compare_rls) huffman@20504: qed huffman@20504: huffman@20584: lemma norm_triangle_ineq3: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20584: shows "\norm a - norm b\ \ norm (a - b)" huffman@20584: apply (subst abs_le_iff) huffman@20584: apply auto huffman@20584: apply (rule norm_triangle_ineq2) huffman@20584: apply (subst norm_minus_commute) huffman@20584: apply (rule norm_triangle_ineq2) huffman@20584: done huffman@20584: huffman@20504: lemma norm_triangle_ineq4: huffman@20584: fixes a b :: "'a::real_normed_vector" huffman@20533: shows "norm (a - b) \ norm a + norm b" huffman@20504: proof - huffman@20533: have "norm (a - b) = norm (a + - b)" huffman@20504: by (simp only: diff_minus) huffman@20533: also have "\ \ norm a + norm (- b)" huffman@20504: by (rule norm_triangle_ineq) huffman@20504: finally show ?thesis huffman@20504: by simp huffman@20504: qed huffman@20504: huffman@20551: lemma norm_diff_triangle_ineq: huffman@20551: fixes a b c d :: "'a::real_normed_vector" huffman@20551: shows "norm ((a + b) - (c + d)) \ norm (a - c) + norm (b - d)" huffman@20551: proof - huffman@20551: have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" huffman@20551: by (simp add: diff_minus add_ac) huffman@20551: also have "\ \ norm (a - c) + norm (b - d)" huffman@20551: by (rule norm_triangle_ineq) huffman@20551: finally show ?thesis . huffman@20551: qed huffman@20551: huffman@20560: lemma norm_one [simp]: "norm (1::'a::real_normed_div_algebra) = 1" huffman@20560: proof - huffman@20560: have "norm (of_real 1 :: 'a) = abs 1" huffman@20560: by (rule norm_of_real) huffman@20560: thus ?thesis by simp huffman@20560: qed huffman@20560: huffman@20504: lemma nonzero_norm_inverse: huffman@20504: fixes a :: "'a::real_normed_div_algebra" huffman@20533: shows "a \ 0 \ norm (inverse a) = inverse (norm a)" huffman@20504: apply (rule inverse_unique [symmetric]) huffman@20504: apply (simp add: norm_mult [symmetric]) huffman@20504: done huffman@20504: huffman@20504: lemma norm_inverse: huffman@20504: fixes a :: "'a::{real_normed_div_algebra,division_by_zero}" huffman@20533: shows "norm (inverse a) = inverse (norm a)" huffman@20504: apply (case_tac "a = 0", simp) huffman@20504: apply (erule nonzero_norm_inverse) huffman@20504: done huffman@20504: huffman@20584: lemma nonzero_norm_divide: huffman@20584: fixes a b :: "'a::real_normed_field" huffman@20584: shows "b \ 0 \ norm (a / b) = norm a / norm b" huffman@20584: by (simp add: divide_inverse norm_mult nonzero_norm_inverse) huffman@20584: huffman@20584: lemma norm_divide: huffman@20584: fixes a b :: "'a::{real_normed_field,division_by_zero}" huffman@20584: shows "norm (a / b) = norm a / norm b" huffman@20584: by (simp add: divide_inverse norm_mult norm_inverse) huffman@20584: huffman@20684: lemma norm_power: huffman@20684: fixes x :: "'a::{real_normed_div_algebra,recpower}" huffman@20684: shows "norm (x ^ n) = norm x ^ n" wenzelm@20772: by (induct n) (simp_all add: power_Suc norm_mult) huffman@20684: huffman@20504: end