wenzelm@38159: (* Title: HOL/Old_Number_Theory/WilsonBij.thy wenzelm@38159: Author: Thomas M. Rasmussen wenzelm@11049: Copyright 2000 University of Cambridge paulson@9508: *) paulson@9508: wenzelm@58889: section {* Wilson's Theorem using a more abstract approach *} wenzelm@11049: wenzelm@38159: theory WilsonBij wenzelm@38159: imports BijectionRel IntFact wenzelm@38159: begin wenzelm@11049: wenzelm@11049: text {* wenzelm@11049: Wilson's Theorem using a more ``abstract'' approach based on wenzelm@11049: bijections between sets. Does not use Fermat's Little Theorem wenzelm@11049: (unlike Russinoff). wenzelm@11049: *} wenzelm@11049: wenzelm@11049: wenzelm@11049: subsection {* Definitions and lemmas *} wenzelm@11049: wenzelm@38159: definition reciR :: "int => int => int => bool" wenzelm@38159: where "reciR p = (\a b. zcong (a * b) 1 p \ 1 < a \ a < p - 1 \ 1 < b \ b < p - 1)" wenzelm@21404: wenzelm@38159: definition inv :: "int => int => int" where wenzelm@19670: "inv p a = wenzelm@19670: (if zprime p \ 0 < a \ a < p then paulson@11868: (SOME x. 0 \ x \ x < p \ zcong (a * x) 1 p) wenzelm@19670: else 0)" wenzelm@11049: wenzelm@11049: wenzelm@11049: text {* \medskip Inverse *} wenzelm@11049: wenzelm@11049: lemma inv_correct: nipkow@16663: "zprime p ==> 0 < a ==> a < p paulson@11868: ==> 0 \ inv p a \ inv p a < p \ [a * inv p a = 1] (mod p)" wenzelm@11049: apply (unfold inv_def) wenzelm@11049: apply (simp (no_asm_simp)) wenzelm@11049: apply (rule zcong_lineq_unique [THEN ex1_implies_ex, THEN someI_ex]) wenzelm@11049: apply (erule_tac [2] zless_zprime_imp_zrelprime) wenzelm@11049: apply (unfold zprime_def) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@45605: lemmas inv_ge = inv_correct [THEN conjunct1] wenzelm@45605: lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1] wenzelm@45605: lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2] wenzelm@11049: wenzelm@11049: lemma inv_not_0: nipkow@16663: "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \ 0" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply safe wenzelm@11049: apply (cut_tac a = a and p = p in inv_is_inv) wenzelm@11049: apply (unfold zcong_def) wenzelm@11049: apply auto wenzelm@11049: done paulson@9508: wenzelm@11049: lemma inv_not_1: nipkow@16663: "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \ 1" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply safe wenzelm@11049: apply (cut_tac a = a and p = p in inv_is_inv) wenzelm@11049: prefer 4 wenzelm@11049: apply simp paulson@11868: apply (subgoal_tac "a = 1") wenzelm@11049: apply (rule_tac [2] zcong_zless_imp_eq) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: paulson@11868: lemma aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply (unfold zcong_def) huffman@44766: apply (simp add: diff_diff_eq diff_diff_eq2 right_diff_distrib) paulson@11868: apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans) haftmann@35048: apply (simp add: algebra_simps) nipkow@30042: apply (subst dvd_minus_iff) wenzelm@11049: apply (subst zdvd_reduce) paulson@11868: apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans) wenzelm@11049: apply (subst zdvd_reduce) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma inv_not_p_minus_1: nipkow@16663: "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \ p - 1" wenzelm@11049: -- {* same as @{text WilsonRuss} *} wenzelm@11049: apply safe wenzelm@11049: apply (cut_tac a = a and p = p in inv_is_inv) wenzelm@11049: apply auto wenzelm@11049: apply (simp add: aux) paulson@11868: apply (subgoal_tac "a = p - 1") wenzelm@11049: apply (rule_tac [2] zcong_zless_imp_eq) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: text {* wenzelm@11049: Below is slightly different as we don't expand @{term [source] inv} wenzelm@11049: but use ``@{text correct}'' theorems. wenzelm@11049: *} wenzelm@11049: nipkow@16663: lemma inv_g_1: "zprime p ==> 1 < a ==> a < p - 1 ==> 1 < inv p a" paulson@11868: apply (subgoal_tac "inv p a \ 1") paulson@11868: apply (subgoal_tac "inv p a \ 0") wenzelm@11049: apply (subst order_less_le) wenzelm@11049: apply (subst zle_add1_eq_le [symmetric]) wenzelm@11049: apply (subst order_less_le) wenzelm@11049: apply (rule_tac [2] inv_not_0) wenzelm@11049: apply (rule_tac [5] inv_not_1) wenzelm@11049: apply auto wenzelm@11049: apply (rule inv_ge) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma inv_less_p_minus_1: nipkow@16663: "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a < p - 1" wenzelm@11049: -- {* ditto *} wenzelm@11049: apply (subst order_less_le) wenzelm@11049: apply (simp add: inv_not_p_minus_1 inv_less) wenzelm@11049: done wenzelm@11049: wenzelm@11049: wenzelm@11049: text {* \medskip Bijection *} wenzelm@11049: paulson@11868: lemma aux1: "1 < x ==> 0 \ (x::int)" wenzelm@11049: apply auto wenzelm@11049: done paulson@9508: paulson@11868: lemma aux2: "1 < x ==> 0 < (x::int)" wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: wenzelm@11704: lemma aux3: "x \ p - 2 ==> x < (p::int)" wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: paulson@11868: lemma aux4: "x \ p - 2 ==> x < (p::int) - 1" wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: nipkow@16663: lemma inv_inj: "zprime p ==> inj_on (inv p) (d22set (p - 2))" wenzelm@11049: apply (unfold inj_on_def) wenzelm@11049: apply auto wenzelm@11049: apply (rule zcong_zless_imp_eq) wenzelm@59498: apply (tactic {* stac @{context} (@{thm zcong_cancel} RS sym) 5 *}) wenzelm@11049: apply (rule_tac [7] zcong_trans) wenzelm@59498: apply (tactic {* stac @{context} @{thm zcong_sym} 8 *}) wenzelm@11049: apply (erule_tac [7] inv_is_inv) wenzelm@51717: apply (tactic "asm_simp_tac @{context} 9") wenzelm@11049: apply (erule_tac [9] inv_is_inv) wenzelm@11049: apply (rule_tac [6] zless_zprime_imp_zrelprime) wenzelm@11049: apply (rule_tac [8] inv_less) wenzelm@11049: apply (rule_tac [7] inv_g_1 [THEN aux2]) wenzelm@11049: apply (unfold zprime_def) wenzelm@11049: apply (auto intro: d22set_g_1 d22set_le wenzelm@32960: aux1 aux2 aux3 aux4) wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma inv_d22set_d22set: nipkow@16663: "zprime p ==> inv p ` d22set (p - 2) = d22set (p - 2)" wenzelm@11049: apply (rule endo_inj_surj) wenzelm@11049: apply (rule d22set_fin) wenzelm@11049: apply (erule_tac [2] inv_inj) wenzelm@11049: apply auto wenzelm@11049: apply (rule d22set_mem) wenzelm@11049: apply (erule inv_g_1) paulson@11868: apply (subgoal_tac [3] "inv p xa < p - 1") wenzelm@11049: apply (erule_tac [4] inv_less_p_minus_1) wenzelm@11049: apply (auto intro: d22set_g_1 d22set_le aux4) wenzelm@11049: done wenzelm@11049: wenzelm@11049: lemma d22set_d22set_bij: nipkow@16663: "zprime p ==> (d22set (p - 2), d22set (p - 2)) \ bijR (reciR p)" wenzelm@11049: apply (unfold reciR_def) wenzelm@11704: apply (rule_tac s = "(d22set (p - 2), inv p ` d22set (p - 2))" in subst) wenzelm@11049: apply (simp add: inv_d22set_d22set) wenzelm@11049: apply (rule inj_func_bijR) wenzelm@11049: apply (rule_tac [3] d22set_fin) wenzelm@11049: apply (erule_tac [2] inv_inj) wenzelm@11049: apply auto wenzelm@11049: apply (erule inv_is_inv) wenzelm@11049: apply (erule_tac [5] inv_g_1) wenzelm@11049: apply (erule_tac [7] inv_less_p_minus_1) wenzelm@11049: apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4) wenzelm@11049: done wenzelm@11049: nipkow@16663: lemma reciP_bijP: "zprime p ==> bijP (reciR p) (d22set (p - 2))" wenzelm@11049: apply (unfold reciR_def bijP_def) wenzelm@11049: apply auto wenzelm@11049: apply (rule d22set_mem) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: nipkow@16663: lemma reciP_uniq: "zprime p ==> uniqP (reciR p)" wenzelm@11049: apply (unfold reciR_def uniqP_def) wenzelm@11049: apply auto wenzelm@11049: apply (rule zcong_zless_imp_eq) wenzelm@59498: apply (tactic {* stac @{context} (@{thm zcong_cancel2} RS sym) 5 *}) wenzelm@11049: apply (rule_tac [7] zcong_trans) wenzelm@59498: apply (tactic {* stac @{context} @{thm zcong_sym} 8 *}) wenzelm@11049: apply (rule_tac [6] zless_zprime_imp_zrelprime) wenzelm@11049: apply auto wenzelm@11049: apply (rule zcong_zless_imp_eq) wenzelm@59498: apply (tactic {* stac @{context} (@{thm zcong_cancel} RS sym) 5 *}) wenzelm@11049: apply (rule_tac [7] zcong_trans) wenzelm@59498: apply (tactic {* stac @{context} @{thm zcong_sym} 8 *}) wenzelm@11049: apply (rule_tac [6] zless_zprime_imp_zrelprime) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: nipkow@16663: lemma reciP_sym: "zprime p ==> symP (reciR p)" wenzelm@11049: apply (unfold reciR_def symP_def) haftmann@57512: apply (simp add: mult.commute) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: nipkow@16663: lemma bijER_d22set: "zprime p ==> d22set (p - 2) \ bijER (reciR p)" wenzelm@11049: apply (rule bijR_bijER) wenzelm@11049: apply (erule d22set_d22set_bij) wenzelm@11049: apply (erule reciP_bijP) wenzelm@11049: apply (erule reciP_uniq) wenzelm@11049: apply (erule reciP_sym) wenzelm@11049: done wenzelm@11049: wenzelm@11049: wenzelm@11049: subsection {* Wilson *} wenzelm@11049: wenzelm@11049: lemma bijER_zcong_prod_1: nipkow@16663: "zprime p ==> A \ bijER (reciR p) ==> [\A = 1] (mod p)" wenzelm@11049: apply (unfold reciR_def) wenzelm@11049: apply (erule bijER.induct) paulson@11868: apply (subgoal_tac [2] "a = 1 \ a = p - 1") wenzelm@11049: apply (rule_tac [3] zcong_square_zless) wenzelm@11049: apply auto haftmann@57418: apply (subst setprod.insert) wenzelm@11049: prefer 3 haftmann@57418: apply (subst setprod.insert) wenzelm@11049: apply (auto simp add: fin_bijER) nipkow@15392: apply (subgoal_tac "zcong ((a * b) * \A) (1 * 1) p") haftmann@57512: apply (simp add: mult.assoc) wenzelm@11049: apply (rule zcong_zmult) wenzelm@11049: apply auto wenzelm@11049: done wenzelm@11049: nipkow@16663: theorem Wilson_Bij: "zprime p ==> [zfact (p - 1) = -1] (mod p)" paulson@11868: apply (subgoal_tac "zcong ((p - 1) * zfact (p - 2)) (-1 * 1) p") wenzelm@11049: apply (rule_tac [2] zcong_zmult) wenzelm@11049: apply (simp add: zprime_def) wenzelm@11049: apply (subst zfact.simps) paulson@11868: apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst) wenzelm@11049: apply auto wenzelm@11049: apply (simp add: zcong_def) wenzelm@11049: apply (subst d22set_prod_zfact [symmetric]) wenzelm@11049: apply (rule bijER_zcong_prod_1) wenzelm@11049: apply (rule_tac [2] bijER_d22set) wenzelm@11049: apply auto wenzelm@11049: done paulson@9508: paulson@9508: end