huffman@29993: (* Title: Inner_Product.thy huffman@29993: Author: Brian Huffman huffman@29993: *) huffman@29993: huffman@29993: header {* Inner Product Spaces and the Gradient Derivative *} huffman@29993: huffman@29993: theory Inner_Product haftmann@30663: imports Complex_Main FrechetDeriv huffman@29993: begin huffman@29993: huffman@29993: subsection {* Real inner product spaces *} huffman@29993: huffman@31492: text {* huffman@31492: Temporarily relax type constraints for @{term "open"}, huffman@31492: @{term dist}, and @{term norm}. huffman@31492: *} huffman@31492: huffman@31492: setup {* Sign.add_const_constraint huffman@31492: (@{const_name "open"}, SOME @{typ "'a::open set \ bool"}) *} huffman@31446: huffman@31446: setup {* Sign.add_const_constraint huffman@31446: (@{const_name dist}, SOME @{typ "'a::dist \ 'a \ real"}) *} huffman@31446: huffman@31446: setup {* Sign.add_const_constraint huffman@31446: (@{const_name norm}, SOME @{typ "'a::norm \ real"}) *} huffman@31446: huffman@31492: class real_inner = real_vector + sgn_div_norm + dist_norm + open_dist + huffman@29993: fixes inner :: "'a \ 'a \ real" huffman@29993: assumes inner_commute: "inner x y = inner y x" huffman@29993: and inner_left_distrib: "inner (x + y) z = inner x z + inner y z" huffman@29993: and inner_scaleR_left: "inner (scaleR r x) y = r * (inner x y)" huffman@29993: and inner_ge_zero [simp]: "0 \ inner x x" huffman@29993: and inner_eq_zero_iff [simp]: "inner x x = 0 \ x = 0" huffman@29993: and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)" huffman@29993: begin huffman@29993: huffman@29993: lemma inner_zero_left [simp]: "inner 0 x = 0" huffman@30067: using inner_left_distrib [of 0 0 x] by simp huffman@29993: huffman@29993: lemma inner_minus_left [simp]: "inner (- x) y = - inner x y" huffman@30067: using inner_left_distrib [of x "- x" y] by simp huffman@29993: huffman@29993: lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z" huffman@29993: by (simp add: diff_minus inner_left_distrib) huffman@29993: huffman@29993: text {* Transfer distributivity rules to right argument. *} huffman@29993: huffman@29993: lemma inner_right_distrib: "inner x (y + z) = inner x y + inner x z" huffman@29993: using inner_left_distrib [of y z x] by (simp only: inner_commute) huffman@29993: huffman@29993: lemma inner_scaleR_right: "inner x (scaleR r y) = r * (inner x y)" huffman@29993: using inner_scaleR_left [of r y x] by (simp only: inner_commute) huffman@29993: huffman@29993: lemma inner_zero_right [simp]: "inner x 0 = 0" huffman@29993: using inner_zero_left [of x] by (simp only: inner_commute) huffman@29993: huffman@29993: lemma inner_minus_right [simp]: "inner x (- y) = - inner x y" huffman@29993: using inner_minus_left [of y x] by (simp only: inner_commute) huffman@29993: huffman@29993: lemma inner_diff_right: "inner x (y - z) = inner x y - inner x z" huffman@29993: using inner_diff_left [of y z x] by (simp only: inner_commute) huffman@29993: huffman@29993: lemmas inner_distrib = inner_left_distrib inner_right_distrib huffman@29993: lemmas inner_diff = inner_diff_left inner_diff_right huffman@29993: lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right huffman@29993: huffman@29993: lemma inner_gt_zero_iff [simp]: "0 < inner x x \ x \ 0" huffman@29993: by (simp add: order_less_le) huffman@29993: huffman@29993: lemma power2_norm_eq_inner: "(norm x)\ = inner x x" huffman@29993: by (simp add: norm_eq_sqrt_inner) huffman@29993: huffman@30046: lemma Cauchy_Schwarz_ineq: huffman@29993: "(inner x y)\ \ inner x x * inner y y" huffman@29993: proof (cases) huffman@29993: assume "y = 0" huffman@29993: thus ?thesis by simp huffman@29993: next huffman@29993: assume y: "y \ 0" huffman@29993: let ?r = "inner x y / inner y y" huffman@29993: have "0 \ inner (x - scaleR ?r y) (x - scaleR ?r y)" huffman@29993: by (rule inner_ge_zero) huffman@29993: also have "\ = inner x x - inner y x * ?r" huffman@29993: by (simp add: inner_diff inner_scaleR) huffman@29993: also have "\ = inner x x - (inner x y)\ / inner y y" huffman@29993: by (simp add: power2_eq_square inner_commute) huffman@29993: finally have "0 \ inner x x - (inner x y)\ / inner y y" . huffman@29993: hence "(inner x y)\ / inner y y \ inner x x" huffman@29993: by (simp add: le_diff_eq) huffman@29993: thus "(inner x y)\ \ inner x x * inner y y" huffman@29993: by (simp add: pos_divide_le_eq y) huffman@29993: qed huffman@29993: huffman@30046: lemma Cauchy_Schwarz_ineq2: huffman@29993: "\inner x y\ \ norm x * norm y" huffman@29993: proof (rule power2_le_imp_le) huffman@29993: have "(inner x y)\ \ inner x x * inner y y" huffman@30046: using Cauchy_Schwarz_ineq . huffman@29993: thus "\inner x y\\ \ (norm x * norm y)\" huffman@29993: by (simp add: power_mult_distrib power2_norm_eq_inner) huffman@29993: show "0 \ norm x * norm y" huffman@29993: unfolding norm_eq_sqrt_inner huffman@29993: by (intro mult_nonneg_nonneg real_sqrt_ge_zero inner_ge_zero) huffman@29993: qed huffman@29993: huffman@29993: subclass real_normed_vector huffman@29993: proof huffman@29993: fix a :: real and x y :: 'a huffman@29993: show "0 \ norm x" huffman@29993: unfolding norm_eq_sqrt_inner by simp huffman@29993: show "norm x = 0 \ x = 0" huffman@29993: unfolding norm_eq_sqrt_inner by simp huffman@29993: show "norm (x + y) \ norm x + norm y" huffman@29993: proof (rule power2_le_imp_le) huffman@29993: have "inner x y \ norm x * norm y" huffman@30046: by (rule order_trans [OF abs_ge_self Cauchy_Schwarz_ineq2]) huffman@29993: thus "(norm (x + y))\ \ (norm x + norm y)\" huffman@29993: unfolding power2_sum power2_norm_eq_inner huffman@29993: by (simp add: inner_distrib inner_commute) huffman@29993: show "0 \ norm x + norm y" huffman@29993: unfolding norm_eq_sqrt_inner huffman@29993: by (simp add: add_nonneg_nonneg) huffman@29993: qed huffman@29993: have "sqrt (a\ * inner x x) = \a\ * sqrt (inner x x)" huffman@29993: by (simp add: real_sqrt_mult_distrib) huffman@29993: then show "norm (a *\<^sub>R x) = \a\ * norm x" huffman@29993: unfolding norm_eq_sqrt_inner huffman@29993: by (simp add: inner_scaleR power2_eq_square mult_assoc) huffman@29993: qed huffman@29993: huffman@29993: end huffman@29993: huffman@31492: text {* huffman@31492: Re-enable constraints for @{term "open"}, huffman@31492: @{term dist}, and @{term norm}. huffman@31492: *} huffman@31492: huffman@31492: setup {* Sign.add_const_constraint huffman@31492: (@{const_name "open"}, SOME @{typ "'a::topological_space set \ bool"}) *} huffman@31446: huffman@31446: setup {* Sign.add_const_constraint huffman@31446: (@{const_name dist}, SOME @{typ "'a::metric_space \ 'a \ real"}) *} huffman@31446: huffman@31446: setup {* Sign.add_const_constraint huffman@31446: (@{const_name norm}, SOME @{typ "'a::real_normed_vector \ real"}) *} huffman@31446: wenzelm@30729: interpretation inner: huffman@29993: bounded_bilinear "inner::'a::real_inner \ 'a \ real" huffman@29993: proof huffman@29993: fix x y z :: 'a and r :: real huffman@29993: show "inner (x + y) z = inner x z + inner y z" huffman@29993: by (rule inner_left_distrib) huffman@29993: show "inner x (y + z) = inner x y + inner x z" huffman@29993: by (rule inner_right_distrib) huffman@29993: show "inner (scaleR r x) y = scaleR r (inner x y)" huffman@29993: unfolding real_scaleR_def by (rule inner_scaleR_left) huffman@29993: show "inner x (scaleR r y) = scaleR r (inner x y)" huffman@29993: unfolding real_scaleR_def by (rule inner_scaleR_right) huffman@29993: show "\K. \x y::'a. norm (inner x y) \ norm x * norm y * K" huffman@29993: proof huffman@29993: show "\x y::'a. norm (inner x y) \ norm x * norm y * 1" huffman@30046: by (simp add: Cauchy_Schwarz_ineq2) huffman@29993: qed huffman@29993: qed huffman@29993: wenzelm@30729: interpretation inner_left: huffman@29993: bounded_linear "\x::'a::real_inner. inner x y" huffman@29993: by (rule inner.bounded_linear_left) huffman@29993: wenzelm@30729: interpretation inner_right: huffman@29993: bounded_linear "\y::'a::real_inner. inner x y" huffman@29993: by (rule inner.bounded_linear_right) huffman@29993: huffman@29993: huffman@29993: subsection {* Class instances *} huffman@29993: huffman@29993: instantiation real :: real_inner huffman@29993: begin huffman@29993: huffman@29993: definition inner_real_def [simp]: "inner = op *" huffman@29993: huffman@29993: instance proof huffman@29993: fix x y z r :: real huffman@29993: show "inner x y = inner y x" huffman@29993: unfolding inner_real_def by (rule mult_commute) huffman@29993: show "inner (x + y) z = inner x z + inner y z" huffman@29993: unfolding inner_real_def by (rule left_distrib) huffman@29993: show "inner (scaleR r x) y = r * inner x y" huffman@29993: unfolding inner_real_def real_scaleR_def by (rule mult_assoc) huffman@29993: show "0 \ inner x x" huffman@29993: unfolding inner_real_def by simp huffman@29993: show "inner x x = 0 \ x = 0" huffman@29993: unfolding inner_real_def by simp huffman@29993: show "norm x = sqrt (inner x x)" huffman@29993: unfolding inner_real_def by simp huffman@29993: qed huffman@29993: huffman@29993: end huffman@29993: huffman@29993: instantiation complex :: real_inner huffman@29993: begin huffman@29993: huffman@29993: definition inner_complex_def: huffman@29993: "inner x y = Re x * Re y + Im x * Im y" huffman@29993: huffman@29993: instance proof huffman@29993: fix x y z :: complex and r :: real huffman@29993: show "inner x y = inner y x" huffman@29993: unfolding inner_complex_def by (simp add: mult_commute) huffman@29993: show "inner (x + y) z = inner x z + inner y z" huffman@29993: unfolding inner_complex_def by (simp add: left_distrib) huffman@29993: show "inner (scaleR r x) y = r * inner x y" huffman@29993: unfolding inner_complex_def by (simp add: right_distrib) huffman@29993: show "0 \ inner x x" huffman@29993: unfolding inner_complex_def by (simp add: add_nonneg_nonneg) huffman@29993: show "inner x x = 0 \ x = 0" huffman@29993: unfolding inner_complex_def huffman@29993: by (simp add: add_nonneg_eq_0_iff complex_Re_Im_cancel_iff) huffman@29993: show "norm x = sqrt (inner x x)" huffman@29993: unfolding inner_complex_def complex_norm_def huffman@29993: by (simp add: power2_eq_square) huffman@29993: qed huffman@29993: huffman@29993: end huffman@29993: huffman@29993: huffman@29993: subsection {* Gradient derivative *} huffman@29993: huffman@29993: definition huffman@29993: gderiv :: huffman@29993: "['a::real_inner \ real, 'a, 'a] \ bool" huffman@29993: ("(GDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) huffman@29993: where huffman@29993: "GDERIV f x :> D \ FDERIV f x :> (\h. inner h D)" huffman@29993: huffman@29993: lemma deriv_fderiv: "DERIV f x :> D \ FDERIV f x :> (\h. h * D)" huffman@29993: by (simp only: deriv_def field_fderiv_def) huffman@29993: huffman@29993: lemma gderiv_deriv [simp]: "GDERIV f x :> D \ DERIV f x :> D" huffman@29993: by (simp only: gderiv_def deriv_fderiv inner_real_def) huffman@29993: huffman@29993: lemma GDERIV_DERIV_compose: huffman@29993: "\GDERIV f x :> df; DERIV g (f x) :> dg\ huffman@29993: \ GDERIV (\x. g (f x)) x :> scaleR dg df" huffman@29993: unfolding gderiv_def deriv_fderiv huffman@29993: apply (drule (1) FDERIV_compose) huffman@29993: apply (simp add: inner_scaleR_right mult_ac) huffman@29993: done huffman@29993: huffman@29993: lemma FDERIV_subst: "\FDERIV f x :> df; df = d\ \ FDERIV f x :> d" huffman@29993: by simp huffman@29993: huffman@29993: lemma GDERIV_subst: "\GDERIV f x :> df; df = d\ \ GDERIV f x :> d" huffman@29993: by simp huffman@29993: huffman@29993: lemma GDERIV_const: "GDERIV (\x. k) x :> 0" huffman@29993: unfolding gderiv_def inner_right.zero by (rule FDERIV_const) huffman@29993: huffman@29993: lemma GDERIV_add: huffman@29993: "\GDERIV f x :> df; GDERIV g x :> dg\ huffman@29993: \ GDERIV (\x. f x + g x) x :> df + dg" huffman@29993: unfolding gderiv_def inner_right.add by (rule FDERIV_add) huffman@29993: huffman@29993: lemma GDERIV_minus: huffman@29993: "GDERIV f x :> df \ GDERIV (\x. - f x) x :> - df" huffman@29993: unfolding gderiv_def inner_right.minus by (rule FDERIV_minus) huffman@29993: huffman@29993: lemma GDERIV_diff: huffman@29993: "\GDERIV f x :> df; GDERIV g x :> dg\ huffman@29993: \ GDERIV (\x. f x - g x) x :> df - dg" huffman@29993: unfolding gderiv_def inner_right.diff by (rule FDERIV_diff) huffman@29993: huffman@29993: lemma GDERIV_scaleR: huffman@29993: "\DERIV f x :> df; GDERIV g x :> dg\ huffman@29993: \ GDERIV (\x. scaleR (f x) (g x)) x huffman@29993: :> (scaleR (f x) dg + scaleR df (g x))" huffman@29993: unfolding gderiv_def deriv_fderiv inner_right.add inner_right.scaleR huffman@29993: apply (rule FDERIV_subst) huffman@29993: apply (erule (1) scaleR.FDERIV) huffman@29993: apply (simp add: mult_ac) huffman@29993: done huffman@29993: huffman@29993: lemma GDERIV_mult: huffman@29993: "\GDERIV f x :> df; GDERIV g x :> dg\ huffman@29993: \ GDERIV (\x. f x * g x) x :> scaleR (f x) dg + scaleR (g x) df" huffman@29993: unfolding gderiv_def huffman@29993: apply (rule FDERIV_subst) huffman@29993: apply (erule (1) FDERIV_mult) huffman@29993: apply (simp add: inner_distrib inner_scaleR mult_ac) huffman@29993: done huffman@29993: huffman@29993: lemma GDERIV_inverse: huffman@29993: "\GDERIV f x :> df; f x \ 0\ huffman@29993: \ GDERIV (\x. inverse (f x)) x :> - (inverse (f x))\ *\<^sub>R df" huffman@29993: apply (erule GDERIV_DERIV_compose) huffman@29993: apply (erule DERIV_inverse [folded numeral_2_eq_2]) huffman@29993: done huffman@29993: huffman@29993: lemma GDERIV_norm: huffman@29993: assumes "x \ 0" shows "GDERIV (\x. norm x) x :> sgn x" huffman@29993: proof - huffman@29993: have 1: "FDERIV (\x. inner x x) x :> (\h. inner x h + inner h x)" huffman@29993: by (intro inner.FDERIV FDERIV_ident) huffman@29993: have 2: "(\h. inner x h + inner h x) = (\h. inner h (scaleR 2 x))" huffman@29993: by (simp add: expand_fun_eq inner_scaleR inner_commute) huffman@29993: have "0 < inner x x" using `x \ 0` by simp huffman@29993: then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)" huffman@29993: by (rule DERIV_real_sqrt) huffman@29993: have 4: "(inverse (sqrt (inner x x)) / 2) *\<^sub>R 2 *\<^sub>R x = sgn x" huffman@29993: by (simp add: sgn_div_norm norm_eq_sqrt_inner) huffman@29993: show ?thesis huffman@29993: unfolding norm_eq_sqrt_inner huffman@29993: apply (rule GDERIV_subst [OF _ 4]) huffman@29993: apply (rule GDERIV_DERIV_compose [where g=sqrt and df="scaleR 2 x"]) huffman@29993: apply (subst gderiv_def) huffman@29993: apply (rule FDERIV_subst [OF _ 2]) huffman@29993: apply (rule 1) huffman@29993: apply (rule 3) huffman@29993: done huffman@29993: qed huffman@29993: huffman@29993: lemmas FDERIV_norm = GDERIV_norm [unfolded gderiv_def] huffman@29993: huffman@29993: end