wenzelm@41883: (* Title: Tools/case_product.ML wenzelm@41883: Author: Lars Noschinski, TU Muenchen noschinl@41826: wenzelm@45375: Combine two case rules into a single one. noschinl@41826: noschinl@41826: Assumes that the theorems are of the form noschinl@41826: "[| C1; ...; Cm; A1 ==> P; ...; An ==> P |] ==> P" noschinl@41826: where m is given by the "consumes" attribute of the theorem. noschinl@41826: *) noschinl@41826: noschinl@41826: signature CASE_PRODUCT = wenzelm@41883: sig noschinl@41826: val combine: Proof.context -> thm -> thm -> thm noschinl@41826: val combine_annotated: Proof.context -> thm -> thm -> thm wenzelm@58826: val annotation: thm -> thm -> attribute wenzelm@45375: end noschinl@41826: noschinl@41826: structure Case_Product: CASE_PRODUCT = noschinl@41826: struct noschinl@41826: wenzelm@45375: (*instantiate the conclusion of thm2 to the one of thm1*) noschinl@41826: fun inst_concl thm1 thm2 = noschinl@41826: let noschinl@41826: val cconcl_of = Drule.strip_imp_concl o Thm.cprop_of noschinl@41826: in Thm.instantiate (Thm.match (cconcl_of thm2, cconcl_of thm1)) thm2 end noschinl@41826: noschinl@41826: fun inst_thms thm1 thm2 ctxt = noschinl@41826: let noschinl@41826: val import = yield_singleton (apfst snd oo Variable.import true) noschinl@41826: val (i_thm1, ctxt') = import thm1 ctxt noschinl@41826: val (i_thm2, ctxt'') = import (inst_concl i_thm1 thm2) ctxt' noschinl@41826: in ((i_thm1, i_thm2), ctxt'') end noschinl@41826: noschinl@41826: (* wenzelm@45375: Return list of prems, where loose bounds have been replaced by frees. noschinl@41826: FIXME: Focus noschinl@41826: *) noschinl@41826: fun free_prems t ctxt = noschinl@41826: let noschinl@41826: val bs = Term.strip_all_vars t noschinl@41826: val (names, ctxt') = Variable.variant_fixes (map fst bs) ctxt noschinl@41826: val subst = map Free (names ~~ map snd bs) noschinl@41826: val t' = map (Term.subst_bounds o pair (rev subst)) (Logic.strip_assums_hyp t) noschinl@41826: in ((t', subst), ctxt') end noschinl@41826: noschinl@41826: fun build_concl_prems thm1 thm2 ctxt = noschinl@41826: let noschinl@41826: val concl = Thm.concl_of thm1 noschinl@41826: noschinl@41826: fun is_consumes t = not (Logic.strip_assums_concl t aconv concl) wenzelm@48902: val (p_cons1, p_cases1) = take_prefix is_consumes (Thm.prems_of thm1) wenzelm@48902: val (p_cons2, p_cases2) = take_prefix is_consumes (Thm.prems_of thm2) noschinl@41826: noschinl@41826: val p_cases_prod = map (fn p1 => map (fn p2 => noschinl@41826: let noschinl@41826: val (((t1, subst1), (t2, subst2)), _) = ctxt noschinl@41826: |> free_prems p1 ||>> free_prems p2 noschinl@41826: in noschinl@41826: Logic.list_implies (t1 @ t2, concl) noschinl@41826: |> fold_rev Logic.all (subst1 @ subst2) wenzelm@45375: end) p_cases2) p_cases1 noschinl@41826: noschinl@41826: val prems = p_cons1 :: p_cons2 :: p_cases_prod noschinl@41826: in noschinl@41826: (concl, prems) noschinl@41826: end noschinl@41826: wenzelm@54742: fun case_product_tac ctxt prems struc thm1 thm2 = noschinl@41826: let noschinl@41826: val (p_cons1 :: p_cons2 :: premss) = unflat struc prems noschinl@41826: val thm2' = thm2 OF p_cons2 noschinl@41826: in wenzelm@58838: resolve_tac [thm1 OF p_cons1] noschinl@41826: THEN' EVERY' (map (fn p => wenzelm@58838: resolve_tac [thm2'] THEN' EVERY' (map (Proof_Context.fact_tac ctxt o single) p)) premss) noschinl@41826: end noschinl@41826: noschinl@41826: fun combine ctxt thm1 thm2 = noschinl@41826: let noschinl@41826: val ((i_thm1, i_thm2), ctxt') = inst_thms thm1 thm2 ctxt noschinl@41826: val (concl, prems_rich) = build_concl_prems i_thm1 i_thm2 ctxt' noschinl@41826: in wenzelm@54742: Goal.prove ctxt' [] (flat prems_rich) concl wenzelm@54742: (fn {context = ctxt'', prems} => wenzelm@54742: case_product_tac ctxt'' prems prems_rich i_thm1 i_thm2 1) noschinl@41826: |> singleton (Variable.export ctxt' ctxt) wenzelm@45375: end noschinl@41826: wenzelm@45375: fun annotation_rule thm1 thm2 = noschinl@41826: let nipkow@44045: val (cases1, cons1) = apfst (map fst) (Rule_Cases.get thm1) nipkow@44045: val (cases2, cons2) = apfst (map fst) (Rule_Cases.get thm2) wenzelm@45375: val names = map_product (fn (x, _) => fn (y, _) => x ^ "_" ^ y) cases1 cases2 noschinl@41826: in wenzelm@45375: Rule_Cases.name names o Rule_Cases.put_consumes (SOME (cons1 + cons2)) noschinl@41826: end noschinl@41826: wenzelm@45375: fun annotation thm1 thm2 = Thm.rule_attribute (K (annotation_rule thm1 thm2)) wenzelm@45375: noschinl@41826: fun combine_annotated ctxt thm1 thm2 = noschinl@41826: combine ctxt thm1 thm2 wenzelm@45375: |> annotation_rule thm1 thm2 noschinl@41826: wenzelm@45375: wenzelm@45375: (* attribute setup *) noschinl@41826: wenzelm@58826: val _ = wenzelm@58826: Theory.setup wenzelm@58826: (Attrib.setup @{binding case_product} wenzelm@58826: let wenzelm@58826: fun combine_list ctxt = fold (fn x => fn y => combine_annotated ctxt y x) wenzelm@58826: in wenzelm@58826: Attrib.thms >> (fn thms => Thm.rule_attribute (fn ctxt => fn thm => wenzelm@58826: combine_list (Context.proof_of ctxt) thms thm)) wenzelm@58826: end wenzelm@58826: "product with other case rules") noschinl@41826: wenzelm@45375: end