wenzelm@38159: (* Title: HOL/Old_Number_Theory/Gauss.thy wenzelm@38159: Authors: Jeremy Avigad, David Gray, and Adam Kramer paulson@13871: *) paulson@13871: wenzelm@58889: section {* Gauss' Lemma *} paulson@13871: haftmann@27556: theory Gauss haftmann@27556: imports Euler haftmann@27556: begin paulson@13871: paulson@13871: locale GAUSS = paulson@13871: fixes p :: "int" paulson@13871: fixes a :: "int" paulson@13871: nipkow@16663: assumes p_prime: "zprime p" paulson@13871: assumes p_g_2: "2 < p" paulson@13871: assumes p_a_relprime: "~[a = 0](mod p)" paulson@13871: assumes a_nonzero: "0 < a" wenzelm@21233: begin paulson@13871: wenzelm@38159: definition "A = {(x::int). 0 < x & x \ ((p - 1) div 2)}" wenzelm@38159: definition "B = (%x. x * a) ` A" wenzelm@38159: definition "C = StandardRes p ` B" wenzelm@38159: definition "D = C \ {x. x \ ((p - 1) div 2)}" wenzelm@38159: definition "E = C \ {x. ((p - 1) div 2) < x}" wenzelm@38159: definition "F = (%x. (p - x)) ` E" wenzelm@21233: paulson@13871: paulson@13871: subsection {* Basic properties of p *} paulson@13871: wenzelm@21233: lemma p_odd: "p \ zOdd" paulson@13871: by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2) paulson@13871: wenzelm@21233: lemma p_g_0: "0 < p" wenzelm@18369: using p_g_2 by auto paulson@13871: wenzelm@21233: lemma int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2" wenzelm@26289: using ListMem.insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff) paulson@13871: wenzelm@21233: lemma p_minus_one_l: "(p - 1) div 2 < p" wenzelm@18369: proof - wenzelm@18369: have "(p - 1) div 2 \ (p - 1) div 1" wenzelm@18369: by (rule zdiv_mono2) (auto simp add: p_g_0) wenzelm@18369: also have "\ = p - 1" by simp wenzelm@18369: finally show ?thesis by simp wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma p_eq: "p = (2 * (p - 1) div 2) + 1" nipkow@30034: using div_mult_self1_is_id [of 2 "p - 1"] by auto paulson@13871: wenzelm@21233: wenzelm@21288: lemma (in -) zodd_imp_zdiv_eq: "x \ zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)" paulson@13871: apply (frule odd_minus_one_even) paulson@13871: apply (simp add: zEven_def) paulson@13871: apply (subgoal_tac "2 \ 0") nipkow@30034: apply (frule_tac b = "2 :: int" and a = "x - 1" in div_mult_self1_is_id) wenzelm@18369: apply (auto simp add: even_div_2_prop2) wenzelm@18369: done paulson@13871: wenzelm@21233: wenzelm@21233: lemma p_eq2: "p = (2 * ((p - 1) div 2)) + 1" paulson@13871: apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto) wenzelm@18369: apply (frule zodd_imp_zdiv_eq, auto) wenzelm@18369: done paulson@13871: wenzelm@21233: paulson@13871: subsection {* Basic Properties of the Gauss Sets *} paulson@13871: wenzelm@21233: lemma finite_A: "finite (A)" bulwahn@46756: by (auto simp add: A_def) paulson@13871: wenzelm@21233: lemma finite_B: "finite (B)" nipkow@40786: by (auto simp add: B_def finite_A) paulson@13871: wenzelm@21233: lemma finite_C: "finite (C)" nipkow@40786: by (auto simp add: C_def finite_B) paulson@13871: wenzelm@21233: lemma finite_D: "finite (D)" wenzelm@41541: by (auto simp add: D_def finite_C) paulson@13871: wenzelm@21233: lemma finite_E: "finite (E)" wenzelm@41541: by (auto simp add: E_def finite_C) paulson@13871: wenzelm@21233: lemma finite_F: "finite (F)" nipkow@40786: by (auto simp add: F_def finite_E) paulson@13871: wenzelm@21233: lemma C_eq: "C = D \ E" nipkow@40786: by (auto simp add: C_def D_def E_def) paulson@13871: wenzelm@21233: lemma A_card_eq: "card A = nat ((p - 1) div 2)" wenzelm@18369: apply (auto simp add: A_def) paulson@13871: apply (insert int_nat) paulson@13871: apply (erule subst) wenzelm@18369: apply (auto simp add: card_bdd_int_set_l_le) wenzelm@18369: done paulson@13871: wenzelm@21233: lemma inj_on_xa_A: "inj_on (%x. x * a) A" wenzelm@18369: using a_nonzero by (simp add: A_def inj_on_def) paulson@13871: wenzelm@21233: lemma A_res: "ResSet p A" wenzelm@18369: apply (auto simp add: A_def ResSet_def) wenzelm@18369: apply (rule_tac m = p in zcong_less_eq) wenzelm@18369: apply (insert p_g_2, auto) wenzelm@18369: done paulson@13871: wenzelm@21233: lemma B_res: "ResSet p B" paulson@13871: apply (insert p_g_2 p_a_relprime p_minus_one_l) wenzelm@18369: apply (auto simp add: B_def) paulson@13871: apply (rule ResSet_image) wenzelm@18369: apply (auto simp add: A_res) paulson@13871: apply (auto simp add: A_def) wenzelm@18369: proof - wenzelm@18369: fix x fix y wenzelm@18369: assume a: "[x * a = y * a] (mod p)" wenzelm@18369: assume b: "0 < x" wenzelm@18369: assume c: "x \ (p - 1) div 2" wenzelm@18369: assume d: "0 < y" wenzelm@18369: assume e: "y \ (p - 1) div 2" wenzelm@18369: from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y] wenzelm@18369: have "[x = y](mod p)" wenzelm@18369: by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less) wenzelm@18369: with zcong_less_eq [of x y p] p_minus_one_l wenzelm@18369: order_le_less_trans [of x "(p - 1) div 2" p] wenzelm@18369: order_le_less_trans [of y "(p - 1) div 2" p] show "x = y" wenzelm@41541: by (simp add: b c d e p_minus_one_l p_g_0) wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma SR_B_inj: "inj_on (StandardRes p) B" wenzelm@41541: apply (auto simp add: B_def StandardRes_def inj_on_def A_def) wenzelm@18369: proof - wenzelm@18369: fix x fix y wenzelm@18369: assume a: "x * a mod p = y * a mod p" wenzelm@18369: assume b: "0 < x" wenzelm@18369: assume c: "x \ (p - 1) div 2" wenzelm@18369: assume d: "0 < y" wenzelm@18369: assume e: "y \ (p - 1) div 2" wenzelm@18369: assume f: "x \ y" wenzelm@18369: from a have "[x * a = y * a](mod p)" wenzelm@18369: by (simp add: zcong_zmod_eq p_g_0) wenzelm@18369: with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y] wenzelm@18369: have "[x = y](mod p)" wenzelm@18369: by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less) wenzelm@18369: with zcong_less_eq [of x y p] p_minus_one_l wenzelm@18369: order_le_less_trans [of x "(p - 1) div 2" p] wenzelm@18369: order_le_less_trans [of y "(p - 1) div 2" p] have "x = y" wenzelm@41541: by (simp add: b c d e p_minus_one_l p_g_0) wenzelm@18369: then have False wenzelm@18369: by (simp add: f) wenzelm@18369: then show "a = 0" wenzelm@18369: by simp wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma inj_on_pminusx_E: "inj_on (%x. p - x) E" paulson@13871: apply (auto simp add: E_def C_def B_def A_def) wenzelm@18369: apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI) wenzelm@18369: apply auto wenzelm@18369: done paulson@13871: wenzelm@21233: lemma A_ncong_p: "x \ A ==> ~[x = 0](mod p)" paulson@13871: apply (auto simp add: A_def) paulson@13871: apply (frule_tac m = p in zcong_not_zero) paulson@13871: apply (insert p_minus_one_l) wenzelm@18369: apply auto wenzelm@18369: done paulson@13871: wenzelm@21233: lemma A_greater_zero: "x \ A ==> 0 < x" paulson@13871: by (auto simp add: A_def) paulson@13871: wenzelm@21233: lemma B_ncong_p: "x \ B ==> ~[x = 0](mod p)" paulson@13871: apply (auto simp add: B_def) wenzelm@18369: apply (frule A_ncong_p) paulson@13871: apply (insert p_a_relprime p_prime a_nonzero) thomas@57492: apply (frule_tac a = xa and b = a in zcong_zprime_prod_zero_contra) wenzelm@18369: apply (auto simp add: A_greater_zero) wenzelm@18369: done paulson@13871: wenzelm@21233: lemma B_greater_zero: "x \ B ==> 0 < x" nipkow@56544: using a_nonzero by (auto simp add: B_def A_greater_zero) paulson@13871: wenzelm@21233: lemma C_ncong_p: "x \ C ==> ~[x = 0](mod p)" paulson@13871: apply (auto simp add: C_def) paulson@13871: apply (frule B_ncong_p) thomas@57492: apply (subgoal_tac "[xa = StandardRes p xa](mod p)") wenzelm@18369: defer apply (simp add: StandardRes_prop1) thomas@57492: apply (frule_tac a = xa and b = "StandardRes p xa" and c = 0 in zcong_trans) wenzelm@18369: apply auto wenzelm@18369: done paulson@13871: wenzelm@21233: lemma C_greater_zero: "y \ C ==> 0 < y" paulson@13871: apply (auto simp add: C_def) wenzelm@18369: proof - wenzelm@18369: fix x wenzelm@18369: assume a: "x \ B" wenzelm@18369: from p_g_0 have "0 \ StandardRes p x" wenzelm@18369: by (simp add: StandardRes_lbound) wenzelm@18369: moreover have "~[x = 0] (mod p)" wenzelm@18369: by (simp add: a B_ncong_p) wenzelm@18369: then have "StandardRes p x \ 0" wenzelm@18369: by (simp add: StandardRes_prop3) wenzelm@18369: ultimately show "0 < StandardRes p x" wenzelm@18369: by (simp add: order_le_less) wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma D_ncong_p: "x \ D ==> ~[x = 0](mod p)" paulson@13871: by (auto simp add: D_def C_ncong_p) paulson@13871: wenzelm@21233: lemma E_ncong_p: "x \ E ==> ~[x = 0](mod p)" paulson@13871: by (auto simp add: E_def C_ncong_p) paulson@13871: wenzelm@21233: lemma F_ncong_p: "x \ F ==> ~[x = 0](mod p)" wenzelm@18369: apply (auto simp add: F_def) wenzelm@18369: proof - wenzelm@18369: fix x assume a: "x \ E" assume b: "[p - x = 0] (mod p)" wenzelm@18369: from E_ncong_p have "~[x = 0] (mod p)" wenzelm@18369: by (simp add: a) wenzelm@18369: moreover from a have "0 < x" wenzelm@18369: by (simp add: a E_def C_greater_zero) wenzelm@18369: moreover from a have "x < p" wenzelm@18369: by (auto simp add: E_def C_def p_g_0 StandardRes_ubound) wenzelm@18369: ultimately have "~[p - x = 0] (mod p)" wenzelm@18369: by (simp add: zcong_not_zero) wenzelm@18369: from this show False by (simp add: b) wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma F_subset: "F \ {x. 0 < x & x \ ((p - 1) div 2)}" wenzelm@18369: apply (auto simp add: F_def E_def) paulson@13871: apply (insert p_g_0) paulson@13871: apply (frule_tac x = xa in StandardRes_ubound) paulson@13871: apply (frule_tac x = x in StandardRes_ubound) paulson@13871: apply (subgoal_tac "xa = StandardRes p xa") paulson@13871: apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1) wenzelm@18369: proof - wenzelm@18369: from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have wenzelm@18369: "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)" wenzelm@18369: by simp wenzelm@18369: with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \ B |] wenzelm@18369: ==> p - StandardRes p x \ (p - 1) div 2" wenzelm@18369: by simp wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma D_subset: "D \ {x. 0 < x & x \ ((p - 1) div 2)}" paulson@13871: by (auto simp add: D_def C_greater_zero) paulson@13871: wenzelm@21233: lemma F_eq: "F = {x. \y \ A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}" paulson@13871: by (auto simp add: F_def E_def D_def C_def B_def A_def) paulson@13871: wenzelm@21233: lemma D_eq: "D = {x. \y \ A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \ (p - 1) div 2)}" paulson@13871: by (auto simp add: D_def C_def B_def A_def) paulson@13871: wenzelm@21233: lemma D_leq: "x \ D ==> x \ (p - 1) div 2" paulson@13871: by (auto simp add: D_eq) paulson@13871: wenzelm@21233: lemma F_ge: "x \ F ==> x \ (p - 1) div 2" paulson@13871: apply (auto simp add: F_eq A_def) wenzelm@18369: proof - wenzelm@18369: fix y wenzelm@18369: assume "(p - 1) div 2 < StandardRes p (y * a)" wenzelm@18369: then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)" wenzelm@18369: by arith wenzelm@18369: also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)" wenzelm@18369: by auto wenzelm@18369: also have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1" wenzelm@18369: by arith wenzelm@18369: finally show "p - StandardRes p (y * a) \ (p - 1) div 2" wenzelm@18369: using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto wenzelm@18369: qed paulson@13871: haftmann@27556: lemma all_A_relprime: "\x \ A. zgcd x p = 1" wenzelm@18369: using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime) paulson@13871: haftmann@27556: lemma A_prod_relprime: "zgcd (setprod id A) p = 1" nipkow@30837: by(rule all_relprime_prod_relprime[OF finite_A all_A_relprime]) paulson@13871: wenzelm@21233: paulson@13871: subsection {* Relationships Between Gauss Sets *} paulson@13871: wenzelm@21233: lemma B_card_eq_A: "card B = card A" wenzelm@18369: using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image) paulson@13871: wenzelm@21233: lemma B_card_eq: "card B = nat ((p - 1) div 2)" wenzelm@18369: by (simp add: B_card_eq_A A_card_eq) paulson@13871: wenzelm@21233: lemma F_card_eq_E: "card F = card E" wenzelm@18369: using finite_E by (simp add: F_def inj_on_pminusx_E card_image) paulson@13871: wenzelm@21233: lemma C_card_eq_B: "card C = card B" paulson@13871: apply (insert finite_B) wenzelm@18369: apply (subgoal_tac "inj_on (StandardRes p) B") paulson@13871: apply (simp add: B_def C_def card_image) paulson@13871: apply (rule StandardRes_inj_on_ResSet) wenzelm@18369: apply (simp add: B_res) wenzelm@18369: done paulson@13871: wenzelm@21233: lemma D_E_disj: "D \ E = {}" paulson@13871: by (auto simp add: D_def E_def) paulson@13871: wenzelm@21233: lemma C_card_eq_D_plus_E: "card C = card D + card E" paulson@13871: by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E) paulson@13871: wenzelm@21233: lemma C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C" paulson@13871: apply (insert D_E_disj finite_D finite_E C_eq) haftmann@57418: apply (frule setprod.union_disjoint [of D E id]) wenzelm@18369: apply auto wenzelm@18369: done paulson@13871: wenzelm@21233: lemma C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)" paulson@13871: apply (auto simp add: C_def) wenzelm@18369: apply (insert finite_B SR_B_inj) haftmann@57418: apply (frule setprod.reindex [of "StandardRes p" B id]) haftmann@57418: apply auto nipkow@15392: apply (rule setprod_same_function_zcong) wenzelm@18369: apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0) wenzelm@18369: done paulson@13871: wenzelm@21233: lemma F_Un_D_subset: "(F \ D) \ A" paulson@13871: apply (rule Un_least) wenzelm@18369: apply (auto simp add: A_def F_subset D_subset) wenzelm@18369: done paulson@13871: wenzelm@21233: lemma F_D_disj: "(F \ D) = {}" paulson@13871: apply (simp add: F_eq D_eq) paulson@13871: apply (auto simp add: F_eq D_eq) wenzelm@18369: proof - wenzelm@18369: fix y fix ya wenzelm@18369: assume "p - StandardRes p (y * a) = StandardRes p (ya * a)" wenzelm@18369: then have "p = StandardRes p (y * a) + StandardRes p (ya * a)" wenzelm@18369: by arith wenzelm@18369: moreover have "p dvd p" wenzelm@18369: by auto wenzelm@18369: ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))" wenzelm@18369: by auto wenzelm@18369: then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)" wenzelm@18369: by (auto simp add: zcong_def) wenzelm@18369: have "[y * a = StandardRes p (y * a)] (mod p)" wenzelm@18369: by (simp only: zcong_sym StandardRes_prop1) wenzelm@18369: moreover have "[ya * a = StandardRes p (ya * a)] (mod p)" wenzelm@18369: by (simp only: zcong_sym StandardRes_prop1) wenzelm@18369: ultimately have "[y * a + ya * a = wenzelm@18369: StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)" wenzelm@18369: by (rule zcong_zadd) wenzelm@18369: with a have "[y * a + ya * a = 0] (mod p)" wenzelm@18369: apply (elim zcong_trans) wenzelm@18369: by (simp only: zcong_refl) wenzelm@18369: also have "y * a + ya * a = a * (y + ya)" haftmann@57512: by (simp add: distrib_left mult.commute) wenzelm@18369: finally have "[a * (y + ya) = 0] (mod p)" . wenzelm@18369: with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"] wenzelm@18369: p_a_relprime wenzelm@18369: have a: "[y + ya = 0] (mod p)" wenzelm@18369: by auto wenzelm@18369: assume b: "y \ A" and c: "ya: A" wenzelm@18369: with A_def have "0 < y + ya" wenzelm@18369: by auto wenzelm@18369: moreover from b c A_def have "y + ya \ (p - 1) div 2 + (p - 1) div 2" wenzelm@18369: by auto wenzelm@18369: moreover from b c p_eq2 A_def have "y + ya < p" wenzelm@18369: by auto wenzelm@18369: ultimately show False wenzelm@18369: apply simp wenzelm@18369: apply (frule_tac m = p in zcong_not_zero) wenzelm@18369: apply (auto simp add: a) wenzelm@18369: done wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma F_Un_D_card: "card (F \ D) = nat ((p - 1) div 2)" wenzelm@18369: proof - wenzelm@18369: have "card (F \ D) = card E + card D" wenzelm@18369: by (auto simp add: finite_F finite_D F_D_disj wenzelm@18369: card_Un_disjoint F_card_eq_E) wenzelm@18369: then have "card (F \ D) = card C" wenzelm@18369: by (simp add: C_card_eq_D_plus_E) wenzelm@18369: from this show "card (F \ D) = nat ((p - 1) div 2)" wenzelm@18369: by (simp add: C_card_eq_B B_card_eq) wenzelm@18369: qed paulson@13871: wenzelm@21233: lemma F_Un_D_eq_A: "F \ D = A" wenzelm@18369: using finite_A F_Un_D_subset A_card_eq F_Un_D_card by (auto simp add: card_seteq) paulson@13871: wenzelm@21233: lemma prod_D_F_eq_prod_A: wenzelm@18369: "(setprod id D) * (setprod id F) = setprod id A" paulson@13871: apply (insert F_D_disj finite_D finite_F) haftmann@57418: apply (frule setprod.union_disjoint [of F D id]) wenzelm@18369: apply (auto simp add: F_Un_D_eq_A) wenzelm@18369: done paulson@13871: wenzelm@21233: lemma prod_F_zcong: wenzelm@18369: "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)" wenzelm@18369: proof - wenzelm@18369: have "setprod id F = setprod id (op - p ` E)" wenzelm@18369: by (auto simp add: F_def) wenzelm@18369: then have "setprod id F = setprod (op - p) E" wenzelm@18369: apply simp wenzelm@18369: apply (insert finite_E inj_on_pminusx_E) haftmann@57418: apply (frule setprod.reindex [of "minus p" E id]) haftmann@57418: apply auto wenzelm@18369: done wenzelm@18369: then have one: wenzelm@18369: "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)" wenzelm@18369: apply simp nipkow@30837: apply (insert p_g_0 finite_E StandardRes_prod) nipkow@30837: by (auto) wenzelm@18369: moreover have a: "\x \ E. [p - x = 0 - x] (mod p)" wenzelm@18369: apply clarify wenzelm@18369: apply (insert zcong_id [of p]) wenzelm@18369: apply (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto) wenzelm@18369: done wenzelm@18369: moreover have b: "\x \ E. [StandardRes p (p - x) = p - x](mod p)" wenzelm@18369: apply clarify wenzelm@18369: apply (simp add: StandardRes_prop1 zcong_sym) wenzelm@18369: done wenzelm@18369: moreover have "\x \ E. [StandardRes p (p - x) = - x](mod p)" wenzelm@18369: apply clarify wenzelm@18369: apply (insert a b) wenzelm@18369: apply (rule_tac b = "p - x" in zcong_trans, auto) wenzelm@18369: done wenzelm@18369: ultimately have c: wenzelm@18369: "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)" wenzelm@18369: apply simp nipkow@30837: using finite_E p_g_0 nipkow@30837: setprod_same_function_zcong [of E "StandardRes p o (op - p)" uminus p] nipkow@30837: by auto wenzelm@18369: then have two: "[setprod id F = setprod (uminus) E](mod p)" wenzelm@18369: apply (insert one c) wenzelm@18369: apply (rule zcong_trans [of "setprod id F" nipkow@15392: "setprod (StandardRes p o op - p) E" p wenzelm@18369: "setprod uminus E"], auto) wenzelm@18369: done wenzelm@18369: also have "setprod uminus E = (setprod id E) * (-1)^(card E)" berghofe@22274: using finite_E by (induct set: finite) auto wenzelm@18369: then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)" haftmann@57512: by (simp add: mult.commute) wenzelm@18369: with two show ?thesis wenzelm@18369: by simp nipkow@15392: qed paulson@13871: wenzelm@21233: paulson@13871: subsection {* Gauss' Lemma *} paulson@13871: haftmann@58410: lemma aux: "setprod id A * (- 1) ^ card E * a ^ card A * (- 1) ^ card E = setprod id A * a ^ card A" paulson@13871: by (auto simp add: finite_E neg_one_special) paulson@13871: wenzelm@21233: theorem pre_gauss_lemma: wenzelm@18369: "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)" wenzelm@18369: proof - wenzelm@18369: have "[setprod id A = setprod id F * setprod id D](mod p)" haftmann@57512: by (auto simp add: prod_D_F_eq_prod_A mult.commute cong del:setprod.cong) wenzelm@18369: then have "[setprod id A = ((-1)^(card E) * setprod id E) * wenzelm@18369: setprod id D] (mod p)" wenzelm@18369: apply (rule zcong_trans) haftmann@57418: apply (auto simp add: prod_F_zcong zcong_scalar cong del: setprod.cong) wenzelm@18369: done wenzelm@18369: then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)" wenzelm@18369: apply (rule zcong_trans) wenzelm@18369: apply (insert C_prod_eq_D_times_E, erule subst) haftmann@57512: apply (subst mult.assoc, auto) wenzelm@18369: done wenzelm@18369: then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)" wenzelm@18369: apply (rule zcong_trans) haftmann@57418: apply (simp add: C_B_zcong_prod zcong_scalar2 cong del:setprod.cong) wenzelm@18369: done wenzelm@18369: then have "[setprod id A = ((-1)^(card E) * wenzelm@18369: (setprod id ((%x. x * a) ` A)))] (mod p)" wenzelm@18369: by (simp add: B_def) wenzelm@18369: then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))] wenzelm@18369: (mod p)" haftmann@57418: by (simp add:finite_A inj_on_xa_A setprod.reindex cong del:setprod.cong) wenzelm@18369: moreover have "setprod (%x. x * a) A = wenzelm@18369: setprod (%x. a) A * setprod id A" berghofe@22274: using finite_A by (induct set: finite) auto wenzelm@18369: ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A * wenzelm@18369: setprod id A))] (mod p)" wenzelm@18369: by simp wenzelm@18369: then have "[setprod id A = ((-1)^(card E) * a^(card A) * wenzelm@18369: setprod id A)](mod p)" wenzelm@18369: apply (rule zcong_trans) haftmann@57512: apply (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant mult.assoc) wenzelm@18369: done wenzelm@18369: then have a: "[setprod id A * (-1)^(card E) = wenzelm@18369: ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)" wenzelm@18369: by (rule zcong_scalar) wenzelm@18369: then have "[setprod id A * (-1)^(card E) = setprod id A * wenzelm@18369: (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)" wenzelm@18369: apply (rule zcong_trans) haftmann@57512: apply (simp add: a mult.commute mult.left_commute) wenzelm@18369: done wenzelm@18369: then have "[setprod id A * (-1)^(card E) = setprod id A * wenzelm@18369: a^(card A)](mod p)" wenzelm@18369: apply (rule zcong_trans) haftmann@57418: apply (simp add: aux cong del:setprod.cong) wenzelm@18369: done haftmann@58410: with this zcong_cancel2 [of p "setprod id A" "(- 1) ^ card E" "a ^ card A"] haftmann@58410: p_g_0 A_prod_relprime have "[(- 1) ^ card E = a ^ card A](mod p)" wenzelm@18369: by (simp add: order_less_imp_le) wenzelm@18369: from this show ?thesis wenzelm@18369: by (simp add: A_card_eq zcong_sym) nipkow@15392: qed paulson@13871: wenzelm@21233: theorem gauss_lemma: "(Legendre a p) = (-1) ^ (card E)" nipkow@15392: proof - paulson@13871: from Euler_Criterion p_prime p_g_2 have wenzelm@18369: "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)" paulson@13871: by auto nipkow@15392: moreover note pre_gauss_lemma nipkow@15392: ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)" paulson@13871: by (rule zcong_trans) nipkow@15392: moreover from p_a_relprime have "(Legendre a p) = 1 | (Legendre a p) = (-1)" paulson@13871: by (auto simp add: Legendre_def) nipkow@15392: moreover have "(-1::int) ^ (card E) = 1 | (-1::int) ^ (card E) = -1" paulson@13871: by (rule neg_one_power) nipkow@15392: ultimately show ?thesis paulson@13871: by (auto simp add: p_g_2 one_not_neg_one_mod_m zcong_sym) nipkow@15392: qed paulson@13871: avigad@16775: end wenzelm@21233: wenzelm@21233: end