paulson@3366: (* Title: HOL/Divides.thy paulson@3366: Author: Lawrence C Paulson, Cambridge University Computer Laboratory paulson@6865: Copyright 1999 University of Cambridge huffman@18154: *) paulson@3366: wenzelm@60758: section \The division operators div and mod\ paulson@3366: nipkow@15131: theory Divides haftmann@58778: imports Parity nipkow@15131: begin paulson@3366: wenzelm@60758: subsection \Abstract division in commutative semirings.\ haftmann@25942: haftmann@60352: class div = dvd + divide + haftmann@60352: fixes mod :: "'a \ 'a \ 'a" (infixl "mod" 70) haftmann@25942: haftmann@59833: class semiring_div = semidom + div + haftmann@25942: assumes mod_div_equality: "a div b * b + a mod b = a" haftmann@27651: and div_by_0 [simp]: "a div 0 = 0" haftmann@27651: and div_0 [simp]: "0 div a = 0" haftmann@27651: and div_mult_self1 [simp]: "b \ 0 \ (a + c * b) div b = c + a div b" haftmann@30930: and div_mult_mult1 [simp]: "c \ 0 \ (c * a) div (c * b) = a div b" haftmann@25942: begin haftmann@25942: haftmann@60517: subclass algebraic_semidom haftmann@60353: proof haftmann@60353: fix b a haftmann@60353: assume "b \ 0" haftmann@60353: then show "a * b div b = a" haftmann@60353: using div_mult_self1 [of b 0 a] by (simp add: ac_simps) haftmann@60353: qed simp haftmann@58953: haftmann@60867: lemma div_by_1: haftmann@60867: "a div 1 = a" haftmann@60867: by (fact divide_1) haftmann@60867: haftmann@60867: lemma div_mult_self1_is_id: haftmann@60867: "b \ 0 \ b * a div b = a" haftmann@60867: by (fact nonzero_mult_divide_cancel_left) haftmann@60867: haftmann@60867: lemma div_mult_self2_is_id: haftmann@60867: "b \ 0 \ a * b div b = a" haftmann@60867: by (fact nonzero_mult_divide_cancel_right) haftmann@59009: wenzelm@60758: text \@{const divide} and @{const mod}\ haftmann@26100: haftmann@26062: lemma mod_div_equality2: "b * (a div b) + a mod b = a" haftmann@57512: unfolding mult.commute [of b] haftmann@26062: by (rule mod_div_equality) haftmann@26062: huffman@29403: lemma mod_div_equality': "a mod b + a div b * b = a" huffman@29403: using mod_div_equality [of a b] haftmann@57514: by (simp only: ac_simps) huffman@29403: haftmann@26062: lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c" haftmann@30934: by (simp add: mod_div_equality) haftmann@26062: haftmann@26062: lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c" haftmann@30934: by (simp add: mod_div_equality2) haftmann@26062: haftmann@27651: lemma mod_by_0 [simp]: "a mod 0 = a" haftmann@30934: using mod_div_equality [of a zero] by simp haftmann@27651: haftmann@27651: lemma mod_0 [simp]: "0 mod a = 0" haftmann@30934: using mod_div_equality [of zero a] div_0 by simp haftmann@27651: haftmann@27651: lemma div_mult_self2 [simp]: haftmann@27651: assumes "b \ 0" haftmann@27651: shows "(a + b * c) div b = c + a div b" haftmann@57512: using assms div_mult_self1 [of b a c] by (simp add: mult.commute) haftmann@26100: haftmann@54221: lemma div_mult_self3 [simp]: haftmann@54221: assumes "b \ 0" haftmann@54221: shows "(c * b + a) div b = c + a div b" haftmann@54221: using assms by (simp add: add.commute) haftmann@54221: haftmann@54221: lemma div_mult_self4 [simp]: haftmann@54221: assumes "b \ 0" haftmann@54221: shows "(b * c + a) div b = c + a div b" haftmann@54221: using assms by (simp add: add.commute) haftmann@54221: haftmann@27651: lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b" haftmann@27651: proof (cases "b = 0") haftmann@27651: case True then show ?thesis by simp haftmann@27651: next haftmann@27651: case False haftmann@27651: have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b" haftmann@27651: by (simp add: mod_div_equality) haftmann@27651: also from False div_mult_self1 [of b a c] have haftmann@27651: "\ = (c + a div b) * b + (a + c * b) mod b" nipkow@29667: by (simp add: algebra_simps) haftmann@27651: finally have "a = a div b * b + (a + c * b) mod b" haftmann@57512: by (simp add: add.commute [of a] add.assoc distrib_right) haftmann@27651: then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b" haftmann@27651: by (simp add: mod_div_equality) haftmann@27651: then show ?thesis by simp haftmann@27651: qed haftmann@27651: lp15@60562: lemma mod_mult_self2 [simp]: haftmann@54221: "(a + b * c) mod b = a mod b" haftmann@57512: by (simp add: mult.commute [of b]) haftmann@27651: haftmann@54221: lemma mod_mult_self3 [simp]: haftmann@54221: "(c * b + a) mod b = a mod b" haftmann@54221: by (simp add: add.commute) haftmann@54221: haftmann@54221: lemma mod_mult_self4 [simp]: haftmann@54221: "(b * c + a) mod b = a mod b" haftmann@54221: by (simp add: add.commute) haftmann@54221: haftmann@60867: lemma mod_mult_self1_is_0 [simp]: haftmann@60867: "b * a mod b = 0" haftmann@27651: using mod_mult_self2 [of 0 b a] by simp haftmann@27651: haftmann@60867: lemma mod_mult_self2_is_0 [simp]: haftmann@60867: "a * b mod b = 0" haftmann@27651: using mod_mult_self1 [of 0 a b] by simp haftmann@26062: haftmann@60867: lemma mod_by_1 [simp]: haftmann@60867: "a mod 1 = 0" haftmann@27651: proof - haftmann@27651: from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp haftmann@27651: then have "a + a mod 1 = a + 0" by simp haftmann@27651: then show ?thesis by (rule add_left_imp_eq) haftmann@27651: qed haftmann@27651: haftmann@60867: lemma mod_self [simp]: haftmann@60867: "a mod a = 0" haftmann@27651: using mod_mult_self2_is_0 [of 1] by simp haftmann@27651: haftmann@27676: lemma div_add_self1 [simp]: haftmann@27651: assumes "b \ 0" haftmann@27651: shows "(b + a) div b = a div b + 1" haftmann@57512: using assms div_mult_self1 [of b a 1] by (simp add: add.commute) haftmann@26062: haftmann@27676: lemma div_add_self2 [simp]: haftmann@27651: assumes "b \ 0" haftmann@27651: shows "(a + b) div b = a div b + 1" haftmann@57512: using assms div_add_self1 [of b a] by (simp add: add.commute) haftmann@27651: haftmann@27676: lemma mod_add_self1 [simp]: haftmann@27651: "(b + a) mod b = a mod b" haftmann@57512: using mod_mult_self1 [of a 1 b] by (simp add: add.commute) haftmann@27651: haftmann@27676: lemma mod_add_self2 [simp]: haftmann@27651: "(a + b) mod b = a mod b" haftmann@27651: using mod_mult_self1 [of a 1 b] by simp haftmann@27651: haftmann@27651: lemma mod_div_decomp: haftmann@27651: fixes a b haftmann@27651: obtains q r where "q = a div b" and "r = a mod b" haftmann@27651: and "a = q * b + r" haftmann@27651: proof - haftmann@27651: from mod_div_equality have "a = a div b * b + a mod b" by simp haftmann@27651: moreover have "a div b = a div b" .. haftmann@27651: moreover have "a mod b = a mod b" .. haftmann@27651: note that ultimately show thesis by blast haftmann@27651: qed haftmann@27651: haftmann@58834: lemma dvd_imp_mod_0 [simp]: haftmann@58834: assumes "a dvd b" haftmann@58834: shows "b mod a = 0" haftmann@58834: proof - haftmann@58834: from assms obtain c where "b = a * c" .. haftmann@58834: then have "b mod a = a * c mod a" by simp haftmann@58834: then show "b mod a = 0" by simp haftmann@58834: qed haftmann@58911: haftmann@58911: lemma mod_eq_0_iff_dvd: haftmann@58911: "a mod b = 0 \ b dvd a" haftmann@58911: proof haftmann@58911: assume "b dvd a" haftmann@58911: then show "a mod b = 0" by simp haftmann@58911: next haftmann@58911: assume "a mod b = 0" haftmann@58911: with mod_div_equality [of a b] have "a div b * b = a" by simp haftmann@58911: then have "a = b * (a div b)" by (simp add: ac_simps) haftmann@58911: then show "b dvd a" .. haftmann@58911: qed haftmann@58911: haftmann@60867: lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]: haftmann@58834: "a dvd b \ b mod a = 0" haftmann@58911: by (simp add: mod_eq_0_iff_dvd) haftmann@58911: haftmann@58911: lemma mod_div_trivial [simp]: haftmann@58911: "a mod b div b = 0" huffman@29403: proof (cases "b = 0") huffman@29403: assume "b = 0" huffman@29403: thus ?thesis by simp huffman@29403: next huffman@29403: assume "b \ 0" huffman@29403: hence "a div b + a mod b div b = (a mod b + a div b * b) div b" huffman@29403: by (rule div_mult_self1 [symmetric]) huffman@29403: also have "\ = a div b" huffman@29403: by (simp only: mod_div_equality') huffman@29403: also have "\ = a div b + 0" huffman@29403: by simp huffman@29403: finally show ?thesis huffman@29403: by (rule add_left_imp_eq) huffman@29403: qed huffman@29403: haftmann@58911: lemma mod_mod_trivial [simp]: haftmann@58911: "a mod b mod b = a mod b" huffman@29403: proof - huffman@29403: have "a mod b mod b = (a mod b + a div b * b) mod b" huffman@29403: by (simp only: mod_mult_self1) huffman@29403: also have "\ = a mod b" huffman@29403: by (simp only: mod_div_equality') huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: haftmann@58834: lemma dvd_mod_imp_dvd: haftmann@58834: assumes "k dvd m mod n" and "k dvd n" haftmann@58834: shows "k dvd m" haftmann@58834: proof - haftmann@58834: from assms have "k dvd (m div n) * n + m mod n" haftmann@58834: by (simp only: dvd_add dvd_mult) haftmann@58834: then show ?thesis by (simp add: mod_div_equality) haftmann@58834: qed huffman@30078: wenzelm@60758: text \Addition respects modular equivalence.\ huffman@29403: wenzelm@61799: lemma mod_add_left_eq: \ \FIXME reorient\ haftmann@60867: "(a + b) mod c = (a mod c + b) mod c" huffman@29403: proof - huffman@29403: have "(a + b) mod c = (a div c * c + a mod c + b) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a mod c + b + a div c * c) mod c" haftmann@57514: by (simp only: ac_simps) huffman@29403: also have "\ = (a mod c + b) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: wenzelm@61799: lemma mod_add_right_eq: \ \FIXME reorient\ haftmann@60867: "(a + b) mod c = (a + b mod c) mod c" huffman@29403: proof - huffman@29403: have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a + b mod c + b div c * c) mod c" haftmann@57514: by (simp only: ac_simps) huffman@29403: also have "\ = (a + b mod c) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: wenzelm@61799: lemma mod_add_eq: \ \FIXME reorient\ haftmann@60867: "(a + b) mod c = (a mod c + b mod c) mod c" huffman@29403: by (rule trans [OF mod_add_left_eq mod_add_right_eq]) huffman@29403: huffman@29403: lemma mod_add_cong: huffman@29403: assumes "a mod c = a' mod c" huffman@29403: assumes "b mod c = b' mod c" huffman@29403: shows "(a + b) mod c = (a' + b') mod c" huffman@29403: proof - huffman@29403: have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c" huffman@29403: unfolding assms .. huffman@29403: thus ?thesis huffman@29403: by (simp only: mod_add_eq [symmetric]) huffman@29403: qed huffman@29403: wenzelm@60758: text \Multiplication respects modular equivalence.\ huffman@29403: wenzelm@61799: lemma mod_mult_left_eq: \ \FIXME reorient\ haftmann@60867: "(a * b) mod c = ((a mod c) * b) mod c" huffman@29403: proof - huffman@29403: have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a mod c * b + a div c * b * c) mod c" nipkow@29667: by (simp only: algebra_simps) huffman@29403: also have "\ = (a mod c * b) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: wenzelm@61799: lemma mod_mult_right_eq: \ \FIXME reorient\ haftmann@60867: "(a * b) mod c = (a * (b mod c)) mod c" huffman@29403: proof - huffman@29403: have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a * (b mod c) + a * (b div c) * c) mod c" nipkow@29667: by (simp only: algebra_simps) huffman@29403: also have "\ = (a * (b mod c)) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: wenzelm@61799: lemma mod_mult_eq: \ \FIXME reorient\ haftmann@60867: "(a * b) mod c = ((a mod c) * (b mod c)) mod c" huffman@29403: by (rule trans [OF mod_mult_left_eq mod_mult_right_eq]) huffman@29403: huffman@29403: lemma mod_mult_cong: huffman@29403: assumes "a mod c = a' mod c" huffman@29403: assumes "b mod c = b' mod c" huffman@29403: shows "(a * b) mod c = (a' * b') mod c" huffman@29403: proof - huffman@29403: have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c" huffman@29403: unfolding assms .. huffman@29403: thus ?thesis huffman@29403: by (simp only: mod_mult_eq [symmetric]) huffman@29403: qed huffman@29403: wenzelm@60758: text \Exponentiation respects modular equivalence.\ huffman@47164: haftmann@60867: lemma power_mod: "(a mod b) ^ n mod b = a ^ n mod b" huffman@47164: apply (induct n, simp_all) huffman@47164: apply (rule mod_mult_right_eq [THEN trans]) huffman@47164: apply (simp (no_asm_simp)) huffman@47164: apply (rule mod_mult_eq [symmetric]) huffman@47164: done huffman@47164: huffman@29404: lemma mod_mod_cancel: huffman@29404: assumes "c dvd b" huffman@29404: shows "a mod b mod c = a mod c" huffman@29404: proof - wenzelm@60758: from \c dvd b\ obtain k where "b = c * k" huffman@29404: by (rule dvdE) huffman@29404: have "a mod b mod c = a mod (c * k) mod c" wenzelm@60758: by (simp only: \b = c * k\) huffman@29404: also have "\ = (a mod (c * k) + a div (c * k) * k * c) mod c" huffman@29404: by (simp only: mod_mult_self1) huffman@29404: also have "\ = (a div (c * k) * (c * k) + a mod (c * k)) mod c" haftmann@58786: by (simp only: ac_simps) huffman@29404: also have "\ = a mod c" huffman@29404: by (simp only: mod_div_equality) huffman@29404: finally show ?thesis . huffman@29404: qed huffman@29404: haftmann@30930: lemma div_mult_mult2 [simp]: haftmann@30930: "c \ 0 \ (a * c) div (b * c) = a div b" haftmann@57512: by (drule div_mult_mult1) (simp add: mult.commute) haftmann@30930: haftmann@30930: lemma div_mult_mult1_if [simp]: haftmann@30930: "(c * a) div (c * b) = (if c = 0 then 0 else a div b)" haftmann@30930: by simp_all nipkow@30476: haftmann@30930: lemma mod_mult_mult1: haftmann@30930: "(c * a) mod (c * b) = c * (a mod b)" haftmann@30930: proof (cases "c = 0") haftmann@30930: case True then show ?thesis by simp haftmann@30930: next haftmann@30930: case False haftmann@30930: from mod_div_equality haftmann@30930: have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" . haftmann@30930: with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b) haftmann@30930: = c * a + c * (a mod b)" by (simp add: algebra_simps) lp15@60562: with mod_div_equality show ?thesis by simp haftmann@30930: qed lp15@60562: haftmann@30930: lemma mod_mult_mult2: haftmann@30930: "(a * c) mod (b * c) = (a mod b) * c" haftmann@57512: using mod_mult_mult1 [of c a b] by (simp add: mult.commute) haftmann@30930: huffman@47159: lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)" huffman@47159: by (fact mod_mult_mult2 [symmetric]) huffman@47159: huffman@47159: lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)" huffman@47159: by (fact mod_mult_mult1 [symmetric]) huffman@47159: huffman@31662: lemma dvd_mod: "k dvd m \ k dvd n \ k dvd (m mod n)" huffman@31662: unfolding dvd_def by (auto simp add: mod_mult_mult1) huffman@31662: huffman@31662: lemma dvd_mod_iff: "k dvd n \ k dvd (m mod n) \ k dvd m" huffman@31662: by (blast intro: dvd_mod_imp_dvd dvd_mod) huffman@31662: huffman@31661: end huffman@31661: haftmann@59833: class ring_div = comm_ring_1 + semiring_div huffman@29405: begin huffman@29405: haftmann@60353: subclass idom_divide .. haftmann@36634: wenzelm@60758: text \Negation respects modular equivalence.\ huffman@29405: huffman@29405: lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b" huffman@29405: proof - huffman@29405: have "(- a) mod b = (- (a div b * b + a mod b)) mod b" huffman@29405: by (simp only: mod_div_equality) huffman@29405: also have "\ = (- (a mod b) + - (a div b) * b) mod b" haftmann@57514: by (simp add: ac_simps) huffman@29405: also have "\ = (- (a mod b)) mod b" huffman@29405: by (rule mod_mult_self1) huffman@29405: finally show ?thesis . huffman@29405: qed huffman@29405: huffman@29405: lemma mod_minus_cong: huffman@29405: assumes "a mod b = a' mod b" huffman@29405: shows "(- a) mod b = (- a') mod b" huffman@29405: proof - huffman@29405: have "(- (a mod b)) mod b = (- (a' mod b)) mod b" huffman@29405: unfolding assms .. huffman@29405: thus ?thesis huffman@29405: by (simp only: mod_minus_eq [symmetric]) huffman@29405: qed huffman@29405: wenzelm@60758: text \Subtraction respects modular equivalence.\ huffman@29405: haftmann@54230: lemma mod_diff_left_eq: haftmann@54230: "(a - b) mod c = (a mod c - b) mod c" haftmann@54230: using mod_add_cong [of a c "a mod c" "- b" "- b"] by simp haftmann@54230: haftmann@54230: lemma mod_diff_right_eq: haftmann@54230: "(a - b) mod c = (a - b mod c) mod c" haftmann@54230: using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp haftmann@54230: haftmann@54230: lemma mod_diff_eq: haftmann@54230: "(a - b) mod c = (a mod c - b mod c) mod c" haftmann@54230: using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp huffman@29405: huffman@29405: lemma mod_diff_cong: huffman@29405: assumes "a mod c = a' mod c" huffman@29405: assumes "b mod c = b' mod c" huffman@29405: shows "(a - b) mod c = (a' - b') mod c" haftmann@54230: using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] by simp huffman@29405: nipkow@30180: lemma dvd_neg_div: "y dvd x \ -x div y = - (x div y)" nipkow@30180: apply (case_tac "y = 0") apply simp nipkow@30180: apply (auto simp add: dvd_def) nipkow@30180: apply (subgoal_tac "-(y * k) = y * - k") thomas@57492: apply (simp only:) nipkow@30180: apply (erule div_mult_self1_is_id) nipkow@30180: apply simp nipkow@30180: done nipkow@30180: nipkow@30180: lemma dvd_div_neg: "y dvd x \ x div -y = - (x div y)" nipkow@30180: apply (case_tac "y = 0") apply simp nipkow@30180: apply (auto simp add: dvd_def) nipkow@30180: apply (subgoal_tac "y * k = -y * -k") thomas@57492: apply (erule ssubst, rule div_mult_self1_is_id) nipkow@30180: apply simp nipkow@30180: apply simp nipkow@30180: done nipkow@30180: haftmann@60867: lemma div_diff [simp]: haftmann@60867: "z dvd x \ z dvd y \ (x - y) div z = x div z - y div z" haftmann@60867: using div_add [of _ _ "- y"] by (simp add: dvd_neg_div) nipkow@59380: huffman@47159: lemma div_minus_minus [simp]: "(-a) div (-b) = a div b" huffman@47159: using div_mult_mult1 [of "- 1" a b] huffman@47159: unfolding neg_equal_0_iff_equal by simp huffman@47159: huffman@47159: lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)" huffman@47159: using mod_mult_mult1 [of "- 1" a b] by simp huffman@47159: huffman@47159: lemma div_minus_right: "a div (-b) = (-a) div b" huffman@47159: using div_minus_minus [of "-a" b] by simp huffman@47159: huffman@47159: lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)" huffman@47159: using mod_minus_minus [of "-a" b] by simp huffman@47159: huffman@47160: lemma div_minus1_right [simp]: "a div (-1) = -a" huffman@47160: using div_minus_right [of a 1] by simp huffman@47160: huffman@47160: lemma mod_minus1_right [simp]: "a mod (-1) = 0" huffman@47160: using mod_minus_right [of a 1] by simp huffman@47160: lp15@60562: lemma minus_mod_self2 [simp]: haftmann@54221: "(a - b) mod b = a mod b" haftmann@54221: by (simp add: mod_diff_right_eq) haftmann@54221: lp15@60562: lemma minus_mod_self1 [simp]: haftmann@54221: "(b - a) mod b = - a mod b" haftmann@54230: using mod_add_self2 [of "- a" b] by simp haftmann@54221: huffman@29405: end huffman@29405: haftmann@58778: wenzelm@60758: subsubsection \Parity and division\ haftmann@58778: lp15@60562: class semiring_div_parity = semiring_div + comm_semiring_1_cancel + numeral + haftmann@54226: assumes parity: "a mod 2 = 0 \ a mod 2 = 1" haftmann@58786: assumes one_mod_two_eq_one [simp]: "1 mod 2 = 1" haftmann@58710: assumes zero_not_eq_two: "0 \ 2" haftmann@54226: begin haftmann@54226: haftmann@54226: lemma parity_cases [case_names even odd]: haftmann@54226: assumes "a mod 2 = 0 \ P" haftmann@54226: assumes "a mod 2 = 1 \ P" haftmann@54226: shows P haftmann@54226: using assms parity by blast haftmann@54226: haftmann@58786: lemma one_div_two_eq_zero [simp]: haftmann@58778: "1 div 2 = 0" haftmann@58778: proof (cases "2 = 0") haftmann@58778: case True then show ?thesis by simp haftmann@58778: next haftmann@58778: case False haftmann@58778: from mod_div_equality have "1 div 2 * 2 + 1 mod 2 = 1" . haftmann@58778: with one_mod_two_eq_one have "1 div 2 * 2 + 1 = 1" by simp haftmann@58953: then have "1 div 2 * 2 = 0" by (simp add: ac_simps add_left_imp_eq del: mult_eq_0_iff) haftmann@58953: then have "1 div 2 = 0 \ 2 = 0" by simp haftmann@58778: with False show ?thesis by auto haftmann@58778: qed haftmann@58778: haftmann@58786: lemma not_mod_2_eq_0_eq_1 [simp]: haftmann@58786: "a mod 2 \ 0 \ a mod 2 = 1" haftmann@58786: by (cases a rule: parity_cases) simp_all haftmann@58786: haftmann@58786: lemma not_mod_2_eq_1_eq_0 [simp]: haftmann@58786: "a mod 2 \ 1 \ a mod 2 = 0" haftmann@58786: by (cases a rule: parity_cases) simp_all haftmann@58786: haftmann@58778: subclass semiring_parity haftmann@58778: proof (unfold_locales, unfold dvd_eq_mod_eq_0 not_mod_2_eq_0_eq_1) haftmann@58778: show "1 mod 2 = 1" haftmann@58778: by (fact one_mod_two_eq_one) haftmann@58778: next haftmann@58778: fix a b haftmann@58778: assume "a mod 2 = 1" haftmann@58778: moreover assume "b mod 2 = 1" haftmann@58778: ultimately show "(a + b) mod 2 = 0" haftmann@58778: using mod_add_eq [of a b 2] by simp haftmann@58778: next haftmann@58778: fix a b haftmann@58778: assume "(a * b) mod 2 = 0" haftmann@58778: then have "(a mod 2) * (b mod 2) = 0" haftmann@58778: by (cases "a mod 2 = 0") (simp_all add: mod_mult_eq [of a b 2]) haftmann@58778: then show "a mod 2 = 0 \ b mod 2 = 0" haftmann@58778: by (rule divisors_zero) haftmann@58778: next haftmann@58778: fix a haftmann@58778: assume "a mod 2 = 1" haftmann@58778: then have "a = a div 2 * 2 + 1" using mod_div_equality [of a 2] by simp haftmann@58778: then show "\b. a = b + 1" .. haftmann@58778: qed haftmann@58778: haftmann@58778: lemma even_iff_mod_2_eq_zero: haftmann@58778: "even a \ a mod 2 = 0" haftmann@58778: by (fact dvd_eq_mod_eq_0) haftmann@58778: haftmann@58778: lemma even_succ_div_two [simp]: haftmann@58778: "even a \ (a + 1) div 2 = a div 2" haftmann@58778: by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero) haftmann@58778: haftmann@58778: lemma odd_succ_div_two [simp]: haftmann@58778: "odd a \ (a + 1) div 2 = a div 2 + 1" haftmann@58778: by (auto elim!: oddE simp add: zero_not_eq_two [symmetric] add.assoc) haftmann@58778: haftmann@58778: lemma even_two_times_div_two: haftmann@58778: "even a \ 2 * (a div 2) = a" haftmann@58778: by (fact dvd_mult_div_cancel) haftmann@58778: haftmann@58834: lemma odd_two_times_div_two_succ [simp]: haftmann@58778: "odd a \ 2 * (a div 2) + 1 = a" haftmann@58778: using mod_div_equality2 [of 2 a] by (simp add: even_iff_mod_2_eq_zero) haftmann@60868: haftmann@54226: end haftmann@54226: haftmann@25942: wenzelm@60758: subsection \Generic numeral division with a pragmatic type class\ wenzelm@60758: wenzelm@60758: text \ haftmann@53067: The following type class contains everything necessary to formulate haftmann@53067: a division algorithm in ring structures with numerals, restricted haftmann@53067: to its positive segments. This is its primary motiviation, and it haftmann@53067: could surely be formulated using a more fine-grained, more algebraic haftmann@53067: and less technical class hierarchy. wenzelm@60758: \ haftmann@53067: lp15@60562: class semiring_numeral_div = semiring_div + comm_semiring_1_cancel + linordered_semidom + haftmann@59816: assumes div_less: "0 \ a \ a < b \ a div b = 0" haftmann@53067: and mod_less: " 0 \ a \ a < b \ a mod b = a" haftmann@53067: and div_positive: "0 < b \ b \ a \ a div b > 0" haftmann@53067: and mod_less_eq_dividend: "0 \ a \ a mod b \ a" haftmann@53067: and pos_mod_bound: "0 < b \ a mod b < b" haftmann@53067: and pos_mod_sign: "0 < b \ 0 \ a mod b" haftmann@53067: and mod_mult2_eq: "0 \ c \ a mod (b * c) = b * (a div b mod c) + a mod b" haftmann@53067: and div_mult2_eq: "0 \ c \ a div (b * c) = a div b div c" haftmann@53067: assumes discrete: "a < b \ a + 1 \ b" haftmann@61275: fixes divmod :: "num \ num \ 'a \ 'a" haftmann@61275: and divmod_step :: "num \ 'a \ 'a \ 'a \ 'a" haftmann@61275: assumes divmod_def: "divmod m n = (numeral m div numeral n, numeral m mod numeral n)" haftmann@61275: and divmod_step_def: "divmod_step l qr = (let (q, r) = qr haftmann@61275: in if r \ numeral l then (2 * q + 1, r - numeral l) haftmann@61275: else (2 * q, r))" wenzelm@61799: \ \These are conceptually definitions but force generated code haftmann@61275: to be monomorphic wrt. particular instances of this class which haftmann@61275: yields a significant speedup.\ haftmann@61275: haftmann@53067: begin haftmann@53067: haftmann@59816: lemma mult_div_cancel: haftmann@59816: "b * (a div b) = a - a mod b" haftmann@59816: proof - haftmann@59816: have "b * (a div b) + a mod b = a" haftmann@59816: using mod_div_equality [of a b] by (simp add: ac_simps) haftmann@59816: then have "b * (a div b) + a mod b - a mod b = a - a mod b" haftmann@59816: by simp haftmann@59816: then show ?thesis haftmann@59816: by simp haftmann@59816: qed haftmann@53067: haftmann@54226: subclass semiring_div_parity haftmann@54226: proof haftmann@54226: fix a haftmann@54226: show "a mod 2 = 0 \ a mod 2 = 1" haftmann@54226: proof (rule ccontr) haftmann@54226: assume "\ (a mod 2 = 0 \ a mod 2 = 1)" haftmann@54226: then have "a mod 2 \ 0" and "a mod 2 \ 1" by simp_all haftmann@54226: have "0 < 2" by simp haftmann@54226: with pos_mod_bound pos_mod_sign have "0 \ a mod 2" "a mod 2 < 2" by simp_all wenzelm@60758: with \a mod 2 \ 0\ have "0 < a mod 2" by simp haftmann@54226: with discrete have "1 \ a mod 2" by simp wenzelm@60758: with \a mod 2 \ 1\ have "1 < a mod 2" by simp haftmann@54226: with discrete have "2 \ a mod 2" by simp wenzelm@60758: with \a mod 2 < 2\ show False by simp haftmann@54226: qed haftmann@58646: next haftmann@58646: show "1 mod 2 = 1" haftmann@58646: by (rule mod_less) simp_all haftmann@58710: next haftmann@58710: show "0 \ 2" haftmann@58710: by simp haftmann@53067: qed haftmann@53067: haftmann@53067: lemma divmod_digit_1: haftmann@53067: assumes "0 \ a" "0 < b" and "b \ a mod (2 * b)" haftmann@53067: shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P") haftmann@53067: and "a mod (2 * b) - b = a mod b" (is "?Q") haftmann@53067: proof - haftmann@53067: from assms mod_less_eq_dividend [of a "2 * b"] have "b \ a" haftmann@53067: by (auto intro: trans) wenzelm@60758: with \0 < b\ have "0 < a div b" by (auto intro: div_positive) haftmann@53067: then have [simp]: "1 \ a div b" by (simp add: discrete) wenzelm@60758: with \0 < b\ have mod_less: "a mod b < b" by (simp add: pos_mod_bound) haftmann@53067: def w \ "a div b mod 2" with parity have w_exhaust: "w = 0 \ w = 1" by auto haftmann@53067: have mod_w: "a mod (2 * b) = a mod b + b * w" haftmann@53067: by (simp add: w_def mod_mult2_eq ac_simps) haftmann@53067: from assms w_exhaust have "w = 1" haftmann@53067: by (auto simp add: mod_w) (insert mod_less, auto) haftmann@53067: with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp haftmann@53067: have "2 * (a div (2 * b)) = a div b - w" haftmann@53067: by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps) wenzelm@60758: with \w = 1\ have div: "2 * (a div (2 * b)) = a div b - 1" by simp haftmann@53067: then show ?P and ?Q haftmann@60867: by (simp_all add: div mod add_implies_diff [symmetric]) haftmann@53067: qed haftmann@53067: haftmann@53067: lemma divmod_digit_0: haftmann@53067: assumes "0 < b" and "a mod (2 * b) < b" haftmann@53067: shows "2 * (a div (2 * b)) = a div b" (is "?P") haftmann@53067: and "a mod (2 * b) = a mod b" (is "?Q") haftmann@53067: proof - haftmann@53067: def w \ "a div b mod 2" with parity have w_exhaust: "w = 0 \ w = 1" by auto haftmann@53067: have mod_w: "a mod (2 * b) = a mod b + b * w" haftmann@53067: by (simp add: w_def mod_mult2_eq ac_simps) haftmann@53067: moreover have "b \ a mod b + b" haftmann@53067: proof - wenzelm@60758: from \0 < b\ pos_mod_sign have "0 \ a mod b" by blast haftmann@53067: then have "0 + b \ a mod b + b" by (rule add_right_mono) haftmann@53067: then show ?thesis by simp haftmann@53067: qed haftmann@53067: moreover note assms w_exhaust haftmann@53067: ultimately have "w = 0" by auto haftmann@53067: with mod_w have mod: "a mod (2 * b) = a mod b" by simp haftmann@53067: have "2 * (a div (2 * b)) = a div b - w" haftmann@53067: by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps) wenzelm@60758: with \w = 0\ have div: "2 * (a div (2 * b)) = a div b" by simp haftmann@53067: then show ?P and ?Q haftmann@53067: by (simp_all add: div mod) haftmann@53067: qed haftmann@53067: haftmann@60867: lemma fst_divmod: haftmann@53067: "fst (divmod m n) = numeral m div numeral n" haftmann@53067: by (simp add: divmod_def) haftmann@53067: haftmann@60867: lemma snd_divmod: haftmann@53067: "snd (divmod m n) = numeral m mod numeral n" haftmann@53067: by (simp add: divmod_def) haftmann@53067: wenzelm@60758: text \ haftmann@53067: This is a formulation of one step (referring to one digit position) haftmann@53067: in school-method division: compare the dividend at the current haftmann@53070: digit position with the remainder from previous division steps haftmann@53067: and evaluate accordingly. wenzelm@60758: \ haftmann@53067: haftmann@61275: lemma divmod_step_eq [simp]: haftmann@53067: "divmod_step l (q, r) = (if numeral l \ r haftmann@53067: then (2 * q + 1, r - numeral l) else (2 * q, r))" haftmann@53067: by (simp add: divmod_step_def) haftmann@53067: wenzelm@60758: text \ haftmann@53067: This is a formulation of school-method division. haftmann@53067: If the divisor is smaller than the dividend, terminate. haftmann@53067: If not, shift the dividend to the right until termination haftmann@53067: occurs and then reiterate single division steps in the haftmann@53067: opposite direction. wenzelm@60758: \ haftmann@53067: haftmann@60867: lemma divmod_divmod_step: haftmann@53067: "divmod m n = (if m < n then (0, numeral m) haftmann@53067: else divmod_step n (divmod m (Num.Bit0 n)))" haftmann@53067: proof (cases "m < n") haftmann@53067: case True then have "numeral m < numeral n" by simp haftmann@53067: then show ?thesis haftmann@60867: by (simp add: prod_eq_iff div_less mod_less fst_divmod snd_divmod) haftmann@53067: next haftmann@53067: case False haftmann@53067: have "divmod m n = haftmann@53067: divmod_step n (numeral m div (2 * numeral n), haftmann@53067: numeral m mod (2 * numeral n))" haftmann@53067: proof (cases "numeral n \ numeral m mod (2 * numeral n)") haftmann@53067: case True haftmann@60867: with divmod_step_eq haftmann@53067: have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = haftmann@53067: (2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)" haftmann@60867: by simp haftmann@53067: moreover from True divmod_digit_1 [of "numeral m" "numeral n"] haftmann@53067: have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n" haftmann@53067: and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n" haftmann@53067: by simp_all haftmann@53067: ultimately show ?thesis by (simp only: divmod_def) haftmann@53067: next haftmann@53067: case False then have *: "numeral m mod (2 * numeral n) < numeral n" haftmann@53067: by (simp add: not_le) haftmann@60867: with divmod_step_eq haftmann@53067: have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = haftmann@53067: (2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))" haftmann@60867: by auto haftmann@53067: moreover from * divmod_digit_0 [of "numeral n" "numeral m"] haftmann@53067: have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n" haftmann@53067: and "numeral m mod (2 * numeral n) = numeral m mod numeral n" haftmann@53067: by (simp_all only: zero_less_numeral) haftmann@53067: ultimately show ?thesis by (simp only: divmod_def) haftmann@53067: qed haftmann@53067: then have "divmod m n = haftmann@53067: divmod_step n (numeral m div numeral (Num.Bit0 n), haftmann@53067: numeral m mod numeral (Num.Bit0 n))" lp15@60562: by (simp only: numeral.simps distrib mult_1) haftmann@53067: then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))" haftmann@53067: by (simp add: divmod_def) haftmann@53067: with False show ?thesis by simp haftmann@53067: qed haftmann@53067: wenzelm@61799: text \The division rewrite proper -- first, trivial results involving \1\\ haftmann@60867: haftmann@61275: lemma divmod_trivial [simp]: haftmann@60867: "divmod Num.One Num.One = (numeral Num.One, 0)" haftmann@60867: "divmod (Num.Bit0 m) Num.One = (numeral (Num.Bit0 m), 0)" haftmann@60867: "divmod (Num.Bit1 m) Num.One = (numeral (Num.Bit1 m), 0)" haftmann@60867: "divmod num.One (num.Bit0 n) = (0, Numeral1)" haftmann@60867: "divmod num.One (num.Bit1 n) = (0, Numeral1)" haftmann@60867: using divmod_divmod_step [of "Num.One"] by (simp_all add: divmod_def) haftmann@60867: haftmann@60867: text \Division by an even number is a right-shift\ haftmann@58953: haftmann@61275: lemma divmod_cancel [simp]: haftmann@53069: "divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \ (q, 2 * r))" (is ?P) haftmann@53069: "divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \ (q, 2 * r + 1))" (is ?Q) haftmann@53069: proof - haftmann@53069: have *: "\q. numeral (Num.Bit0 q) = 2 * numeral q" haftmann@53069: "\q. numeral (Num.Bit1 q) = 2 * numeral q + 1" haftmann@53069: by (simp_all only: numeral_mult numeral.simps distrib) simp_all haftmann@53069: have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less) haftmann@53069: then show ?P and ?Q haftmann@60867: by (simp_all add: fst_divmod snd_divmod prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1 haftmann@60867: div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2] haftmann@60867: add.commute del: numeral_times_numeral) haftmann@58953: qed haftmann@58953: haftmann@60867: text \The really hard work\ haftmann@60867: haftmann@61275: lemma divmod_steps [simp]: haftmann@60867: "divmod (num.Bit0 m) (num.Bit1 n) = haftmann@60867: (if m \ n then (0, numeral (num.Bit0 m)) haftmann@60867: else divmod_step (num.Bit1 n) haftmann@60867: (divmod (num.Bit0 m) haftmann@60867: (num.Bit0 (num.Bit1 n))))" haftmann@60867: "divmod (num.Bit1 m) (num.Bit1 n) = haftmann@60867: (if m < n then (0, numeral (num.Bit1 m)) haftmann@60867: else divmod_step (num.Bit1 n) haftmann@60867: (divmod (num.Bit1 m) haftmann@60867: (num.Bit0 (num.Bit1 n))))" haftmann@60867: by (simp_all add: divmod_divmod_step) haftmann@60867: haftmann@61275: lemmas divmod_algorithm_code = divmod_step_eq divmod_trivial divmod_cancel divmod_steps haftmann@61275: wenzelm@60758: text \Special case: divisibility\ haftmann@58953: haftmann@58953: definition divides_aux :: "'a \ 'a \ bool" haftmann@58953: where haftmann@58953: "divides_aux qr \ snd qr = 0" haftmann@58953: haftmann@58953: lemma divides_aux_eq [simp]: haftmann@58953: "divides_aux (q, r) \ r = 0" haftmann@58953: by (simp add: divides_aux_def) haftmann@58953: haftmann@58953: lemma dvd_numeral_simp [simp]: haftmann@58953: "numeral m dvd numeral n \ divides_aux (divmod n m)" haftmann@58953: by (simp add: divmod_def mod_eq_0_iff_dvd) haftmann@53069: haftmann@60867: text \Generic computation of quotient and remainder\ haftmann@60867: haftmann@60867: lemma numeral_div_numeral [simp]: haftmann@60867: "numeral k div numeral l = fst (divmod k l)" haftmann@60867: by (simp add: fst_divmod) haftmann@60867: haftmann@60867: lemma numeral_mod_numeral [simp]: haftmann@60867: "numeral k mod numeral l = snd (divmod k l)" haftmann@60867: by (simp add: snd_divmod) haftmann@60867: haftmann@60867: lemma one_div_numeral [simp]: haftmann@60867: "1 div numeral n = fst (divmod num.One n)" haftmann@60867: by (simp add: fst_divmod) haftmann@60867: haftmann@60867: lemma one_mod_numeral [simp]: haftmann@60867: "1 mod numeral n = snd (divmod num.One n)" haftmann@60867: by (simp add: snd_divmod) haftmann@60867: haftmann@53067: end haftmann@53067: lp15@60562: wenzelm@60758: subsection \Division on @{typ nat}\ wenzelm@60758: haftmann@61433: context haftmann@61433: begin haftmann@61433: wenzelm@60758: text \ haftmann@60429: We define @{const divide} and @{const mod} on @{typ nat} by means haftmann@26100: of a characteristic relation with two input arguments wenzelm@61076: @{term "m::nat"}, @{term "n::nat"} and two output arguments wenzelm@61076: @{term "q::nat"}(uotient) and @{term "r::nat"}(emainder). wenzelm@60758: \ haftmann@26100: haftmann@33340: definition divmod_nat_rel :: "nat \ nat \ nat \ nat \ bool" where haftmann@33340: "divmod_nat_rel m n qr \ haftmann@30923: m = fst qr * n + snd qr \ haftmann@30923: (if n = 0 then fst qr = 0 else if n > 0 then 0 \ snd qr \ snd qr < n else n < snd qr \ snd qr \ 0)" haftmann@26100: wenzelm@60758: text \@{const divmod_nat_rel} is total:\ haftmann@26100: haftmann@61433: qualified lemma divmod_nat_rel_ex: haftmann@33340: obtains q r where "divmod_nat_rel m n (q, r)" haftmann@26100: proof (cases "n = 0") haftmann@30923: case True with that show thesis haftmann@33340: by (auto simp add: divmod_nat_rel_def) haftmann@26100: next haftmann@26100: case False haftmann@26100: have "\q r. m = q * n + r \ r < n" haftmann@26100: proof (induct m) wenzelm@60758: case 0 with \n \ 0\ wenzelm@61076: have "(0::nat) = 0 * n + 0 \ 0 < n" by simp haftmann@26100: then show ?case by blast haftmann@26100: next haftmann@26100: case (Suc m) then obtain q' r' haftmann@26100: where m: "m = q' * n + r'" and n: "r' < n" by auto haftmann@26100: then show ?case proof (cases "Suc r' < n") haftmann@26100: case True haftmann@26100: from m n have "Suc m = q' * n + Suc r'" by simp haftmann@26100: with True show ?thesis by blast haftmann@26100: next haftmann@26100: case False then have "n \ Suc r'" by auto haftmann@26100: moreover from n have "Suc r' \ n" by auto haftmann@26100: ultimately have "n = Suc r'" by auto haftmann@26100: with m have "Suc m = Suc q' * n + 0" by simp wenzelm@60758: with \n \ 0\ show ?thesis by blast haftmann@26100: qed haftmann@26100: qed haftmann@26100: with that show thesis wenzelm@60758: using \n \ 0\ by (auto simp add: divmod_nat_rel_def) haftmann@26100: qed haftmann@26100: wenzelm@60758: text \@{const divmod_nat_rel} is injective:\ haftmann@26100: haftmann@61433: qualified lemma divmod_nat_rel_unique: haftmann@33340: assumes "divmod_nat_rel m n qr" haftmann@33340: and "divmod_nat_rel m n qr'" haftmann@30923: shows "qr = qr'" haftmann@26100: proof (cases "n = 0") haftmann@26100: case True with assms show ?thesis haftmann@30923: by (cases qr, cases qr') haftmann@33340: (simp add: divmod_nat_rel_def) haftmann@26100: next haftmann@26100: case False wenzelm@61076: have aux: "\q r q' r'. q' * n + r' = q * n + r \ r < n \ q' \ (q::nat)" haftmann@26100: apply (rule leI) haftmann@26100: apply (subst less_iff_Suc_add) haftmann@26100: apply (auto simp add: add_mult_distrib) haftmann@26100: done wenzelm@60758: from \n \ 0\ assms have *: "fst qr = fst qr'" haftmann@33340: by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym) wenzelm@53374: with assms have "snd qr = snd qr'" haftmann@33340: by (simp add: divmod_nat_rel_def) wenzelm@53374: with * show ?thesis by (cases qr, cases qr') simp haftmann@26100: qed haftmann@26100: wenzelm@60758: text \ haftmann@26100: We instantiate divisibility on the natural numbers by haftmann@33340: means of @{const divmod_nat_rel}: wenzelm@60758: \ haftmann@25942: haftmann@61433: qualified definition divmod_nat :: "nat \ nat \ nat \ nat" where haftmann@37767: "divmod_nat m n = (THE qr. divmod_nat_rel m n qr)" haftmann@30923: haftmann@61433: qualified lemma divmod_nat_rel_divmod_nat: haftmann@33340: "divmod_nat_rel m n (divmod_nat m n)" haftmann@30923: proof - haftmann@33340: from divmod_nat_rel_ex haftmann@33340: obtain qr where rel: "divmod_nat_rel m n qr" . haftmann@30923: then show ?thesis haftmann@33340: by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique) haftmann@30923: qed haftmann@30923: haftmann@61433: qualified lemma divmod_nat_unique: lp15@60562: assumes "divmod_nat_rel m n qr" haftmann@33340: shows "divmod_nat m n = qr" haftmann@33340: using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat) haftmann@26100: haftmann@61433: qualified lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)" haftmann@61433: by (simp add: Divides.divmod_nat_unique divmod_nat_rel_def) haftmann@61433: haftmann@61433: qualified lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)" haftmann@61433: by (simp add: Divides.divmod_nat_unique divmod_nat_rel_def) haftmann@61433: haftmann@61433: qualified lemma divmod_nat_base: "m < n \ divmod_nat m n = (0, m)" haftmann@61433: by (simp add: divmod_nat_unique divmod_nat_rel_def) haftmann@61433: haftmann@61433: qualified lemma divmod_nat_step: haftmann@61433: assumes "0 < n" and "n \ m" haftmann@61433: shows "divmod_nat m n = apfst Suc (divmod_nat (m - n) n)" haftmann@61433: proof (rule divmod_nat_unique) haftmann@61433: have "divmod_nat_rel (m - n) n (divmod_nat (m - n) n)" haftmann@61433: by (fact divmod_nat_rel_divmod_nat) haftmann@61433: then show "divmod_nat_rel m n (apfst Suc (divmod_nat (m - n) n))" haftmann@61433: unfolding divmod_nat_rel_def using assms by auto haftmann@61433: qed haftmann@61433: haftmann@61433: end haftmann@61433: haftmann@60429: instantiation nat :: semiring_div haftmann@60352: begin haftmann@60352: haftmann@60352: definition divide_nat where haftmann@61433: div_nat_def: "m div n = fst (Divides.divmod_nat m n)" haftmann@60352: haftmann@60352: definition mod_nat where haftmann@61433: "m mod n = snd (Divides.divmod_nat m n)" huffman@46551: huffman@46551: lemma fst_divmod_nat [simp]: haftmann@61433: "fst (Divides.divmod_nat m n) = m div n" huffman@46551: by (simp add: div_nat_def) huffman@46551: huffman@46551: lemma snd_divmod_nat [simp]: haftmann@61433: "snd (Divides.divmod_nat m n) = m mod n" huffman@46551: by (simp add: mod_nat_def) huffman@46551: haftmann@33340: lemma divmod_nat_div_mod: haftmann@61433: "Divides.divmod_nat m n = (m div n, m mod n)" huffman@46551: by (simp add: prod_eq_iff) haftmann@26100: huffman@47135: lemma div_nat_unique: lp15@60562: assumes "divmod_nat_rel m n (q, r)" haftmann@26100: shows "m div n = q" haftmann@61433: using assms by (auto dest!: Divides.divmod_nat_unique simp add: prod_eq_iff) huffman@47135: huffman@47135: lemma mod_nat_unique: lp15@60562: assumes "divmod_nat_rel m n (q, r)" haftmann@26100: shows "m mod n = r" haftmann@61433: using assms by (auto dest!: Divides.divmod_nat_unique simp add: prod_eq_iff) haftmann@25571: haftmann@33340: lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)" haftmann@61433: using Divides.divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod) haftmann@25942: wenzelm@60758: text \The ''recursion'' equations for @{const divide} and @{const mod}\ haftmann@26100: haftmann@26100: lemma div_less [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "m < n" haftmann@26100: shows "m div n = 0" haftmann@61433: using assms Divides.divmod_nat_base by (simp add: prod_eq_iff) haftmann@25942: haftmann@26100: lemma le_div_geq: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "0 < n" and "n \ m" haftmann@26100: shows "m div n = Suc ((m - n) div n)" haftmann@61433: using assms Divides.divmod_nat_step by (simp add: prod_eq_iff) paulson@14267: haftmann@26100: lemma mod_less [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "m < n" haftmann@26100: shows "m mod n = m" haftmann@61433: using assms Divides.divmod_nat_base by (simp add: prod_eq_iff) haftmann@26100: haftmann@26100: lemma le_mod_geq: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "n \ m" haftmann@26100: shows "m mod n = (m - n) mod n" haftmann@61433: using assms Divides.divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff) paulson@14267: huffman@47136: instance proof huffman@47136: fix m n :: nat huffman@47136: show "m div n * n + m mod n = m" huffman@47136: using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def) huffman@47136: next huffman@47136: fix m n q :: nat huffman@47136: assume "n \ 0" huffman@47136: then show "(q + m * n) div n = m + q div n" huffman@47136: by (induct m) (simp_all add: le_div_geq) huffman@47136: next huffman@47136: fix m n q :: nat huffman@47136: assume "m \ 0" huffman@47136: hence "\a b. divmod_nat_rel n q (a, b) \ divmod_nat_rel (m * n) (m * q) (a, m * b)" huffman@47136: unfolding divmod_nat_rel_def huffman@47136: by (auto split: split_if_asm, simp_all add: algebra_simps) huffman@47136: moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" . huffman@47136: ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" . huffman@47136: thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique) huffman@47136: next huffman@47136: fix n :: nat show "n div 0 = 0" haftmann@61433: by (simp add: div_nat_def Divides.divmod_nat_zero) huffman@47136: next huffman@47136: fix n :: nat show "0 div n = 0" haftmann@61433: by (simp add: div_nat_def Divides.divmod_nat_zero_left) haftmann@25942: qed haftmann@26100: haftmann@25942: end paulson@14267: haftmann@60685: instantiation nat :: normalization_semidom haftmann@60685: begin haftmann@60685: haftmann@60685: definition normalize_nat haftmann@60685: where [simp]: "normalize = (id :: nat \ nat)" haftmann@60685: haftmann@60685: definition unit_factor_nat haftmann@60685: where "unit_factor n = (if n = 0 then 0 else 1 :: nat)" haftmann@60685: haftmann@60685: lemma unit_factor_simps [simp]: haftmann@60685: "unit_factor 0 = (0::nat)" haftmann@60685: "unit_factor (Suc n) = 1" haftmann@60685: by (simp_all add: unit_factor_nat_def) haftmann@60685: haftmann@60685: instance haftmann@60685: by standard (simp_all add: unit_factor_nat_def) haftmann@60685: haftmann@60685: end haftmann@60685: haftmann@61433: lemma divmod_nat_if [code]: haftmann@61433: "Divides.divmod_nat m n = (if n = 0 \ m < n then (0, m) else haftmann@61433: let (q, r) = Divides.divmod_nat (m - n) n in (Suc q, r))" blanchet@55414: by (simp add: prod_eq_iff case_prod_beta not_less le_div_geq le_mod_geq) haftmann@33361: wenzelm@60758: text \Simproc for cancelling @{const divide} and @{const mod}\ haftmann@25942: wenzelm@51299: ML_file "~~/src/Provers/Arith/cancel_div_mod.ML" wenzelm@51299: wenzelm@60758: ML \ wenzelm@43594: structure Cancel_Div_Mod_Nat = Cancel_Div_Mod wenzelm@41550: ( haftmann@60352: val div_name = @{const_name divide}; haftmann@30934: val mod_name = @{const_name mod}; haftmann@30934: val mk_binop = HOLogic.mk_binop; huffman@48561: val mk_plus = HOLogic.mk_binop @{const_name Groups.plus}; huffman@48561: val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT; huffman@48561: fun mk_sum [] = HOLogic.zero huffman@48561: | mk_sum [t] = t huffman@48561: | mk_sum (t :: ts) = mk_plus (t, mk_sum ts); huffman@48561: fun dest_sum tm = huffman@48561: if HOLogic.is_zero tm then [] huffman@48561: else huffman@48561: (case try HOLogic.dest_Suc tm of huffman@48561: SOME t => HOLogic.Suc_zero :: dest_sum t huffman@48561: | NONE => huffman@48561: (case try dest_plus tm of huffman@48561: SOME (t, u) => dest_sum t @ dest_sum u huffman@48561: | NONE => [tm])); haftmann@25942: haftmann@30934: val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]; paulson@14267: haftmann@30934: val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac haftmann@57514: (@{thm add_0_left} :: @{thm add_0_right} :: @{thms ac_simps})) wenzelm@41550: ) wenzelm@60758: \ wenzelm@60758: wenzelm@60758: simproc_setup cancel_div_mod_nat ("(m::nat) + n") = \K Cancel_Div_Mod_Nat.proc\ wenzelm@60758: wenzelm@60758: wenzelm@60758: subsubsection \Quotient\ haftmann@26100: haftmann@26100: lemma div_geq: "0 < n \ \ m < n \ m div n = Suc ((m - n) div n)" nipkow@29667: by (simp add: le_div_geq linorder_not_less) haftmann@26100: haftmann@26100: lemma div_if: "0 < n \ m div n = (if m < n then 0 else Suc ((m - n) div n))" nipkow@29667: by (simp add: div_geq) haftmann@26100: haftmann@26100: lemma div_mult_self_is_m [simp]: "0 (m*n) div n = (m::nat)" nipkow@29667: by simp haftmann@26100: haftmann@26100: lemma div_mult_self1_is_m [simp]: "0 (n*m) div n = (m::nat)" nipkow@29667: by simp haftmann@26100: haftmann@53066: lemma div_positive: haftmann@53066: fixes m n :: nat haftmann@53066: assumes "n > 0" haftmann@53066: assumes "m \ n" haftmann@53066: shows "m div n > 0" haftmann@53066: proof - wenzelm@60758: from \m \ n\ obtain q where "m = n + q" haftmann@53066: by (auto simp add: le_iff_add) wenzelm@60758: with \n > 0\ show ?thesis by simp haftmann@53066: qed haftmann@53066: hoelzl@59000: lemma div_eq_0_iff: "(a div b::nat) = 0 \ a < b \ b = 0" hoelzl@59000: by (metis div_less div_positive div_by_0 gr0I less_numeral_extra(3) not_less) haftmann@25942: wenzelm@60758: subsubsection \Remainder\ haftmann@25942: haftmann@26100: lemma mod_less_divisor [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "n > 0" haftmann@26100: shows "m mod n < (n::nat)" haftmann@33340: using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto paulson@14267: haftmann@51173: lemma mod_Suc_le_divisor [simp]: haftmann@51173: "m mod Suc n \ n" haftmann@51173: using mod_less_divisor [of "Suc n" m] by arith haftmann@51173: haftmann@26100: lemma mod_less_eq_dividend [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: shows "m mod n \ m" haftmann@26100: proof (rule add_leD2) haftmann@26100: from mod_div_equality have "m div n * n + m mod n = m" . haftmann@26100: then show "m div n * n + m mod n \ m" by auto haftmann@26100: qed haftmann@26100: wenzelm@61076: lemma mod_geq: "\ m < (n::nat) \ m mod n = (m - n) mod n" nipkow@29667: by (simp add: le_mod_geq linorder_not_less) paulson@14267: wenzelm@61076: lemma mod_if: "m mod (n::nat) = (if m < n then m else (m - n) mod n)" nipkow@29667: by (simp add: le_mod_geq) haftmann@26100: paulson@14267: lemma mod_1 [simp]: "m mod Suc 0 = 0" nipkow@29667: by (induct m) (simp_all add: mod_geq) paulson@14267: paulson@14267: (* a simple rearrangement of mod_div_equality: *) paulson@14267: lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)" huffman@47138: using mod_div_equality2 [of n m] by arith paulson@14267: nipkow@15439: lemma mod_le_divisor[simp]: "0 < n \ m mod n \ (n::nat)" wenzelm@22718: apply (drule mod_less_divisor [where m = m]) wenzelm@22718: apply simp wenzelm@22718: done paulson@14267: wenzelm@60758: subsubsection \Quotient and Remainder\ paulson@14267: haftmann@33340: lemma divmod_nat_rel_mult1_eq: bulwahn@46552: "divmod_nat_rel b c (q, r) haftmann@33340: \ divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)" haftmann@33340: by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps) paulson@14267: haftmann@30923: lemma div_mult1_eq: haftmann@30923: "(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)" huffman@47135: by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel) paulson@14267: haftmann@33340: lemma divmod_nat_rel_add1_eq: bulwahn@46552: "divmod_nat_rel a c (aq, ar) \ divmod_nat_rel b c (bq, br) haftmann@33340: \ divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)" haftmann@33340: by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps) paulson@14267: paulson@14267: (*NOT suitable for rewriting: the RHS has an instance of the LHS*) paulson@14267: lemma div_add1_eq: nipkow@25134: "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)" huffman@47135: by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel) paulson@14267: haftmann@33340: lemma divmod_nat_rel_mult2_eq: haftmann@60352: assumes "divmod_nat_rel a b (q, r)" haftmann@60352: shows "divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)" haftmann@60352: proof - lp15@60562: { assume "r < b" and "0 < c" haftmann@60352: then have "b * (q mod c) + r < b * c" haftmann@60352: apply (cut_tac m = q and n = c in mod_less_divisor) haftmann@60352: apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto) haftmann@60352: apply (erule_tac P = "%x. lhs < rhs x" for lhs rhs in ssubst) haftmann@60352: apply (simp add: add_mult_distrib2) haftmann@60352: done haftmann@60352: then have "r + b * (q mod c) < b * c" haftmann@60352: by (simp add: ac_simps) haftmann@60352: } with assms show ?thesis haftmann@60352: by (auto simp add: divmod_nat_rel_def algebra_simps add_mult_distrib2 [symmetric]) haftmann@60352: qed lp15@60562: blanchet@55085: lemma div_mult2_eq: "a div (b * c) = (a div b) div (c::nat)" huffman@47135: by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique]) paulson@14267: blanchet@55085: lemma mod_mult2_eq: "a mod (b * c) = b * (a div b mod c) + a mod (b::nat)" haftmann@57512: by (auto simp add: mult.commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique]) paulson@14267: haftmann@61275: instantiation nat :: semiring_numeral_div haftmann@61275: begin haftmann@61275: haftmann@61275: definition divmod_nat :: "num \ num \ nat \ nat" haftmann@61275: where haftmann@61275: divmod'_nat_def: "divmod_nat m n = (numeral m div numeral n, numeral m mod numeral n)" haftmann@61275: haftmann@61275: definition divmod_step_nat :: "num \ nat \ nat \ nat \ nat" haftmann@61275: where haftmann@61275: "divmod_step_nat l qr = (let (q, r) = qr haftmann@61275: in if r \ numeral l then (2 * q + 1, r - numeral l) haftmann@61275: else (2 * q, r))" haftmann@61275: haftmann@61275: instance haftmann@61275: by standard (auto intro: div_positive simp add: divmod'_nat_def divmod_step_nat_def mod_mult2_eq div_mult2_eq) haftmann@61275: haftmann@61275: end haftmann@61275: haftmann@61275: declare divmod_algorithm_code [where ?'a = nat, code] haftmann@61275: paulson@14267: wenzelm@60758: subsubsection \Further Facts about Quotient and Remainder\ paulson@14267: haftmann@58786: lemma div_1 [simp]: haftmann@58786: "m div Suc 0 = m" haftmann@58786: using div_by_1 [of m] by simp paulson@14267: paulson@14267: (* Monotonicity of div in first argument *) haftmann@30923: lemma div_le_mono [rule_format (no_asm)]: wenzelm@22718: "\m::nat. m \ n --> (m div k) \ (n div k)" paulson@14267: apply (case_tac "k=0", simp) paulson@15251: apply (induct "n" rule: nat_less_induct, clarify) paulson@14267: apply (case_tac "n= k *) paulson@14267: apply (case_tac "m=k *) nipkow@15439: apply (simp add: div_geq diff_le_mono) paulson@14267: done paulson@14267: paulson@14267: (* Antimonotonicity of div in second argument *) paulson@14267: lemma div_le_mono2: "!!m::nat. [| 0n |] ==> (k div n) \ (k div m)" paulson@14267: apply (subgoal_tac "0 (k-m) div n") paulson@14267: prefer 2 paulson@14267: apply (blast intro: div_le_mono diff_le_mono2) paulson@14267: apply (rule le_trans, simp) nipkow@15439: apply (simp) paulson@14267: done paulson@14267: paulson@14267: lemma div_le_dividend [simp]: "m div n \ (m::nat)" paulson@14267: apply (case_tac "n=0", simp) paulson@14267: apply (subgoal_tac "m div n \ m div 1", simp) paulson@14267: apply (rule div_le_mono2) paulson@14267: apply (simp_all (no_asm_simp)) paulson@14267: done paulson@14267: wenzelm@22718: (* Similar for "less than" *) huffman@47138: lemma div_less_dividend [simp]: huffman@47138: "\(1::nat) < n; 0 < m\ \ m div n < m" huffman@47138: apply (induct m rule: nat_less_induct) paulson@14267: apply (rename_tac "m") paulson@14267: apply (case_tac "mA fact for the mutilated chess board\ paulson@14267: lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))" paulson@14267: apply (case_tac "n=0", simp) paulson@15251: apply (induct "m" rule: nat_less_induct) paulson@14267: apply (case_tac "Suc (na) Suc(na) *) paulson@16796: apply (simp add: linorder_not_less le_Suc_eq mod_geq) nipkow@15439: apply (auto simp add: Suc_diff_le le_mod_geq) paulson@14267: done paulson@14267: paulson@14267: lemma mod_eq_0_iff: "(m mod d = 0) = (\q::nat. m = d*q)" nipkow@29667: by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def) paulson@17084: wenzelm@22718: lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1] paulson@14267: paulson@14267: (*Loses information, namely we also have rq. m = r + q * d" haftmann@57514: proof - haftmann@57514: from mod_div_equality obtain q where "q * d + m mod d = m" by blast haftmann@57514: with assms have "m = r + q * d" by simp haftmann@57514: then show ?thesis .. haftmann@57514: qed paulson@14267: nipkow@13152: lemma split_div: nipkow@13189: "P(n div k :: nat) = nipkow@13189: ((k = 0 \ P 0) \ (k \ 0 \ (!i. !j P i)))" nipkow@13189: (is "?P = ?Q" is "_ = (_ \ (_ \ ?R))") nipkow@13189: proof nipkow@13189: assume P: ?P nipkow@13189: show ?Q nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with P show ?Q by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: thus ?Q nipkow@13189: proof (simp, intro allI impI) nipkow@13189: fix i j nipkow@13189: assume n: "n = k*i + j" and j: "j < k" nipkow@13189: show "P i" nipkow@13189: proof (cases) wenzelm@22718: assume "i = 0" wenzelm@22718: with n j P show "P i" by simp nipkow@13189: next wenzelm@22718: assume "i \ 0" haftmann@57514: with not0 n j P show "P i" by(simp add:ac_simps) nipkow@13189: qed nipkow@13189: qed nipkow@13189: qed nipkow@13189: next nipkow@13189: assume Q: ?Q nipkow@13189: show ?P nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with Q show ?P by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: with Q have R: ?R by simp nipkow@13189: from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] nipkow@13517: show ?P by simp nipkow@13189: qed nipkow@13189: qed nipkow@13189: berghofe@13882: lemma split_div_lemma: haftmann@26100: assumes "0 < n" wenzelm@61076: shows "n * q \ m \ m < n * Suc q \ q = ((m::nat) div n)" (is "?lhs \ ?rhs") haftmann@26100: proof haftmann@26100: assume ?rhs haftmann@26100: with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp haftmann@26100: then have A: "n * q \ m" by simp haftmann@26100: have "n - (m mod n) > 0" using mod_less_divisor assms by auto haftmann@26100: then have "m < m + (n - (m mod n))" by simp haftmann@26100: then have "m < n + (m - (m mod n))" by simp haftmann@26100: with nq have "m < n + n * q" by simp haftmann@26100: then have B: "m < n * Suc q" by simp haftmann@26100: from A B show ?lhs .. haftmann@26100: next haftmann@26100: assume P: ?lhs haftmann@33340: then have "divmod_nat_rel m n (q, m - n * q)" haftmann@57514: unfolding divmod_nat_rel_def by (auto simp add: ac_simps) haftmann@61433: then have "m div n = q" haftmann@61433: by (rule div_nat_unique) haftmann@30923: then show ?rhs by simp haftmann@26100: qed berghofe@13882: berghofe@13882: theorem split_div': berghofe@13882: "P ((m::nat) div n) = ((n = 0 \ P 0) \ paulson@14267: (\q. (n * q \ m \ m < n * (Suc q)) \ P q))" haftmann@61433: apply (cases "0 < n") berghofe@13882: apply (simp only: add: split_div_lemma) haftmann@27651: apply simp_all berghofe@13882: done berghofe@13882: nipkow@13189: lemma split_mod: nipkow@13189: "P(n mod k :: nat) = nipkow@13189: ((k = 0 \ P n) \ (k \ 0 \ (!i. !j P j)))" nipkow@13189: (is "?P = ?Q" is "_ = (_ \ (_ \ ?R))") nipkow@13189: proof nipkow@13189: assume P: ?P nipkow@13189: show ?Q nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with P show ?Q by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: thus ?Q nipkow@13189: proof (simp, intro allI impI) nipkow@13189: fix i j nipkow@13189: assume "n = k*i + j" "j < k" haftmann@58786: thus "P j" using not0 P by (simp add: ac_simps) nipkow@13189: qed nipkow@13189: qed nipkow@13189: next nipkow@13189: assume Q: ?Q nipkow@13189: show ?P nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with Q show ?P by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: with Q have R: ?R by simp nipkow@13189: from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] nipkow@13517: show ?P by simp nipkow@13189: qed nipkow@13189: qed nipkow@13189: haftmann@60868: theorem mod_div_equality' [nitpick_unfold]: "(m::nat) mod n = m - (m div n) * n" huffman@47138: using mod_div_equality [of m n] by arith huffman@47138: huffman@47138: lemma div_mod_equality': "(m::nat) div n * n = m - m mod n" huffman@47138: using mod_div_equality [of m n] by arith huffman@47138: (* FIXME: very similar to mult_div_cancel *) haftmann@22800: noschinl@52398: lemma div_eq_dividend_iff: "a \ 0 \ (a :: nat) div b = a \ b = 1" noschinl@52398: apply rule noschinl@52398: apply (cases "b = 0") noschinl@52398: apply simp_all noschinl@52398: apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3) noschinl@52398: done noschinl@52398: haftmann@22800: wenzelm@60758: subsubsection \An ``induction'' law for modulus arithmetic.\ paulson@14640: paulson@14640: lemma mod_induct_0: paulson@14640: assumes step: "\i P ((Suc i) mod p)" paulson@14640: and base: "P i" and i: "i(P 0)" paulson@14640: from i have p: "0k. 0 \ P (p-k)" (is "\k. ?A k") paulson@14640: proof paulson@14640: fix k paulson@14640: show "?A k" paulson@14640: proof (induct k) wenzelm@61799: show "?A 0" by simp \ "by contradiction" paulson@14640: next paulson@14640: fix n paulson@14640: assume ih: "?A n" paulson@14640: show "?A (Suc n)" paulson@14640: proof (clarsimp) wenzelm@22718: assume y: "P (p - Suc n)" wenzelm@22718: have n: "Suc n < p" wenzelm@22718: proof (rule ccontr) wenzelm@22718: assume "\(Suc n < p)" wenzelm@22718: hence "p - Suc n = 0" wenzelm@22718: by simp wenzelm@22718: with y contra show "False" wenzelm@22718: by simp wenzelm@22718: qed wenzelm@22718: hence n2: "Suc (p - Suc n) = p-n" by arith wenzelm@22718: from p have "p - Suc n < p" by arith wenzelm@22718: with y step have z: "P ((Suc (p - Suc n)) mod p)" wenzelm@22718: by blast wenzelm@22718: show "False" wenzelm@22718: proof (cases "n=0") wenzelm@22718: case True wenzelm@22718: with z n2 contra show ?thesis by simp wenzelm@22718: next wenzelm@22718: case False wenzelm@22718: with p have "p-n < p" by arith wenzelm@22718: with z n2 False ih show ?thesis by simp wenzelm@22718: qed paulson@14640: qed paulson@14640: qed paulson@14640: qed paulson@14640: moreover paulson@14640: from i obtain k where "0 i+k=p" paulson@14640: by (blast dest: less_imp_add_positive) paulson@14640: hence "0 i=p-k" by auto paulson@14640: moreover paulson@14640: note base paulson@14640: ultimately paulson@14640: show "False" by blast paulson@14640: qed paulson@14640: paulson@14640: lemma mod_induct: paulson@14640: assumes step: "\i P ((Suc i) mod p)" paulson@14640: and base: "P i" and i: "ij P j" (is "?A j") paulson@14640: proof (induct j) paulson@14640: from step base i show "?A 0" wenzelm@22718: by (auto elim: mod_induct_0) paulson@14640: next paulson@14640: fix k paulson@14640: assume ih: "?A k" paulson@14640: show "?A (Suc k)" paulson@14640: proof wenzelm@22718: assume suc: "Suc k < p" wenzelm@22718: hence k: "k m mod 2 = 1" haftmann@33296: proof - boehmes@35815: { fix n :: nat have "(n::nat) < 2 \ n = 0 \ n = 1" by (cases n) simp_all } haftmann@33296: moreover have "m mod 2 < 2" by simp haftmann@33296: ultimately have "m mod 2 = 0 \ m mod 2 = 1" . haftmann@33296: then show ?thesis by auto haftmann@33296: qed haftmann@33296: wenzelm@60758: text\These lemmas collapse some needless occurrences of Suc: haftmann@33296: at least three Sucs, since two and fewer are rewritten back to Suc again! wenzelm@60758: We already have some rules to simplify operands smaller than 3.\ haftmann@33296: haftmann@33296: lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: haftmann@33296: lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: haftmann@33296: lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: haftmann@33296: lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: huffman@47108: lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v huffman@47108: lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v haftmann@33296: lp15@60562: lemma Suc_times_mod_eq: "1 Suc (k * m) mod k = 1" haftmann@33361: apply (induct "m") haftmann@33361: apply (simp_all add: mod_Suc) haftmann@33361: done haftmann@33361: huffman@47108: declare Suc_times_mod_eq [of "numeral w", simp] for w haftmann@33361: haftmann@60868: lemma mod_greater_zero_iff_not_dvd: haftmann@60868: fixes m n :: nat haftmann@60868: shows "m mod n > 0 \ \ n dvd m" haftmann@60868: by (simp add: dvd_eq_mod_eq_0) haftmann@60868: huffman@47138: lemma Suc_div_le_mono [simp]: "n div k \ (Suc n) div k" huffman@47138: by (simp add: div_le_mono) haftmann@33361: haftmann@33361: lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2" haftmann@33361: by (cases n) simp_all haftmann@33361: boehmes@35815: lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2" boehmes@35815: proof - boehmes@35815: from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all lp15@60562: from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp boehmes@35815: qed haftmann@33361: haftmann@33361: lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n" haftmann@33361: proof - haftmann@33361: have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp lp15@60562: also have "... = Suc m mod n" by (rule mod_mult_self3) haftmann@33361: finally show ?thesis . haftmann@33361: qed haftmann@33361: haftmann@33361: lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n" lp15@60562: apply (subst mod_Suc [of m]) lp15@60562: apply (subst mod_Suc [of "m mod n"], simp) haftmann@33361: done haftmann@33361: huffman@47108: lemma mod_2_not_eq_zero_eq_one_nat: huffman@47108: fixes n :: nat huffman@47108: shows "n mod 2 \ 0 \ n mod 2 = 1" haftmann@58786: by (fact not_mod_2_eq_0_eq_1) lp15@60562: haftmann@58778: lemma even_Suc_div_two [simp]: haftmann@58778: "even n \ Suc n div 2 = n div 2" haftmann@58778: using even_succ_div_two [of n] by simp lp15@60562: haftmann@58778: lemma odd_Suc_div_two [simp]: haftmann@58778: "odd n \ Suc n div 2 = Suc (n div 2)" haftmann@58778: using odd_succ_div_two [of n] by simp haftmann@58778: haftmann@58834: lemma odd_two_times_div_two_nat [simp]: haftmann@60352: assumes "odd n" haftmann@60352: shows "2 * (n div 2) = n - (1 :: nat)" haftmann@60352: proof - haftmann@60352: from assms have "2 * (n div 2) + 1 = n" haftmann@60352: by (rule odd_two_times_div_two_succ) haftmann@60352: then have "Suc (2 * (n div 2)) - 1 = n - 1" haftmann@60352: by simp haftmann@60352: then show ?thesis haftmann@60352: by simp haftmann@60352: qed haftmann@58778: haftmann@58778: lemma parity_induct [case_names zero even odd]: haftmann@58778: assumes zero: "P 0" haftmann@58778: assumes even: "\n. P n \ P (2 * n)" haftmann@58778: assumes odd: "\n. P n \ P (Suc (2 * n))" haftmann@58778: shows "P n" haftmann@58778: proof (induct n rule: less_induct) haftmann@58778: case (less n) haftmann@58778: show "P n" haftmann@58778: proof (cases "n = 0") haftmann@58778: case True with zero show ?thesis by simp haftmann@58778: next haftmann@58778: case False haftmann@58778: with less have hyp: "P (n div 2)" by simp haftmann@58778: show ?thesis haftmann@58778: proof (cases "even n") haftmann@58778: case True haftmann@58778: with hyp even [of "n div 2"] show ?thesis haftmann@58834: by simp haftmann@58778: next haftmann@58778: case False lp15@60562: with hyp odd [of "n div 2"] show ?thesis haftmann@58834: by simp haftmann@58778: qed haftmann@58778: qed haftmann@58778: qed haftmann@58778: haftmann@60868: lemma Suc_0_div_numeral [simp]: haftmann@60868: fixes k l :: num haftmann@60868: shows "Suc 0 div numeral k = fst (divmod Num.One k)" haftmann@60868: by (simp_all add: fst_divmod) haftmann@60868: haftmann@60868: lemma Suc_0_mod_numeral [simp]: haftmann@60868: fixes k l :: num haftmann@60868: shows "Suc 0 mod numeral k = snd (divmod Num.One k)" haftmann@60868: by (simp_all add: snd_divmod) haftmann@60868: haftmann@33361: wenzelm@60758: subsection \Division on @{typ int}\ haftmann@33361: wenzelm@61799: definition divmod_int_rel :: "int \ int \ int \ int \ bool" \ \definition of quotient and remainder\ haftmann@60868: where "divmod_int_rel a b = (\(q, r). a = b * q + r \ huffman@47139: (if 0 < b then 0 \ r \ r < b else if b < 0 then b < r \ r \ 0 else q = 0))" haftmann@33361: haftmann@33361: lemma unique_quotient_lemma: haftmann@60868: "b * q' + r' \ b * q + r \ 0 \ r' \ r' < b \ r < b \ q' \ (q::int)" haftmann@33361: apply (subgoal_tac "r' + b * (q'-q) \ r") haftmann@33361: prefer 2 apply (simp add: right_diff_distrib) haftmann@33361: apply (subgoal_tac "0 < b * (1 + q - q') ") haftmann@33361: apply (erule_tac [2] order_le_less_trans) webertj@49962: prefer 2 apply (simp add: right_diff_distrib distrib_left) haftmann@33361: apply (subgoal_tac "b * q' < b * (1 + q) ") webertj@49962: prefer 2 apply (simp add: right_diff_distrib distrib_left) haftmann@33361: apply (simp add: mult_less_cancel_left) haftmann@33361: done haftmann@33361: haftmann@33361: lemma unique_quotient_lemma_neg: haftmann@60868: "b * q' + r' \ b*q + r \ r \ 0 \ b < r \ b < r' \ q \ (q'::int)" haftmann@60868: by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma) auto haftmann@33361: haftmann@33361: lemma unique_quotient: haftmann@60868: "divmod_int_rel a b (q, r) \ divmod_int_rel a b (q', r') \ q = q'" haftmann@33361: apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm) haftmann@33361: apply (blast intro: order_antisym lp15@60562: dest: order_eq_refl [THEN unique_quotient_lemma] haftmann@33361: order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ haftmann@33361: done haftmann@33361: haftmann@33361: lemma unique_remainder: haftmann@60868: "divmod_int_rel a b (q, r) \ divmod_int_rel a b (q', r') \ r = r'" haftmann@33361: apply (subgoal_tac "q = q'") haftmann@33361: apply (simp add: divmod_int_rel_def) haftmann@33361: apply (blast intro: unique_quotient) haftmann@33361: done haftmann@33361: haftmann@60868: instantiation int :: Divides.div haftmann@60868: begin haftmann@60868: haftmann@60868: definition divide_int haftmann@60868: where "k div l = (if l = 0 \ k = 0 then 0 haftmann@60868: else if k > 0 \ l > 0 \ k < 0 \ l < 0 haftmann@60868: then int (nat \k\ div nat \l\) haftmann@60868: else haftmann@60868: if l dvd k then - int (nat \k\ div nat \l\) haftmann@60868: else - int (Suc (nat \k\ div nat \l\)))" haftmann@60868: haftmann@60868: definition mod_int haftmann@60868: where "k mod l = (if l = 0 then k else if l dvd k then 0 haftmann@60868: else if k > 0 \ l > 0 \ k < 0 \ l < 0 haftmann@60868: then sgn l * int (nat \k\ mod nat \l\) haftmann@60868: else sgn l * (\l\ - int (nat \k\ mod nat \l\)))" haftmann@60868: haftmann@60868: instance .. haftmann@60868: haftmann@60868: end haftmann@60868: haftmann@60868: lemma divmod_int_rel: haftmann@60868: "divmod_int_rel k l (k div l, k mod l)" lp15@61649: unfolding divmod_int_rel_def divide_int_def mod_int_def haftmann@60868: apply (cases k rule: int_cases3) lp15@61649: apply (simp add: mod_greater_zero_iff_not_dvd not_le algebra_simps) haftmann@60868: apply (cases l rule: int_cases3) lp15@61649: apply (simp add: mod_greater_zero_iff_not_dvd not_le algebra_simps) lp15@61649: apply (simp_all del: of_nat_add of_nat_mult add: mod_greater_zero_iff_not_dvd not_le algebra_simps int_dvd_iff of_nat_add [symmetric] of_nat_mult [symmetric]) haftmann@60868: apply (cases l rule: int_cases3) lp15@61649: apply (simp_all del: of_nat_add of_nat_mult add: not_le algebra_simps int_dvd_iff of_nat_add [symmetric] of_nat_mult [symmetric]) wenzelm@41550: done haftmann@33361: haftmann@60868: instantiation int :: ring_div haftmann@60868: begin haftmann@60868: haftmann@60868: subsubsection \Uniqueness and Monotonicity of Quotients and Remainders\ haftmann@33361: huffman@47141: lemma divmod_int_unique: haftmann@60868: assumes "divmod_int_rel k l (q, r)" haftmann@60868: shows div_int_unique: "k div l = q" and mod_int_unique: "k mod l = r" haftmann@60868: using assms divmod_int_rel [of k l] haftmann@60868: using unique_quotient [of k l] unique_remainder [of k l] haftmann@60868: by auto haftmann@60868: haftmann@60429: instance huffman@47141: proof huffman@47141: fix a b :: int huffman@47141: show "a div b * b + a mod b = a" haftmann@60868: using divmod_int_rel [of a b] haftmann@57512: unfolding divmod_int_rel_def by (simp add: mult.commute) huffman@47141: next huffman@47141: fix a b c :: int huffman@47141: assume "b \ 0" huffman@47141: hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)" haftmann@60868: using divmod_int_rel [of a b] huffman@47141: unfolding divmod_int_rel_def by (auto simp: algebra_simps) huffman@47141: thus "(a + c * b) div b = c + a div b" huffman@47141: by (rule div_int_unique) huffman@47141: next huffman@47141: fix a b c :: int huffman@47141: assume "c \ 0" huffman@47141: hence "\q r. divmod_int_rel a b (q, r) huffman@47141: \ divmod_int_rel (c * a) (c * b) (q, c * r)" huffman@47141: unfolding divmod_int_rel_def huffman@47141: by - (rule linorder_cases [of 0 b], auto simp: algebra_simps huffman@47141: mult_less_0_iff zero_less_mult_iff mult_strict_right_mono huffman@47141: mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff) huffman@47141: hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))" haftmann@60868: using divmod_int_rel [of a b] . huffman@47141: thus "(c * a) div (c * b) = a div b" huffman@47141: by (rule div_int_unique) huffman@47141: next huffman@47141: fix a :: int show "a div 0 = 0" huffman@47141: by (rule div_int_unique, simp add: divmod_int_rel_def) huffman@47141: next huffman@47141: fix a :: int show "0 div a = 0" huffman@47141: by (rule div_int_unique, auto simp add: divmod_int_rel_def) huffman@47141: qed huffman@47141: haftmann@60429: end haftmann@60429: haftmann@60517: lemma is_unit_int: haftmann@60517: "is_unit (k::int) \ k = 1 \ k = - 1" haftmann@60517: by auto haftmann@60517: haftmann@60685: instantiation int :: normalization_semidom haftmann@60685: begin haftmann@60685: haftmann@60685: definition normalize_int haftmann@60685: where [simp]: "normalize = (abs :: int \ int)" haftmann@60685: haftmann@60685: definition unit_factor_int haftmann@60685: where [simp]: "unit_factor = (sgn :: int \ int)" haftmann@60685: haftmann@60685: instance haftmann@60685: proof haftmann@60685: fix k :: int haftmann@60685: assume "k \ 0" haftmann@60685: then have "\sgn k\ = 1" haftmann@60685: by (cases "0::int" k rule: linorder_cases) simp_all haftmann@60685: then show "is_unit (unit_factor k)" haftmann@60685: by simp haftmann@60685: qed (simp_all add: sgn_times mult_sgn_abs) haftmann@60685: haftmann@60685: end haftmann@60685: wenzelm@60758: text\Basic laws about division and remainder\ haftmann@33361: haftmann@33361: lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)" huffman@47141: by (fact mod_div_equality2 [symmetric]) haftmann@33361: haftmann@60868: lemma zdiv_int: "int (a div b) = int a div int b" haftmann@60868: by (simp add: divide_int_def) haftmann@60868: haftmann@60868: lemma zmod_int: "int (a mod b) = int a mod int b" haftmann@60868: by (simp add: mod_int_def int_dvd_iff) haftmann@60868: wenzelm@60758: text \Tool setup\ wenzelm@60758: wenzelm@60758: ML \ wenzelm@43594: structure Cancel_Div_Mod_Int = Cancel_Div_Mod wenzelm@41550: ( haftmann@60352: val div_name = @{const_name Rings.divide}; haftmann@33361: val mod_name = @{const_name mod}; haftmann@33361: val mk_binop = HOLogic.mk_binop; haftmann@33361: val mk_sum = Arith_Data.mk_sum HOLogic.intT; haftmann@33361: val dest_sum = Arith_Data.dest_sum; haftmann@33361: huffman@47165: val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]; haftmann@33361: lp15@60562: val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac haftmann@59556: (@{thm diff_conv_add_uminus} :: @{thms add_0_left add_0_right} @ @{thms ac_simps})) wenzelm@41550: ) wenzelm@60758: \ wenzelm@60758: wenzelm@60758: simproc_setup cancel_div_mod_int ("(k::int) + l") = \K Cancel_Div_Mod_Int.proc\ wenzelm@43594: huffman@47141: lemma pos_mod_conj: "(0::int) < b \ 0 \ a mod b \ a mod b < b" haftmann@60868: using divmod_int_rel [of a b] huffman@47141: by (auto simp add: divmod_int_rel_def prod_eq_iff) haftmann@33361: wenzelm@45607: lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1] wenzelm@45607: and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2] haftmann@33361: huffman@47141: lemma neg_mod_conj: "b < (0::int) \ a mod b \ 0 \ b < a mod b" haftmann@60868: using divmod_int_rel [of a b] huffman@47141: by (auto simp add: divmod_int_rel_def prod_eq_iff) haftmann@33361: wenzelm@45607: lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1] wenzelm@45607: and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2] haftmann@33361: haftmann@33361: wenzelm@60758: subsubsection \General Properties of div and mod\ haftmann@33361: haftmann@33361: lemma div_pos_pos_trivial: "[| (0::int) \ a; a < b |] ==> a div b = 0" huffman@47140: apply (rule div_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma div_neg_neg_trivial: "[| a \ (0::int); b < a |] ==> a div b = 0" huffman@47140: apply (rule div_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \ 0 |] ==> a div b = -1" huffman@47140: apply (rule div_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: (*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*) haftmann@33361: haftmann@33361: lemma mod_pos_pos_trivial: "[| (0::int) \ a; a < b |] ==> a mod b = a" huffman@47140: apply (rule_tac q = 0 in mod_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma mod_neg_neg_trivial: "[| a \ (0::int); b < a |] ==> a mod b = a" huffman@47140: apply (rule_tac q = 0 in mod_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \ 0 |] ==> a mod b = a+b" huffman@47140: apply (rule_tac q = "-1" in mod_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: wenzelm@61799: text\There is no \mod_neg_pos_trivial\.\ wenzelm@60758: wenzelm@60758: wenzelm@60758: subsubsection \Laws for div and mod with Unary Minus\ haftmann@33361: haftmann@33361: lemma zminus1_lemma: huffman@47139: "divmod_int_rel a b (q, r) ==> b \ 0 lp15@60562: ==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1, haftmann@33361: if r=0 then 0 else b-r)" haftmann@33361: by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib) haftmann@33361: haftmann@33361: haftmann@33361: lemma zdiv_zminus1_eq_if: lp15@60562: "b \ (0::int) lp15@60562: ==> (-a) div b = haftmann@33361: (if a mod b = 0 then - (a div b) else - (a div b) - 1)" haftmann@60868: by (blast intro: divmod_int_rel [THEN zminus1_lemma, THEN div_int_unique]) haftmann@33361: haftmann@33361: lemma zmod_zminus1_eq_if: haftmann@33361: "(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))" haftmann@33361: apply (case_tac "b = 0", simp) haftmann@60868: apply (blast intro: divmod_int_rel [THEN zminus1_lemma, THEN mod_int_unique]) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_zminus1_not_zero: haftmann@33361: fixes k l :: int haftmann@33361: shows "- k mod l \ 0 \ k mod l \ 0" haftmann@33361: unfolding zmod_zminus1_eq_if by auto haftmann@33361: haftmann@33361: lemma zdiv_zminus2_eq_if: lp15@60562: "b \ (0::int) lp15@60562: ==> a div (-b) = haftmann@33361: (if a mod b = 0 then - (a div b) else - (a div b) - 1)" huffman@47159: by (simp add: zdiv_zminus1_eq_if div_minus_right) haftmann@33361: haftmann@33361: lemma zmod_zminus2_eq_if: haftmann@33361: "a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)" huffman@47159: by (simp add: zmod_zminus1_eq_if mod_minus_right) haftmann@33361: haftmann@33361: lemma zmod_zminus2_not_zero: haftmann@33361: fixes k l :: int haftmann@33361: shows "k mod - l \ 0 \ k mod l \ 0" lp15@60562: unfolding zmod_zminus2_eq_if by auto haftmann@33361: haftmann@33361: wenzelm@60758: subsubsection \Monotonicity in the First Argument (Dividend)\ haftmann@33361: haftmann@33361: lemma zdiv_mono1: "[| a \ a'; 0 < (b::int) |] ==> a div b \ a' div b" haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a' and b = b in zmod_zdiv_equality) haftmann@33361: apply (rule unique_quotient_lemma) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono1_neg: "[| a \ a'; (b::int) < 0 |] ==> a' div b \ a div b" haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a' and b = b in zmod_zdiv_equality) haftmann@33361: apply (rule unique_quotient_lemma_neg) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: wenzelm@60758: subsubsection \Monotonicity in the Second Argument (Divisor)\ haftmann@33361: haftmann@33361: lemma q_pos_lemma: haftmann@33361: "[| 0 \ b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \ (q'::int)" haftmann@33361: apply (subgoal_tac "0 < b'* (q' + 1) ") haftmann@33361: apply (simp add: zero_less_mult_iff) webertj@49962: apply (simp add: distrib_left) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2_lemma: lp15@60562: "[| b*q + r = b'*q' + r'; 0 \ b'*q' + r'; lp15@60562: r' < b'; 0 \ r; 0 < b'; b' \ b |] haftmann@33361: ==> q \ (q'::int)" lp15@60562: apply (frule q_pos_lemma, assumption+) haftmann@33361: apply (subgoal_tac "b*q < b* (q' + 1) ") haftmann@33361: apply (simp add: mult_less_cancel_left) haftmann@33361: apply (subgoal_tac "b*q = r' - r + b'*q'") haftmann@33361: prefer 2 apply simp webertj@49962: apply (simp (no_asm_simp) add: distrib_left) haftmann@57512: apply (subst add.commute, rule add_less_le_mono, arith) haftmann@33361: apply (rule mult_right_mono, auto) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2: haftmann@33361: "[| (0::int) \ a; 0 < b'; b' \ b |] ==> a div b \ a div b'" haftmann@33361: apply (subgoal_tac "b \ 0") haftmann@33361: prefer 2 apply arith haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a and b = b' in zmod_zdiv_equality) haftmann@33361: apply (rule zdiv_mono2_lemma) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: lemma q_neg_lemma: haftmann@33361: "[| b'*q' + r' < 0; 0 \ r'; 0 < b' |] ==> q' \ (0::int)" haftmann@33361: apply (subgoal_tac "b'*q' < 0") haftmann@33361: apply (simp add: mult_less_0_iff, arith) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2_neg_lemma: lp15@60562: "[| b*q + r = b'*q' + r'; b'*q' + r' < 0; lp15@60562: r < b; 0 \ r'; 0 < b'; b' \ b |] haftmann@33361: ==> q' \ (q::int)" lp15@60562: apply (frule q_neg_lemma, assumption+) haftmann@33361: apply (subgoal_tac "b*q' < b* (q + 1) ") haftmann@33361: apply (simp add: mult_less_cancel_left) webertj@49962: apply (simp add: distrib_left) haftmann@33361: apply (subgoal_tac "b*q' \ b'*q'") haftmann@33361: prefer 2 apply (simp add: mult_right_mono_neg, arith) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2_neg: haftmann@33361: "[| a < (0::int); 0 < b'; b' \ b |] ==> a div b' \ a div b" haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a and b = b' in zmod_zdiv_equality) haftmann@33361: apply (rule zdiv_mono2_neg_lemma) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: wenzelm@60758: subsubsection \More Algebraic Laws for div and mod\ wenzelm@60758: wenzelm@60758: text\proving (a*b) div c = a * (b div c) + a * (b mod c)\ haftmann@33361: haftmann@33361: lemma zmult1_lemma: lp15@60562: "[| divmod_int_rel b c (q, r) |] haftmann@33361: ==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)" haftmann@57514: by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left ac_simps) haftmann@33361: haftmann@33361: lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)" haftmann@33361: apply (case_tac "c = 0", simp) haftmann@60868: apply (blast intro: divmod_int_rel [THEN zmult1_lemma, THEN div_int_unique]) haftmann@33361: done haftmann@33361: wenzelm@60758: text\proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c)\ haftmann@33361: haftmann@33361: lemma zadd1_lemma: lp15@60562: "[| divmod_int_rel a c (aq, ar); divmod_int_rel b c (bq, br) |] haftmann@33361: ==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)" webertj@49962: by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left) haftmann@33361: haftmann@33361: (*NOT suitable for rewriting: the RHS has an instance of the LHS*) haftmann@33361: lemma zdiv_zadd1_eq: haftmann@33361: "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)" haftmann@33361: apply (case_tac "c = 0", simp) haftmann@60868: apply (blast intro: zadd1_lemma [OF divmod_int_rel divmod_int_rel] div_int_unique) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)" haftmann@33361: by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def) haftmann@33361: haftmann@33361: (* REVISIT: should this be generalized to all semiring_div types? *) haftmann@33361: lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1] haftmann@33361: haftmann@60868: lemma zmod_zdiv_equality' [nitpick_unfold]: wenzelm@61076: "(m::int) mod n = m - (m div n) * n" huffman@47141: using mod_div_equality [of m n] by arith huffman@47108: haftmann@33361: wenzelm@60758: subsubsection \Proving @{term "a div (b * c) = (a div b) div c"}\ haftmann@33361: haftmann@33361: (*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but haftmann@33361: 7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems haftmann@33361: to cause particular problems.*) haftmann@33361: wenzelm@60758: text\first, four lemmas to bound the remainder for the cases b<0 and b>0\ haftmann@33361: blanchet@55085: lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \ 0 |] ==> b * c < b * (q mod c) + r" haftmann@33361: apply (subgoal_tac "b * (c - q mod c) < r * 1") haftmann@33361: apply (simp add: algebra_simps) haftmann@33361: apply (rule order_le_less_trans) haftmann@33361: apply (erule_tac [2] mult_strict_right_mono) haftmann@33361: apply (rule mult_left_mono_neg) huffman@35216: using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps) haftmann@33361: apply (simp) haftmann@33361: apply (simp) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmult2_lemma_aux2: haftmann@33361: "[| (0::int) < c; b < r; r \ 0 |] ==> b * (q mod c) + r \ 0" haftmann@33361: apply (subgoal_tac "b * (q mod c) \ 0") haftmann@33361: apply arith haftmann@33361: apply (simp add: mult_le_0_iff) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \ r; r < b |] ==> 0 \ b * (q mod c) + r" haftmann@33361: apply (subgoal_tac "0 \ b * (q mod c) ") haftmann@33361: apply arith haftmann@33361: apply (simp add: zero_le_mult_iff) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \ r; r < b |] ==> b * (q mod c) + r < b * c" haftmann@33361: apply (subgoal_tac "r * 1 < b * (c - q mod c) ") haftmann@33361: apply (simp add: right_diff_distrib) haftmann@33361: apply (rule order_less_le_trans) haftmann@33361: apply (erule mult_strict_right_mono) haftmann@33361: apply (rule_tac [2] mult_left_mono) haftmann@33361: apply simp huffman@35216: using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps) haftmann@33361: apply simp haftmann@33361: done haftmann@33361: lp15@60562: lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |] haftmann@33361: ==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)" haftmann@57514: by (auto simp add: mult.assoc divmod_int_rel_def linorder_neq_iff lp15@60562: zero_less_mult_iff distrib_left [symmetric] huffman@47139: zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm) haftmann@33361: haftmann@53068: lemma zdiv_zmult2_eq: haftmann@53068: fixes a b c :: int haftmann@53068: shows "0 \ c \ a div (b * c) = (a div b) div c" haftmann@33361: apply (case_tac "b = 0", simp) haftmann@60868: apply (force simp add: le_less divmod_int_rel [THEN zmult2_lemma, THEN div_int_unique]) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_zmult2_eq: haftmann@53068: fixes a b c :: int haftmann@53068: shows "0 \ c \ a mod (b * c) = b * (a div b mod c) + a mod b" haftmann@33361: apply (case_tac "b = 0", simp) haftmann@60868: apply (force simp add: le_less divmod_int_rel [THEN zmult2_lemma, THEN mod_int_unique]) haftmann@33361: done haftmann@33361: huffman@47108: lemma div_pos_geq: huffman@47108: fixes k l :: int huffman@47108: assumes "0 < l" and "l \ k" huffman@47108: shows "k div l = (k - l) div l + 1" huffman@47108: proof - huffman@47108: have "k = (k - l) + l" by simp huffman@47108: then obtain j where k: "k = j + l" .. huffman@47108: with assms show ?thesis by simp huffman@47108: qed huffman@47108: huffman@47108: lemma mod_pos_geq: huffman@47108: fixes k l :: int huffman@47108: assumes "0 < l" and "l \ k" huffman@47108: shows "k mod l = (k - l) mod l" huffman@47108: proof - huffman@47108: have "k = (k - l) + l" by simp huffman@47108: then obtain j where k: "k = j + l" .. huffman@47108: with assms show ?thesis by simp huffman@47108: qed huffman@47108: haftmann@33361: wenzelm@60758: subsubsection \Splitting Rules for div and mod\ wenzelm@60758: wenzelm@60758: text\The proofs of the two lemmas below are essentially identical\ haftmann@33361: haftmann@33361: lemma split_pos_lemma: lp15@60562: "0 haftmann@33361: P(n div k :: int)(n mod k) = (\i j. 0\j & j P i j)" haftmann@33361: apply (rule iffI, clarify) lp15@60562: apply (erule_tac P="P x y" for x y in rev_mp) lp15@60562: apply (subst mod_add_eq) lp15@60562: apply (subst zdiv_zadd1_eq) lp15@60562: apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial) wenzelm@60758: txt\converse direction\ lp15@60562: apply (drule_tac x = "n div k" in spec) haftmann@33361: apply (drule_tac x = "n mod k" in spec, simp) haftmann@33361: done haftmann@33361: haftmann@33361: lemma split_neg_lemma: haftmann@33361: "k<0 ==> haftmann@33361: P(n div k :: int)(n mod k) = (\i j. k0 & n = k*i + j --> P i j)" haftmann@33361: apply (rule iffI, clarify) lp15@60562: apply (erule_tac P="P x y" for x y in rev_mp) lp15@60562: apply (subst mod_add_eq) lp15@60562: apply (subst zdiv_zadd1_eq) lp15@60562: apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial) wenzelm@60758: txt\converse direction\ lp15@60562: apply (drule_tac x = "n div k" in spec) haftmann@33361: apply (drule_tac x = "n mod k" in spec, simp) haftmann@33361: done haftmann@33361: haftmann@33361: lemma split_zdiv: haftmann@33361: "P(n div k :: int) = lp15@60562: ((k = 0 --> P 0) & lp15@60562: (0 (\i j. 0\j & j P i)) & haftmann@33361: (k<0 --> (\i j. k0 & n = k*i + j --> P i)))" haftmann@33361: apply (case_tac "k=0", simp) haftmann@33361: apply (simp only: linorder_neq_iff) lp15@60562: apply (erule disjE) lp15@60562: apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] haftmann@33361: split_neg_lemma [of concl: "%x y. P x"]) haftmann@33361: done haftmann@33361: haftmann@33361: lemma split_zmod: haftmann@33361: "P(n mod k :: int) = lp15@60562: ((k = 0 --> P n) & lp15@60562: (0 (\i j. 0\j & j P j)) & haftmann@33361: (k<0 --> (\i j. k0 & n = k*i + j --> P j)))" haftmann@33361: apply (case_tac "k=0", simp) haftmann@33361: apply (simp only: linorder_neq_iff) lp15@60562: apply (erule disjE) lp15@60562: apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] haftmann@33361: split_neg_lemma [of concl: "%x y. P y"]) haftmann@33361: done haftmann@33361: wenzelm@60758: text \Enable (lin)arith to deal with @{const divide} and @{const mod} webertj@33730: when these are applied to some constant that is of the form wenzelm@60758: @{term "numeral k"}:\ huffman@47108: declare split_zdiv [of _ _ "numeral k", arith_split] for k huffman@47108: declare split_zmod [of _ _ "numeral k", arith_split] for k haftmann@33361: haftmann@33361: wenzelm@61799: subsubsection \Computing \div\ and \mod\ with shifting\ huffman@47166: huffman@47166: lemma pos_divmod_int_rel_mult_2: huffman@47166: assumes "0 \ b" huffman@47166: assumes "divmod_int_rel a b (q, r)" huffman@47166: shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)" huffman@47166: using assms unfolding divmod_int_rel_def by auto huffman@47166: wenzelm@60758: declaration \K (Lin_Arith.add_simps @{thms uminus_numeral_One})\ haftmann@54489: huffman@47166: lemma neg_divmod_int_rel_mult_2: huffman@47166: assumes "b \ 0" huffman@47166: assumes "divmod_int_rel (a + 1) b (q, r)" huffman@47166: shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)" huffman@47166: using assms unfolding divmod_int_rel_def by auto haftmann@33361: wenzelm@60758: text\computing div by shifting\ haftmann@33361: haftmann@33361: lemma pos_zdiv_mult_2: "(0::int) \ a ==> (1 + 2*b) div (2*a) = b div a" haftmann@60868: using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel] huffman@47166: by (rule div_int_unique) haftmann@33361: lp15@60562: lemma neg_zdiv_mult_2: boehmes@35815: assumes A: "a \ (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a" haftmann@60868: using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel] huffman@47166: by (rule div_int_unique) haftmann@33361: huffman@47108: (* FIXME: add rules for negative numerals *) huffman@47108: lemma zdiv_numeral_Bit0 [simp]: huffman@47108: "numeral (Num.Bit0 v) div numeral (Num.Bit0 w) = huffman@47108: numeral v div (numeral w :: int)" huffman@47108: unfolding numeral.simps unfolding mult_2 [symmetric] huffman@47108: by (rule div_mult_mult1, simp) huffman@47108: huffman@47108: lemma zdiv_numeral_Bit1 [simp]: lp15@60562: "numeral (Num.Bit1 v) div numeral (Num.Bit0 w) = huffman@47108: (numeral v div (numeral w :: int))" huffman@47108: unfolding numeral.simps haftmann@57512: unfolding mult_2 [symmetric] add.commute [of _ 1] huffman@47108: by (rule pos_zdiv_mult_2, simp) haftmann@33361: haftmann@33361: lemma pos_zmod_mult_2: haftmann@33361: fixes a b :: int haftmann@33361: assumes "0 \ a" haftmann@33361: shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)" haftmann@60868: using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel] huffman@47166: by (rule mod_int_unique) haftmann@33361: haftmann@33361: lemma neg_zmod_mult_2: haftmann@33361: fixes a b :: int haftmann@33361: assumes "a \ 0" haftmann@33361: shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1" haftmann@60868: using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel] huffman@47166: by (rule mod_int_unique) haftmann@33361: huffman@47108: (* FIXME: add rules for negative numerals *) huffman@47108: lemma zmod_numeral_Bit0 [simp]: lp15@60562: "numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) = huffman@47108: (2::int) * (numeral v mod numeral w)" huffman@47108: unfolding numeral_Bit0 [of v] numeral_Bit0 [of w] huffman@47108: unfolding mult_2 [symmetric] by (rule mod_mult_mult1) huffman@47108: huffman@47108: lemma zmod_numeral_Bit1 [simp]: huffman@47108: "numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) = huffman@47108: 2 * (numeral v mod numeral w) + (1::int)" huffman@47108: unfolding numeral_Bit1 [of v] numeral_Bit0 [of w] haftmann@57512: unfolding mult_2 [symmetric] add.commute [of _ 1] huffman@47108: by (rule pos_zmod_mult_2, simp) haftmann@33361: nipkow@39489: lemma zdiv_eq_0_iff: nipkow@39489: "(i::int) div k = 0 \ k=0 \ 0\i \ i i\0 \ k ?R" by (rule split_zdiv[THEN iffD2]) simp wenzelm@60758: with \?L\ show ?R by blast nipkow@39489: next nipkow@39489: assume ?R thus ?L nipkow@39489: by(auto simp: div_pos_pos_trivial div_neg_neg_trivial) nipkow@39489: qed nipkow@39489: nipkow@39489: wenzelm@60758: subsubsection \Quotients of Signs\ haftmann@33361: haftmann@60868: lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1" haftmann@60868: by (simp add: divide_int_def) haftmann@60868: haftmann@60868: lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1" haftmann@60868: by (simp add: mod_int_def) haftmann@60868: haftmann@33361: lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0" haftmann@33361: apply (subgoal_tac "a div b \ -1", force) haftmann@33361: apply (rule order_trans) haftmann@33361: apply (rule_tac a' = "-1" in zdiv_mono1) haftmann@33361: apply (auto simp add: div_eq_minus1) haftmann@33361: done haftmann@33361: haftmann@33361: lemma div_nonneg_neg_le0: "[| (0::int) \ a; b < 0 |] ==> a div b \ 0" haftmann@33361: by (drule zdiv_mono1_neg, auto) haftmann@33361: haftmann@33361: lemma div_nonpos_pos_le0: "[| (a::int) \ 0; b > 0 |] ==> a div b \ 0" haftmann@33361: by (drule zdiv_mono1, auto) haftmann@33361: wenzelm@61799: text\Now for some equivalences of the form \a div b >=< 0 \ \\ wenzelm@61799: conditional upon the sign of \a\ or \b\. There are many more. wenzelm@60758: They should all be simp rules unless that causes too much search.\ nipkow@33804: haftmann@33361: lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \ a div b) = (0 \ a)" haftmann@33361: apply auto haftmann@33361: apply (drule_tac [2] zdiv_mono1) haftmann@33361: apply (auto simp add: linorder_neq_iff) haftmann@33361: apply (simp (no_asm_use) add: linorder_not_less [symmetric]) haftmann@33361: apply (blast intro: div_neg_pos_less0) haftmann@33361: done haftmann@33361: haftmann@60868: lemma pos_imp_zdiv_pos_iff: haftmann@60868: "0 0 < (i::int) div k \ k \ i" haftmann@60868: using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k] haftmann@60868: by arith haftmann@60868: haftmann@33361: lemma neg_imp_zdiv_nonneg_iff: nipkow@33804: "b < (0::int) ==> (0 \ a div b) = (a \ (0::int))" huffman@47159: apply (subst div_minus_minus [symmetric]) haftmann@33361: apply (subst pos_imp_zdiv_nonneg_iff, auto) haftmann@33361: done haftmann@33361: haftmann@33361: (*But not (a div b \ 0 iff a\0); consider a=1, b=2 when a div b = 0.*) haftmann@33361: lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)" haftmann@33361: by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff) haftmann@33361: haftmann@33361: (*Again the law fails for \: consider a = -1, b = -2 when a div b = 0*) haftmann@33361: lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)" haftmann@33361: by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff) haftmann@33361: nipkow@33804: lemma nonneg1_imp_zdiv_pos_iff: nipkow@33804: "(0::int) <= a \ (a div b > 0) = (a >= b & b>0)" nipkow@33804: apply rule nipkow@33804: apply rule nipkow@33804: using div_pos_pos_trivial[of a b]apply arith nipkow@33804: apply(cases "b=0")apply simp nipkow@33804: using div_nonneg_neg_le0[of a b]apply arith nipkow@33804: using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp nipkow@33804: done nipkow@33804: nipkow@39489: lemma zmod_le_nonneg_dividend: "(m::int) \ 0 ==> m mod k \ m" nipkow@39489: apply (rule split_zmod[THEN iffD2]) nipkow@44890: apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le) nipkow@39489: done nipkow@39489: haftmann@60868: lemma zmult_div_cancel: haftmann@60868: "(n::int) * (m div n) = m - (m mod n)" haftmann@60868: using zmod_zdiv_equality [where a="m" and b="n"] huffman@47142: by (simp add: algebra_simps) (* FIXME: generalize *) haftmann@33361: haftmann@60868: haftmann@60868: subsubsection \Computation of Division and Remainder\ haftmann@60868: haftmann@61275: instantiation int :: semiring_numeral_div haftmann@61275: begin haftmann@61275: haftmann@61275: definition divmod_int :: "num \ num \ int \ int" haftmann@61275: where haftmann@61275: "divmod_int m n = (numeral m div numeral n, numeral m mod numeral n)" haftmann@61275: haftmann@61275: definition divmod_step_int :: "num \ int \ int \ int \ int" haftmann@61275: where haftmann@61275: "divmod_step_int l qr = (let (q, r) = qr haftmann@61275: in if r \ numeral l then (2 * q + 1, r - numeral l) haftmann@61275: else (2 * q, r))" haftmann@61275: haftmann@61275: instance haftmann@61275: by standard (auto intro: zmod_le_nonneg_dividend simp add: divmod_int_def divmod_step_int_def haftmann@61275: pos_imp_zdiv_pos_iff div_pos_pos_trivial mod_pos_pos_trivial zmod_zmult2_eq zdiv_zmult2_eq) haftmann@61275: haftmann@61275: end haftmann@61275: haftmann@61275: declare divmod_algorithm_code [where ?'a = int, code] lp15@60562: haftmann@60930: context haftmann@60930: begin haftmann@60930: haftmann@60930: qualified definition adjust_div :: "int \ int \ int" haftmann@60868: where haftmann@60868: "adjust_div qr = (let (q, r) = qr in q + of_bool (r \ 0))" haftmann@60868: haftmann@60930: qualified lemma adjust_div_eq [simp, code]: haftmann@60868: "adjust_div (q, r) = q + of_bool (r \ 0)" haftmann@60868: by (simp add: adjust_div_def) haftmann@60868: haftmann@60930: qualified definition adjust_mod :: "int \ int \ int" haftmann@60868: where haftmann@60868: [simp]: "adjust_mod l r = (if r = 0 then 0 else l - r)" haftmann@60868: haftmann@60868: lemma minus_numeral_div_numeral [simp]: haftmann@60868: "- numeral m div numeral n = - (adjust_div (divmod m n) :: int)" haftmann@60868: proof - haftmann@60868: have "int (fst (divmod m n)) = fst (divmod m n)" haftmann@60868: by (simp only: fst_divmod divide_int_def) auto haftmann@60868: then show ?thesis haftmann@60868: by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def) haftmann@60868: qed haftmann@60868: haftmann@60868: lemma minus_numeral_mod_numeral [simp]: haftmann@60868: "- numeral m mod numeral n = adjust_mod (numeral n) (snd (divmod m n) :: int)" haftmann@60868: proof - haftmann@60868: have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \ (0::int)" haftmann@60868: using that by (simp only: snd_divmod mod_int_def) auto haftmann@60868: then show ?thesis haftmann@60868: by (auto simp add: split_def Let_def adjust_div_def divides_aux_def mod_int_def) haftmann@60868: qed haftmann@60868: haftmann@60868: lemma numeral_div_minus_numeral [simp]: haftmann@60868: "numeral m div - numeral n = - (adjust_div (divmod m n) :: int)" haftmann@60868: proof - haftmann@60868: have "int (fst (divmod m n)) = fst (divmod m n)" haftmann@60868: by (simp only: fst_divmod divide_int_def) auto haftmann@60868: then show ?thesis haftmann@60868: by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def) haftmann@60868: qed haftmann@60868: haftmann@60868: lemma numeral_mod_minus_numeral [simp]: haftmann@60868: "numeral m mod - numeral n = - adjust_mod (numeral n) (snd (divmod m n) :: int)" haftmann@60868: proof - haftmann@60868: have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \ (0::int)" haftmann@60868: using that by (simp only: snd_divmod mod_int_def) auto haftmann@60868: then show ?thesis haftmann@60868: by (auto simp add: split_def Let_def adjust_div_def divides_aux_def mod_int_def) haftmann@60868: qed haftmann@60868: haftmann@60868: lemma minus_one_div_numeral [simp]: haftmann@60868: "- 1 div numeral n = - (adjust_div (divmod Num.One n) :: int)" haftmann@60868: using minus_numeral_div_numeral [of Num.One n] by simp haftmann@60868: haftmann@60868: lemma minus_one_mod_numeral [simp]: haftmann@60868: "- 1 mod numeral n = adjust_mod (numeral n) (snd (divmod Num.One n) :: int)" haftmann@60868: using minus_numeral_mod_numeral [of Num.One n] by simp haftmann@60868: haftmann@60868: lemma one_div_minus_numeral [simp]: haftmann@60868: "1 div - numeral n = - (adjust_div (divmod Num.One n) :: int)" haftmann@60868: using numeral_div_minus_numeral [of Num.One n] by simp haftmann@60868: haftmann@60868: lemma one_mod_minus_numeral [simp]: haftmann@60868: "1 mod - numeral n = - adjust_mod (numeral n) (snd (divmod Num.One n) :: int)" haftmann@60868: using numeral_mod_minus_numeral [of Num.One n] by simp haftmann@60868: haftmann@60930: end haftmann@60930: haftmann@60868: haftmann@60868: subsubsection \Further properties\ haftmann@60868: haftmann@60868: text \Simplify expresions in which div and mod combine numerical constants\ haftmann@60868: haftmann@60868: lemma int_div_pos_eq: "\(a::int) = b * q + r; 0 \ r; r < b\ \ a div b = q" haftmann@60868: by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def) haftmann@60868: haftmann@60868: lemma int_div_neg_eq: "\(a::int) = b * q + r; r \ 0; b < r\ \ a div b = q" haftmann@60868: by (rule div_int_unique [of a b q r], haftmann@60868: simp add: divmod_int_rel_def) haftmann@60868: haftmann@60868: lemma int_mod_pos_eq: "\(a::int) = b * q + r; 0 \ r; r < b\ \ a mod b = r" haftmann@60868: by (rule mod_int_unique [of a b q r], haftmann@60868: simp add: divmod_int_rel_def) haftmann@60868: haftmann@60868: lemma int_mod_neg_eq: "\(a::int) = b * q + r; r \ 0; b < r\ \ a mod b = r" haftmann@60868: by (rule mod_int_unique [of a b q r], haftmann@60868: simp add: divmod_int_rel_def) haftmann@33361: wenzelm@61944: lemma abs_div: "(y::int) dvd x \ \x div y\ = \x\ div \y\" haftmann@33361: by (unfold dvd_def, cases "y=0", auto simp add: abs_mult) haftmann@33361: wenzelm@60758: text\Suggested by Matthias Daum\ haftmann@33361: lemma int_power_div_base: haftmann@33361: "\0 < m; 0 < k\ \ k ^ m div k = (k::int) ^ (m - Suc 0)" haftmann@33361: apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)") haftmann@33361: apply (erule ssubst) haftmann@33361: apply (simp only: power_add) haftmann@33361: apply simp_all haftmann@33361: done haftmann@33361: wenzelm@60758: text \by Brian Huffman\ haftmann@33361: lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m" haftmann@33361: by (rule mod_minus_eq [symmetric]) haftmann@33361: haftmann@33361: lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)" haftmann@33361: by (rule mod_diff_left_eq [symmetric]) haftmann@33361: haftmann@33361: lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)" haftmann@33361: by (rule mod_diff_right_eq [symmetric]) haftmann@33361: haftmann@33361: lemmas zmod_simps = haftmann@33361: mod_add_left_eq [symmetric] haftmann@33361: mod_add_right_eq [symmetric] huffman@47142: mod_mult_right_eq[symmetric] haftmann@33361: mod_mult_left_eq [symmetric] huffman@47164: power_mod haftmann@33361: zminus_zmod zdiff_zmod_left zdiff_zmod_right haftmann@33361: wenzelm@61799: text \Distributive laws for function \nat\.\ haftmann@33361: haftmann@33361: lemma nat_div_distrib: "0 \ x \ nat (x div y) = nat x div nat y" haftmann@33361: apply (rule linorder_cases [of y 0]) haftmann@33361: apply (simp add: div_nonneg_neg_le0) haftmann@33361: apply simp haftmann@33361: apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int) haftmann@33361: done haftmann@33361: haftmann@33361: (*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*) haftmann@33361: lemma nat_mod_distrib: haftmann@33361: "\0 \ x; 0 \ y\ \ nat (x mod y) = nat x mod nat y" haftmann@33361: apply (case_tac "y = 0", simp) haftmann@33361: apply (simp add: nat_eq_iff zmod_int) haftmann@33361: done haftmann@33361: wenzelm@60758: text \transfer setup\ haftmann@33361: haftmann@33361: lemma transfer_nat_int_functions: haftmann@33361: "(x::int) >= 0 \ y >= 0 \ (nat x) div (nat y) = nat (x div y)" haftmann@33361: "(x::int) >= 0 \ y >= 0 \ (nat x) mod (nat y) = nat (x mod y)" haftmann@33361: by (auto simp add: nat_div_distrib nat_mod_distrib) haftmann@33361: haftmann@33361: lemma transfer_nat_int_function_closures: haftmann@33361: "(x::int) >= 0 \ y >= 0 \ x div y >= 0" haftmann@33361: "(x::int) >= 0 \ y >= 0 \ x mod y >= 0" haftmann@33361: apply (cases "y = 0") haftmann@33361: apply (auto simp add: pos_imp_zdiv_nonneg_iff) haftmann@33361: apply (cases "y = 0") haftmann@33361: apply auto haftmann@33361: done haftmann@33361: haftmann@35644: declare transfer_morphism_nat_int [transfer add return: haftmann@33361: transfer_nat_int_functions haftmann@33361: transfer_nat_int_function_closures haftmann@33361: ] haftmann@33361: haftmann@33361: lemma transfer_int_nat_functions: haftmann@33361: "(int x) div (int y) = int (x div y)" haftmann@33361: "(int x) mod (int y) = int (x mod y)" haftmann@33361: by (auto simp add: zdiv_int zmod_int) haftmann@33361: haftmann@33361: lemma transfer_int_nat_function_closures: haftmann@33361: "is_nat x \ is_nat y \ is_nat (x div y)" haftmann@33361: "is_nat x \ is_nat y \ is_nat (x mod y)" haftmann@33361: by (simp_all only: is_nat_def transfer_nat_int_function_closures) haftmann@33361: haftmann@35644: declare transfer_morphism_int_nat [transfer add return: haftmann@33361: transfer_int_nat_functions haftmann@33361: transfer_int_nat_function_closures haftmann@33361: ] haftmann@33361: wenzelm@60758: text\Suggested by Matthias Daum\ haftmann@33361: lemma int_div_less_self: "\0 < x; 1 < k\ \ x div k < (x::int)" haftmann@33361: apply (subgoal_tac "nat x div nat k < nat x") nipkow@34225: apply (simp add: nat_div_distrib [symmetric]) haftmann@33361: apply (rule Divides.div_less_dividend, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \ n dvd x - y" haftmann@33361: proof haftmann@33361: assume H: "x mod n = y mod n" haftmann@33361: hence "x mod n - y mod n = 0" by simp lp15@60562: hence "(x mod n - y mod n) mod n = 0" by simp haftmann@33361: hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric]) haftmann@33361: thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0) haftmann@33361: next haftmann@33361: assume H: "n dvd x - y" haftmann@33361: then obtain k where k: "x-y = n*k" unfolding dvd_def by blast haftmann@33361: hence "x = n*k + y" by simp haftmann@33361: hence "x mod n = (n*k + y) mod n" by simp haftmann@33361: thus "x mod n = y mod n" by (simp add: mod_add_left_eq) haftmann@33361: qed haftmann@33361: haftmann@33361: lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \ x" haftmann@33361: shows "\q. x = y + n * q" haftmann@33361: proof- lp15@60562: from xy have th: "int x - int y = int (x - y)" by simp lp15@60562: from xyn have "int x mod int n = int y mod int n" huffman@46551: by (simp add: zmod_int [symmetric]) lp15@60562: hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric]) haftmann@33361: hence "n dvd x - y" by (simp add: th zdvd_int) haftmann@33361: then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith haftmann@33361: qed haftmann@33361: lp15@60562: lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \ (\q1 q2. x + n * q1 = y + n * q2)" haftmann@33361: (is "?lhs = ?rhs") haftmann@33361: proof haftmann@33361: assume H: "x mod n = y mod n" haftmann@33361: {assume xy: "x \ y" haftmann@33361: from H have th: "y mod n = x mod n" by simp lp15@60562: from nat_mod_eq_lemma[OF th xy] have ?rhs haftmann@33361: apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)} haftmann@33361: moreover haftmann@33361: {assume xy: "y \ x" lp15@60562: from nat_mod_eq_lemma[OF H xy] have ?rhs haftmann@33361: apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)} lp15@60562: ultimately show ?rhs using linear[of x y] by blast haftmann@33361: next haftmann@33361: assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast haftmann@33361: hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp haftmann@33361: thus ?lhs by simp haftmann@33361: qed haftmann@33361: haftmann@60868: subsubsection \Dedicated simproc for calculation\ haftmann@60868: wenzelm@60758: text \ haftmann@60868: There is space for improvement here: the calculation itself haftmann@60868: could be carried outside the logic, and a generic simproc haftmann@60868: (simplifier setup) for generic calculation would be helpful. wenzelm@60758: \ haftmann@53067: haftmann@60868: simproc_setup numeral_divmod haftmann@60868: ("0 div 0 :: 'a :: semiring_numeral_div" | "0 mod 0 :: 'a :: semiring_numeral_div" | haftmann@60868: "0 div 1 :: 'a :: semiring_numeral_div" | "0 mod 1 :: 'a :: semiring_numeral_div" | haftmann@60868: "0 div - 1 :: int" | "0 mod - 1 :: int" | haftmann@60868: "0 div numeral b :: 'a :: semiring_numeral_div" | "0 mod numeral b :: 'a :: semiring_numeral_div" | haftmann@60868: "0 div - numeral b :: int" | "0 mod - numeral b :: int" | haftmann@60868: "1 div 0 :: 'a :: semiring_numeral_div" | "1 mod 0 :: 'a :: semiring_numeral_div" | haftmann@60868: "1 div 1 :: 'a :: semiring_numeral_div" | "1 mod 1 :: 'a :: semiring_numeral_div" | haftmann@60868: "1 div - 1 :: int" | "1 mod - 1 :: int" | haftmann@60868: "1 div numeral b :: 'a :: semiring_numeral_div" | "1 mod numeral b :: 'a :: semiring_numeral_div" | haftmann@60868: "1 div - numeral b :: int" |"1 mod - numeral b :: int" | haftmann@60868: "- 1 div 0 :: int" | "- 1 mod 0 :: int" | "- 1 div 1 :: int" | "- 1 mod 1 :: int" | haftmann@60868: "- 1 div - 1 :: int" | "- 1 mod - 1 :: int" | "- 1 div numeral b :: int" | "- 1 mod numeral b :: int" | haftmann@60868: "- 1 div - numeral b :: int" | "- 1 mod - numeral b :: int" | haftmann@60868: "numeral a div 0 :: 'a :: semiring_numeral_div" | "numeral a mod 0 :: 'a :: semiring_numeral_div" | haftmann@60868: "numeral a div 1 :: 'a :: semiring_numeral_div" | "numeral a mod 1 :: 'a :: semiring_numeral_div" | haftmann@60868: "numeral a div - 1 :: int" | "numeral a mod - 1 :: int" | haftmann@60868: "numeral a div numeral b :: 'a :: semiring_numeral_div" | "numeral a mod numeral b :: 'a :: semiring_numeral_div" | haftmann@60868: "numeral a div - numeral b :: int" | "numeral a mod - numeral b :: int" | haftmann@60868: "- numeral a div 0 :: int" | "- numeral a mod 0 :: int" | haftmann@60868: "- numeral a div 1 :: int" | "- numeral a mod 1 :: int" | haftmann@60868: "- numeral a div - 1 :: int" | "- numeral a mod - 1 :: int" | haftmann@60868: "- numeral a div numeral b :: int" | "- numeral a mod numeral b :: int" | haftmann@60868: "- numeral a div - numeral b :: int" | "- numeral a mod - numeral b :: int") = haftmann@60868: \ let haftmann@60868: val if_cong = the (Code.get_case_cong @{theory} @{const_name If}); haftmann@60868: fun successful_rewrite ctxt ct = haftmann@60868: let haftmann@60868: val thm = Simplifier.rewrite ctxt ct haftmann@60868: in if Thm.is_reflexive thm then NONE else SOME thm end; haftmann@60868: in fn phi => haftmann@60868: let haftmann@60868: val simps = Morphism.fact phi (@{thms div_0 mod_0 div_by_0 mod_by_0 div_by_1 mod_by_1 haftmann@60868: one_div_numeral one_mod_numeral minus_one_div_numeral minus_one_mod_numeral haftmann@60868: one_div_minus_numeral one_mod_minus_numeral haftmann@60868: numeral_div_numeral numeral_mod_numeral minus_numeral_div_numeral minus_numeral_mod_numeral haftmann@60868: numeral_div_minus_numeral numeral_mod_minus_numeral haftmann@60930: div_minus_minus mod_minus_minus Divides.adjust_div_eq of_bool_eq one_neq_zero haftmann@60868: numeral_neq_zero neg_equal_0_iff_equal arith_simps arith_special divmod_trivial haftmann@60868: divmod_cancel divmod_steps divmod_step_eq fst_conv snd_conv numeral_One haftmann@60930: case_prod_beta rel_simps Divides.adjust_mod_def div_minus1_right mod_minus1_right haftmann@60868: minus_minus numeral_times_numeral mult_zero_right mult_1_right} haftmann@60868: @ [@{lemma "0 = 0 \ True" by simp}]); haftmann@60868: fun prepare_simpset ctxt = HOL_ss |> Simplifier.simpset_map ctxt haftmann@60868: (Simplifier.add_cong if_cong #> fold Simplifier.add_simp simps) haftmann@60868: in fn ctxt => successful_rewrite (Simplifier.put_simpset (prepare_simpset ctxt) ctxt) end haftmann@60868: end; haftmann@60868: \ blanchet@34126: haftmann@35673: wenzelm@60758: subsubsection \Code generation\ haftmann@33361: haftmann@60868: lemma [code]: haftmann@60868: fixes k :: int haftmann@60868: shows haftmann@60868: "k div 0 = 0" haftmann@60868: "k mod 0 = k" haftmann@60868: "0 div k = 0" haftmann@60868: "0 mod k = 0" haftmann@60868: "k div Int.Pos Num.One = k" haftmann@60868: "k mod Int.Pos Num.One = 0" haftmann@60868: "k div Int.Neg Num.One = - k" haftmann@60868: "k mod Int.Neg Num.One = 0" haftmann@60868: "Int.Pos m div Int.Pos n = (fst (divmod m n) :: int)" haftmann@60868: "Int.Pos m mod Int.Pos n = (snd (divmod m n) :: int)" haftmann@60930: "Int.Neg m div Int.Pos n = - (Divides.adjust_div (divmod m n) :: int)" haftmann@60930: "Int.Neg m mod Int.Pos n = Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)" haftmann@60930: "Int.Pos m div Int.Neg n = - (Divides.adjust_div (divmod m n) :: int)" haftmann@60930: "Int.Pos m mod Int.Neg n = - Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)" haftmann@60868: "Int.Neg m div Int.Neg n = (fst (divmod m n) :: int)" haftmann@60868: "Int.Neg m mod Int.Neg n = - (snd (divmod m n) :: int)" haftmann@60868: by simp_all haftmann@53069: haftmann@52435: code_identifier haftmann@52435: code_module Divides \ (SML) Arith and (OCaml) Arith and (Haskell) Arith haftmann@33364: haftmann@60868: lemma dvd_eq_mod_eq_0_numeral: haftmann@60868: "numeral x dvd (numeral y :: 'a) \ numeral y mod numeral x = (0 :: 'a::semiring_div)" haftmann@60868: by (fact dvd_eq_mod_eq_0) haftmann@60868: haftmann@33361: end