haftmann@36751: (* Title: HOL/Semiring_Normalization.thy wenzelm@23252: Author: Amine Chaieb, TU Muenchen wenzelm@23252: *) wenzelm@23252: haftmann@36751: header {* Semiring normalization *} haftmann@28402: haftmann@36751: theory Semiring_Normalization haftmann@36699: imports Numeral_Simprocs Nat_Transfer wenzelm@23252: uses haftmann@36753: "Tools/semiring_normalizer.ML" wenzelm@23252: begin wenzelm@23252: haftmann@36873: text {* Prelude *} haftmann@36873: haftmann@36873: class comm_semiring_1_cancel_crossproduct = comm_semiring_1_cancel + haftmann@36873: assumes crossproduct_eq: "w * y + x * z = w * z + x * y \ w = x \ y = z" haftmann@36873: begin haftmann@36873: haftmann@36873: lemma crossproduct_noteq: haftmann@36873: "a \ b \ c \ d \ a * c + b * d \ a * d + b * c" haftmann@36873: by (simp add: crossproduct_eq) haftmann@36756: haftmann@36873: lemma add_scale_eq_noteq: haftmann@36873: "r \ 0 \ a = b \ c \ d \ a + r * c \ b + r * d" haftmann@36873: proof (rule notI) haftmann@36873: assume nz: "r\ 0" and cnd: "a = b \ c\d" haftmann@36873: and eq: "a + (r * c) = b + (r * d)" haftmann@36873: have "(0 * d) + (r * c) = (0 * c) + (r * d)" haftmann@36873: using add_imp_eq eq mult_zero_left by (simp add: cnd) haftmann@36873: then show False using crossproduct_eq [of 0 d] nz cnd by simp haftmann@36873: qed haftmann@36756: haftmann@36873: lemma add_0_iff: haftmann@36873: "b = b + a \ a = 0" haftmann@36873: using add_imp_eq [of b a 0] by auto haftmann@36873: haftmann@36873: end haftmann@36873: haftmann@36873: sublocale idom < comm_semiring_1_cancel_crossproduct haftmann@36756: proof haftmann@36756: fix w x y z haftmann@36756: show "w * y + x * z = w * z + x * y \ w = x \ y = z" haftmann@36756: proof haftmann@36756: assume "w * y + x * z = w * z + x * y" haftmann@36756: then have "w * y + x * z - w * z - x * y = 0" by (simp add: algebra_simps) haftmann@36756: then have "w * (y - z) - x * (y - z) = 0" by (simp add: algebra_simps) haftmann@36756: then have "(y - z) * (w - x) = 0" by (simp add: algebra_simps) haftmann@36756: then have "y - z = 0 \ w - x = 0" by (rule divisors_zero) haftmann@36756: then show "w = x \ y = z" by auto haftmann@36756: qed (auto simp add: add_ac) haftmann@36756: qed haftmann@36756: haftmann@36873: instance nat :: comm_semiring_1_cancel_crossproduct haftmann@36756: proof haftmann@36756: fix w x y z :: nat haftmann@36873: have aux: "\y z. y < z \ w * y + x * z = w * z + x * y \ w = x" haftmann@36873: proof - haftmann@36873: fix y z :: nat haftmann@36873: assume "y < z" then have "\k. z = y + k \ k \ 0" by (intro exI [of _ "z - y"]) auto haftmann@36873: then obtain k where "z = y + k" and "k \ 0" by blast haftmann@36873: assume "w * y + x * z = w * z + x * y" haftmann@36873: then have "(w * y + x * y) + x * k = (w * y + x * y) + w * k" by (simp add: `z = y + k` algebra_simps) haftmann@36873: then have "x * k = w * k" by simp haftmann@36873: then show "w = x" using `k \ 0` by simp haftmann@36873: qed haftmann@36873: show "w * y + x * z = w * z + x * y \ w = x \ y = z" haftmann@36873: by (auto simp add: neq_iff dest!: aux) haftmann@36756: qed haftmann@36756: haftmann@36873: text {* Semiring normalization proper *} haftmann@36871: haftmann@36753: setup Semiring_Normalizer.setup wenzelm@23252: haftmann@36871: context comm_semiring_1 haftmann@36871: begin haftmann@36871: haftmann@36872: lemma normalizing_semiring_ops: hoelzl@36845: shows "TERM (x + y)" and "TERM (x * y)" and "TERM (x ^ n)" hoelzl@36845: and "TERM 0" and "TERM 1" . wenzelm@23252: haftmann@36872: lemma normalizing_semiring_rules: hoelzl@36845: "(a * m) + (b * m) = (a + b) * m" hoelzl@36845: "(a * m) + m = (a + 1) * m" hoelzl@36845: "m + (a * m) = (a + 1) * m" hoelzl@36845: "m + m = (1 + 1) * m" hoelzl@36845: "0 + a = a" hoelzl@36845: "a + 0 = a" hoelzl@36845: "a * b = b * a" hoelzl@36845: "(a + b) * c = (a * c) + (b * c)" hoelzl@36845: "0 * a = 0" hoelzl@36845: "a * 0 = 0" hoelzl@36845: "1 * a = a" hoelzl@36845: "a * 1 = a" hoelzl@36845: "(lx * ly) * (rx * ry) = (lx * rx) * (ly * ry)" hoelzl@36845: "(lx * ly) * (rx * ry) = lx * (ly * (rx * ry))" hoelzl@36845: "(lx * ly) * (rx * ry) = rx * ((lx * ly) * ry)" hoelzl@36845: "(lx * ly) * rx = (lx * rx) * ly" hoelzl@36845: "(lx * ly) * rx = lx * (ly * rx)" hoelzl@36845: "lx * (rx * ry) = (lx * rx) * ry" hoelzl@36845: "lx * (rx * ry) = rx * (lx * ry)" hoelzl@36845: "(a + b) + (c + d) = (a + c) + (b + d)" hoelzl@36845: "(a + b) + c = a + (b + c)" hoelzl@36845: "a + (c + d) = c + (a + d)" hoelzl@36845: "(a + b) + c = (a + c) + b" hoelzl@36845: "a + c = c + a" hoelzl@36845: "a + (c + d) = (a + c) + d" hoelzl@36845: "(x ^ p) * (x ^ q) = x ^ (p + q)" hoelzl@36845: "x * (x ^ q) = x ^ (Suc q)" hoelzl@36845: "(x ^ q) * x = x ^ (Suc q)" hoelzl@36845: "x * x = x ^ 2" hoelzl@36845: "(x * y) ^ q = (x ^ q) * (y ^ q)" hoelzl@36845: "(x ^ p) ^ q = x ^ (p * q)" hoelzl@36845: "x ^ 0 = 1" hoelzl@36845: "x ^ 1 = x" hoelzl@36845: "x * (y + z) = (x * y) + (x * z)" hoelzl@36845: "x ^ (Suc q) = x * (x ^ q)" hoelzl@36845: "x ^ (2*n) = (x ^ n) * (x ^ n)" hoelzl@36845: "x ^ (Suc (2*n)) = x * ((x ^ n) * (x ^ n))" hoelzl@36845: by (simp_all add: algebra_simps power_add power2_eq_square power_mult_distrib power_mult) wenzelm@23252: haftmann@36871: lemmas normalizing_comm_semiring_1_axioms = haftmann@36756: comm_semiring_1_axioms [normalizer haftmann@36872: semiring ops: normalizing_semiring_ops haftmann@36872: semiring rules: normalizing_semiring_rules] haftmann@36756: haftmann@36871: declaration haftmann@36756: {* Semiring_Normalizer.semiring_funs @{thm normalizing_comm_semiring_1_axioms} *} wenzelm@23573: haftmann@36871: end wenzelm@23252: haftmann@36871: context comm_ring_1 haftmann@36871: begin haftmann@36871: haftmann@36872: lemma normalizing_ring_ops: shows "TERM (x- y)" and "TERM (- x)" . haftmann@36871: haftmann@36872: lemma normalizing_ring_rules: hoelzl@36845: "- x = (- 1) * x" hoelzl@36845: "x - y = x + (- y)" hoelzl@36845: by (simp_all add: diff_minus) wenzelm@23252: haftmann@36871: lemmas normalizing_comm_ring_1_axioms = haftmann@36756: comm_ring_1_axioms [normalizer haftmann@36872: semiring ops: normalizing_semiring_ops haftmann@36872: semiring rules: normalizing_semiring_rules haftmann@36872: ring ops: normalizing_ring_ops haftmann@36872: ring rules: normalizing_ring_rules] chaieb@30866: haftmann@36871: declaration haftmann@36756: {* Semiring_Normalizer.semiring_funs @{thm normalizing_comm_ring_1_axioms} *} chaieb@23327: haftmann@36871: end haftmann@36871: haftmann@36873: context comm_semiring_1_cancel_crossproduct haftmann@36871: begin haftmann@36871: haftmann@36871: declare haftmann@36756: normalizing_comm_semiring_1_axioms [normalizer del] wenzelm@23252: haftmann@36871: lemmas haftmann@36873: normalizing_comm_semiring_1_cancel_crossproduct_axioms = haftmann@36873: comm_semiring_1_cancel_crossproduct_axioms [normalizer haftmann@36872: semiring ops: normalizing_semiring_ops haftmann@36872: semiring rules: normalizing_semiring_rules haftmann@36873: idom rules: crossproduct_noteq add_scale_eq_noteq] wenzelm@23252: haftmann@36871: declaration haftmann@36873: {* Semiring_Normalizer.semiring_funs @{thm normalizing_comm_semiring_1_cancel_crossproduct_axioms} *} wenzelm@23252: haftmann@36871: end wenzelm@23252: haftmann@36871: context idom haftmann@36871: begin haftmann@36871: haftmann@36871: declare normalizing_comm_ring_1_axioms [normalizer del] haftmann@36871: haftmann@36871: lemmas normalizing_idom_axioms = idom_axioms [normalizer haftmann@36872: semiring ops: normalizing_semiring_ops haftmann@36872: semiring rules: normalizing_semiring_rules haftmann@36872: ring ops: normalizing_ring_ops haftmann@36872: ring rules: normalizing_ring_rules haftmann@36873: idom rules: crossproduct_noteq add_scale_eq_noteq hoelzl@36845: ideal rules: right_minus_eq add_0_iff] wenzelm@23252: haftmann@36871: declaration haftmann@36756: {* Semiring_Normalizer.semiring_funs @{thm normalizing_idom_axioms} *} wenzelm@23252: haftmann@36871: end haftmann@36871: haftmann@36871: context field haftmann@36871: begin haftmann@36871: haftmann@36872: lemma normalizing_field_ops: hoelzl@36845: shows "TERM (x / y)" and "TERM (inverse x)" . chaieb@23327: haftmann@36872: lemmas normalizing_field_rules = divide_inverse inverse_eq_divide haftmann@28402: haftmann@36871: lemmas normalizing_field_axioms = haftmann@36756: field_axioms [normalizer haftmann@36872: semiring ops: normalizing_semiring_ops haftmann@36872: semiring rules: normalizing_semiring_rules haftmann@36872: ring ops: normalizing_ring_ops haftmann@36872: ring rules: normalizing_ring_rules haftmann@36872: field ops: normalizing_field_ops haftmann@36872: field rules: normalizing_field_rules haftmann@36873: idom rules: crossproduct_noteq add_scale_eq_noteq hoelzl@36845: ideal rules: right_minus_eq add_0_iff] haftmann@36756: haftmann@36871: declaration haftmann@36756: {* Semiring_Normalizer.field_funs @{thm normalizing_field_axioms} *} haftmann@28402: haftmann@36871: end haftmann@36871: hoelzl@36845: hide_fact (open) normalizing_comm_semiring_1_axioms haftmann@36873: normalizing_comm_semiring_1_cancel_crossproduct_axioms normalizing_semiring_ops normalizing_semiring_rules hoelzl@36845: hoelzl@36845: hide_fact (open) normalizing_comm_ring_1_axioms haftmann@36872: normalizing_idom_axioms normalizing_ring_ops normalizing_ring_rules hoelzl@36845: haftmann@36872: hide_fact (open) normalizing_field_axioms normalizing_field_ops normalizing_field_rules hoelzl@36845: haftmann@28402: end