paulson@8334: (* Title: HOL/UNITY/Detects paulson@8334: ID: $Id$ paulson@8334: Author: Tanja Vos, Cambridge University Computer Laboratory paulson@8334: Copyright 2000 University of Cambridge paulson@8334: paulson@8334: Detects definition (Section 3.8 of Chandy & Misra) using LeadsTo paulson@8334: *) paulson@8334: paulson@13798: header{*The Detects Relation*} paulson@13798: haftmann@16417: theory Detects imports FP SubstAx begin paulson@8334: paulson@8334: consts paulson@8334: op_Detects :: "['a set, 'a set] => 'a program set" (infixl "Detects" 60) paulson@8334: op_Equality :: "['a set, 'a set] => 'a set" (infixl "<==>" 60) paulson@8334: paulson@8334: defs paulson@13805: Detects_def: "A Detects B == (Always (-A \ B)) \ (B LeadsTo A)" paulson@13805: Equality_def: "A <==> B == (-A \ B) \ (A \ -B)" paulson@13785: paulson@13785: paulson@13785: (* Corollary from Sectiom 3.6.4 *) paulson@13785: paulson@13812: lemma Always_at_FP: paulson@13812: "[|F \ A LeadsTo B; all_total F|] ==> F \ Always (-((FP F) \ A \ -B))" paulson@13785: apply (rule LeadsTo_empty) paulson@13805: apply (subgoal_tac "F \ (FP F \ A \ - B) LeadsTo (B \ (FP F \ -B))") paulson@13805: apply (subgoal_tac [2] " (FP F \ A \ - B) = (A \ (FP F \ -B))") paulson@13805: apply (subgoal_tac "(B \ (FP F \ -B)) = {}") paulson@13785: apply auto paulson@13785: apply (blast intro: PSP_Stable stable_imp_Stable stable_FP_Int) paulson@13785: done paulson@13785: paulson@13785: paulson@13785: lemma Detects_Trans: paulson@13805: "[| F \ A Detects B; F \ B Detects C |] ==> F \ A Detects C" paulson@13785: apply (unfold Detects_def Int_def) paulson@13785: apply (simp (no_asm)) paulson@13785: apply safe paulson@13812: apply (rule_tac [2] LeadsTo_Trans, auto) paulson@13805: apply (subgoal_tac "F \ Always ((-A \ B) \ (-B \ C))") paulson@13785: apply (blast intro: Always_weaken) paulson@13785: apply (simp add: Always_Int_distrib) paulson@13785: done paulson@13785: paulson@13805: lemma Detects_refl: "F \ A Detects A" paulson@13785: apply (unfold Detects_def) paulson@13785: apply (simp (no_asm) add: Un_commute Compl_partition subset_imp_LeadsTo) paulson@13785: done paulson@13785: paulson@13805: lemma Detects_eq_Un: "(A<==>B) = (A \ B) \ (-A \ -B)" paulson@13812: by (unfold Equality_def, blast) paulson@13785: paulson@13785: (*Not quite antisymmetry: sets A and B agree in all reachable states *) paulson@13785: lemma Detects_antisym: paulson@13805: "[| F \ A Detects B; F \ B Detects A|] ==> F \ Always (A <==> B)" paulson@13785: apply (unfold Detects_def Equality_def) paulson@13785: apply (simp add: Always_Int_I Un_commute) paulson@13785: done paulson@13785: paulson@13785: paulson@13785: (* Theorem from Section 3.8 *) paulson@13785: paulson@13785: lemma Detects_Always: paulson@13812: "[|F \ A Detects B; all_total F|] ==> F \ Always (-(FP F) \ (A <==> B))" paulson@13785: apply (unfold Detects_def Equality_def) paulson@13812: apply (simp add: Un_Int_distrib Always_Int_distrib) paulson@13785: apply (blast dest: Always_at_FP intro: Always_weaken) paulson@13785: done paulson@13785: paulson@13785: (* Theorem from exercise 11.1 Section 11.3.1 *) paulson@13785: paulson@13785: lemma Detects_Imp_LeadstoEQ: paulson@13805: "F \ A Detects B ==> F \ UNIV LeadsTo (A <==> B)" paulson@13785: apply (unfold Detects_def Equality_def) paulson@13812: apply (rule_tac B = B in LeadsTo_Diff) paulson@13805: apply (blast intro: Always_LeadsToI subset_imp_LeadsTo) paulson@13805: apply (blast intro: Always_LeadsTo_weaken) paulson@13785: done paulson@13785: paulson@8334: paulson@8334: end paulson@8334: