krauss@22999: (* ID: $Id$ krauss@22999: Author: Alexander Krauss, Technische Universitaet Muenchen krauss@22999: *) krauss@22999: krauss@22999: header {* Case study: Unification Algorithm *} krauss@22999: wenzelm@23219: theory Unification krauss@22999: imports Main wenzelm@23219: begin krauss@22999: krauss@22999: text {* krauss@22999: This is a formalization of a first-order unification krauss@22999: algorithm. It uses the new "function" package to define recursive krauss@22999: functions, which allows a better treatment of nested recursion. krauss@22999: krauss@22999: This is basically a modernized version of a previous formalization krauss@22999: by Konrad Slind (see: HOL/Subst/Unify.thy), which itself builds on wenzelm@23219: previous work by Paulson and Manna \& Waldinger (for details, see krauss@22999: there). krauss@22999: krauss@22999: Unlike that formalization, where the proofs of termination and krauss@22999: some partial correctness properties are intertwined, we can prove krauss@22999: partial correctness and termination separately. krauss@22999: *} krauss@22999: wenzelm@23219: krauss@22999: subsection {* Basic definitions *} krauss@22999: krauss@22999: datatype 'a trm = krauss@22999: Var 'a krauss@22999: | Const 'a krauss@22999: | App "'a trm" "'a trm" (infix "\" 60) krauss@22999: krauss@22999: types krauss@22999: 'a subst = "('a \ 'a trm) list" krauss@22999: krauss@22999: text {* Applying a substitution to a variable: *} krauss@22999: krauss@22999: fun assoc :: "'a \ 'b \ ('a \ 'b) list \ 'b" krauss@22999: where krauss@22999: "assoc x d [] = d" krauss@22999: | "assoc x d ((p,q)#t) = (if x = p then q else assoc x d t)" krauss@22999: krauss@22999: text {* Applying a substitution to a term: *} krauss@22999: krauss@22999: fun apply_subst :: "'a trm \ 'a subst \ 'a trm" (infixl "\" 60) krauss@22999: where krauss@22999: "(Var v) \ s = assoc v (Var v) s" krauss@22999: | "(Const c) \ s = (Const c)" krauss@22999: | "(M \ N) \ s = (M \ s) \ (N \ s)" krauss@22999: krauss@22999: text {* Composition of substitutions: *} krauss@22999: krauss@22999: fun krauss@22999: "compose" :: "'a subst \ 'a subst \ 'a subst" (infixl "\" 80) krauss@22999: where krauss@22999: "[] \ bl = bl" krauss@22999: | "((a,b) # al) \ bl = (a, b \ bl) # (al \ bl)" krauss@22999: krauss@22999: text {* Equivalence of substitutions: *} krauss@22999: krauss@22999: definition eqv (infix "=\<^sub>s" 50) krauss@22999: where krauss@22999: "s1 =\<^sub>s s2 \ \t. t \ s1 = t \ s2" krauss@22999: wenzelm@23219: krauss@22999: subsection {* Basic lemmas *} krauss@22999: krauss@22999: lemma apply_empty[simp]: "t \ [] = t" krauss@22999: by (induct t) auto krauss@22999: krauss@22999: lemma compose_empty[simp]: "\ \ [] = \" krauss@22999: by (induct \) auto krauss@22999: krauss@22999: lemma apply_compose[simp]: "t \ (s1 \ s2) = t \ s1 \ s2" krauss@22999: proof (induct t) krauss@22999: case App thus ?case by simp krauss@22999: next krauss@22999: case Const thus ?case by simp krauss@22999: next krauss@22999: case (Var v) thus ?case krauss@22999: proof (induct s1) krauss@22999: case Nil show ?case by simp krauss@22999: next krauss@22999: case (Cons p s1s) thus ?case by (cases p, simp) krauss@22999: qed krauss@22999: qed krauss@22999: krauss@22999: lemma eqv_refl[intro]: "s =\<^sub>s s" krauss@22999: by (auto simp:eqv_def) krauss@22999: krauss@22999: lemma eqv_trans[trans]: "\s1 =\<^sub>s s2; s2 =\<^sub>s s3\ \ s1 =\<^sub>s s3" krauss@22999: by (auto simp:eqv_def) krauss@22999: krauss@22999: lemma eqv_sym[sym]: "\s1 =\<^sub>s s2\ \ s2 =\<^sub>s s1" krauss@22999: by (auto simp:eqv_def) krauss@22999: krauss@22999: lemma eqv_intro[intro]: "(\t. t \ \ = t \ \) \ \ =\<^sub>s \" krauss@22999: by (auto simp:eqv_def) krauss@22999: krauss@22999: lemma eqv_dest[dest]: "s1 =\<^sub>s s2 \ t \ s1 = t \ s2" krauss@22999: by (auto simp:eqv_def) krauss@22999: krauss@22999: lemma compose_eqv: "\\ =\<^sub>s \'; \ =\<^sub>s \'\ \ (\ \ \) =\<^sub>s (\' \ \')" krauss@22999: by (auto simp:eqv_def) krauss@22999: krauss@22999: lemma compose_assoc: "(a \ b) \ c =\<^sub>s a \ (b \ c)" krauss@22999: by auto krauss@22999: wenzelm@23219: krauss@22999: subsection {* Specification: Most general unifiers *} krauss@22999: krauss@22999: definition krauss@22999: "Unifier \ t u \ (t\\ = u\\)" krauss@22999: krauss@22999: definition krauss@22999: "MGU \ t u \ Unifier \ t u \ (\\. Unifier \ t u krauss@22999: \ (\\. \ =\<^sub>s \ \ \))" krauss@22999: krauss@22999: lemma MGUI[intro]: krauss@22999: "\t \ \ = u \ \; \\. t \ \ = u \ \ \ \\. \ =\<^sub>s \ \ \\ krauss@22999: \ MGU \ t u" krauss@22999: by (simp only:Unifier_def MGU_def, auto) krauss@22999: krauss@22999: lemma MGU_sym[sym]: krauss@22999: "MGU \ s t \ MGU \ t s" krauss@22999: by (auto simp:MGU_def Unifier_def) krauss@22999: krauss@22999: krauss@22999: subsection {* The unification algorithm *} krauss@22999: krauss@22999: text {* Occurs check: Proper subterm relation *} krauss@22999: krauss@22999: fun occ :: "'a trm \ 'a trm \ bool" krauss@22999: where krauss@22999: "occ u (Var v) = False" krauss@22999: | "occ u (Const c) = False" krauss@22999: | "occ u (M \ N) = (u = M \ u = N \ occ u M \ occ u N)" krauss@22999: krauss@22999: text {* The unification algorithm: *} krauss@22999: krauss@22999: function unify :: "'a trm \ 'a trm \ 'a subst option" krauss@22999: where krauss@22999: "unify (Const c) (M \ N) = None" krauss@22999: | "unify (M \ N) (Const c) = None" krauss@22999: | "unify (Const c) (Var v) = Some [(v, Const c)]" krauss@22999: | "unify (M \ N) (Var v) = (if (occ (Var v) (M \ N)) krauss@22999: then None krauss@22999: else Some [(v, M \ N)])" krauss@22999: | "unify (Var v) M = (if (occ (Var v) M) krauss@22999: then None krauss@22999: else Some [(v, M)])" krauss@22999: | "unify (Const c) (Const d) = (if c=d then Some [] else None)" krauss@22999: | "unify (M \ N) (M' \ N') = (case unify M M' of krauss@22999: None \ None | krauss@22999: Some \ \ (case unify (N \ \) (N' \ \) krauss@22999: of None \ None | krauss@22999: Some \ \ Some (\ \ \)))" krauss@22999: by pat_completeness auto krauss@22999: krauss@22999: krauss@22999: subsection {* Partial correctness *} krauss@22999: krauss@22999: text {* Some lemmas about occ and MGU: *} krauss@22999: krauss@22999: lemma subst_no_occ: "\occ (Var v) t \ Var v \ t krauss@22999: \ t \ [(v,s)] = t" krauss@22999: by (induct t) auto krauss@22999: krauss@22999: lemma MGU_Var[intro]: krauss@22999: assumes no_occ: "\occ (Var v) t" krauss@22999: shows "MGU [(v,t)] (Var v) t" krauss@22999: proof (intro MGUI exI) krauss@22999: show "Var v \ [(v,t)] = t \ [(v,t)]" using no_occ krauss@22999: by (cases "Var v = t", auto simp:subst_no_occ) krauss@22999: next krauss@22999: fix \ assume th: "Var v \ \ = t \ \" krauss@22999: show "\ =\<^sub>s [(v,t)] \ \" krauss@22999: proof krauss@22999: fix s show "s \ \ = s \ [(v,t)] \ \" using th wenzelm@24444: by (induct s) auto krauss@22999: qed krauss@22999: qed krauss@22999: krauss@22999: declare MGU_Var[symmetric, intro] krauss@22999: krauss@22999: lemma MGU_Const[simp]: "MGU [] (Const c) (Const d) = (c = d)" krauss@22999: unfolding MGU_def Unifier_def krauss@22999: by auto krauss@22999: krauss@22999: text {* If unification terminates, then it computes most general unifiers: *} krauss@22999: krauss@22999: lemma unify_partial_correctness: krauss@22999: assumes "unify_dom (M, N)" krauss@22999: assumes "unify M N = Some \" krauss@22999: shows "MGU \ M N" wenzelm@24444: using assms krauss@22999: proof (induct M N arbitrary: \) krauss@22999: case (7 M N M' N' \) -- "The interesting case" krauss@22999: krauss@22999: then obtain \1 \2 krauss@22999: where "unify M M' = Some \1" krauss@22999: and "unify (N \ \1) (N' \ \1) = Some \2" krauss@22999: and \: "\ = \1 \ \2" krauss@22999: and MGU_inner: "MGU \1 M M'" krauss@22999: and MGU_outer: "MGU \2 (N \ \1) (N' \ \1)" krauss@22999: by (auto split:option.split_asm) krauss@22999: krauss@22999: show ?case krauss@22999: proof krauss@22999: from MGU_inner and MGU_outer krauss@22999: have "M \ \1 = M' \ \1" krauss@22999: and "N \ \1 \ \2 = N' \ \1 \ \2" krauss@22999: unfolding MGU_def Unifier_def krauss@22999: by auto krauss@22999: thus "M \ N \ \ = M' \ N' \ \" unfolding \ krauss@22999: by simp krauss@22999: next krauss@22999: fix \' assume "M \ N \ \' = M' \ N' \ \'" krauss@22999: hence "M \ \' = M' \ \'" krauss@22999: and Ns: "N \ \' = N' \ \'" by auto krauss@22999: krauss@22999: with MGU_inner obtain \ krauss@22999: where eqv: "\' =\<^sub>s \1 \ \" krauss@22999: unfolding MGU_def Unifier_def krauss@22999: by auto krauss@22999: krauss@22999: from Ns have "N \ \1 \ \ = N' \ \1 \ \" krauss@22999: by (simp add:eqv_dest[OF eqv]) krauss@22999: krauss@22999: with MGU_outer obtain \ krauss@22999: where eqv2: "\ =\<^sub>s \2 \ \" krauss@22999: unfolding MGU_def Unifier_def krauss@22999: by auto krauss@22999: krauss@22999: have "\' =\<^sub>s \ \ \" unfolding \ wenzelm@32960: by (rule eqv_intro, auto simp:eqv_dest[OF eqv] eqv_dest[OF eqv2]) krauss@22999: thus "\\. \' =\<^sub>s \ \ \" .. krauss@22999: qed krauss@22999: qed (auto split:split_if_asm) -- "Solve the remaining cases automatically" krauss@22999: krauss@22999: krauss@22999: subsection {* Properties used in termination proof *} krauss@22999: krauss@22999: text {* The variables of a term: *} krauss@22999: krauss@22999: fun vars_of:: "'a trm \ 'a set" krauss@22999: where krauss@22999: "vars_of (Var v) = { v }" krauss@22999: | "vars_of (Const c) = {}" krauss@22999: | "vars_of (M \ N) = vars_of M \ vars_of N" krauss@22999: krauss@22999: lemma vars_of_finite[intro]: "finite (vars_of t)" krauss@22999: by (induct t) simp_all krauss@22999: krauss@22999: text {* Elimination of variables by a substitution: *} krauss@22999: krauss@22999: definition krauss@22999: "elim \ v \ \t. v \ vars_of (t \ \)" krauss@22999: krauss@22999: lemma elim_intro[intro]: "(\t. v \ vars_of (t \ \)) \ elim \ v" krauss@22999: by (auto simp:elim_def) krauss@22999: krauss@22999: lemma elim_dest[dest]: "elim \ v \ v \ vars_of (t \ \)" krauss@22999: by (auto simp:elim_def) krauss@22999: krauss@22999: lemma elim_eqv: "\ =\<^sub>s \ \ elim \ x = elim \ x" krauss@22999: by (auto simp:elim_def eqv_def) krauss@22999: krauss@22999: krauss@22999: text {* Replacing a variable by itself yields an identity subtitution: *} krauss@22999: krauss@22999: lemma var_self[intro]: "[(v, Var v)] =\<^sub>s []" krauss@22999: proof krauss@22999: fix t show "t \ [(v, Var v)] = t \ []" krauss@22999: by (induct t) simp_all krauss@22999: qed krauss@22999: krauss@30909: lemma var_same: "([(v, t)] =\<^sub>s []) = (t = Var v)" krauss@22999: proof krauss@22999: assume t_v: "t = Var v" krauss@22999: thus "[(v, t)] =\<^sub>s []" krauss@22999: by auto krauss@22999: next krauss@22999: assume id: "[(v, t)] =\<^sub>s []" krauss@22999: show "t = Var v" krauss@22999: proof - krauss@22999: have "t = Var v \ [(v, t)]" by simp krauss@22999: also from id have "\ = Var v \ []" .. krauss@22999: finally show ?thesis by simp krauss@22999: qed krauss@22999: qed krauss@22999: krauss@22999: text {* A lemma about occ and elim *} krauss@22999: krauss@22999: lemma remove_var: krauss@22999: assumes [simp]: "v \ vars_of s" krauss@22999: shows "v \ vars_of (t \ [(v, s)])" krauss@22999: by (induct t) simp_all krauss@22999: krauss@22999: lemma occ_elim: "\occ (Var v) t krauss@22999: \ elim [(v,t)] v \ [(v,t)] =\<^sub>s []" krauss@22999: proof (induct t) krauss@22999: case (Var x) krauss@22999: show ?case krauss@22999: proof cases krauss@22999: assume "v = x" krauss@22999: thus ?thesis krauss@30909: by (simp add:var_same) krauss@22999: next krauss@22999: assume neq: "v \ x" krauss@22999: have "elim [(v, Var x)] v" krauss@22999: by (auto intro!:remove_var simp:neq) krauss@22999: thus ?thesis .. krauss@22999: qed krauss@22999: next krauss@22999: case (Const c) krauss@22999: have "elim [(v, Const c)] v" krauss@22999: by (auto intro!:remove_var) krauss@22999: thus ?case .. krauss@22999: next krauss@22999: case (App M N) krauss@22999: krauss@22999: hence ih1: "elim [(v, M)] v \ [(v, M)] =\<^sub>s []" krauss@22999: and ih2: "elim [(v, N)] v \ [(v, N)] =\<^sub>s []" krauss@22999: and nonocc: "Var v \ M" "Var v \ N" krauss@22999: by auto krauss@22999: krauss@22999: from nonocc have "\ [(v,M)] =\<^sub>s []" krauss@30909: by (simp add:var_same) krauss@22999: with ih1 have "elim [(v, M)] v" by blast krauss@22999: hence "v \ vars_of (Var v \ [(v,M)])" .. krauss@22999: hence not_in_M: "v \ vars_of M" by simp krauss@22999: krauss@22999: from nonocc have "\ [(v,N)] =\<^sub>s []" krauss@30909: by (simp add:var_same) krauss@22999: with ih2 have "elim [(v, N)] v" by blast krauss@22999: hence "v \ vars_of (Var v \ [(v,N)])" .. krauss@22999: hence not_in_N: "v \ vars_of N" by simp krauss@22999: krauss@22999: have "elim [(v, M \ N)] v" krauss@22999: proof krauss@22999: fix t krauss@22999: show "v \ vars_of (t \ [(v, M \ N)])" krauss@22999: proof (induct t) krauss@22999: case (Var x) thus ?case by (simp add: not_in_M not_in_N) krauss@22999: qed auto krauss@22999: qed krauss@22999: thus ?case .. krauss@22999: qed krauss@22999: krauss@22999: text {* The result of a unification never introduces new variables: *} krauss@22999: krauss@22999: lemma unify_vars: krauss@22999: assumes "unify_dom (M, N)" krauss@22999: assumes "unify M N = Some \" krauss@22999: shows "vars_of (t \ \) \ vars_of M \ vars_of N \ vars_of t" krauss@22999: (is "?P M N \ t") wenzelm@24444: using assms krauss@22999: proof (induct M N arbitrary:\ t) krauss@22999: case (3 c v) krauss@22999: hence "\ = [(v, Const c)]" by simp wenzelm@24444: thus ?case by (induct t) auto krauss@22999: next krauss@22999: case (4 M N v) krauss@22999: hence "\occ (Var v) (M\N)" by (cases "occ (Var v) (M\N)", auto) wenzelm@24444: with 4 have "\ = [(v, M\N)]" by simp wenzelm@24444: thus ?case by (induct t) auto krauss@22999: next krauss@22999: case (5 v M) krauss@22999: hence "\occ (Var v) M" by (cases "occ (Var v) M", auto) wenzelm@24444: with 5 have "\ = [(v, M)]" by simp wenzelm@24444: thus ?case by (induct t) auto krauss@22999: next krauss@22999: case (7 M N M' N' \) krauss@22999: then obtain \1 \2 krauss@22999: where "unify M M' = Some \1" krauss@22999: and "unify (N \ \1) (N' \ \1) = Some \2" krauss@22999: and \: "\ = \1 \ \2" krauss@22999: and ih1: "\t. ?P M M' \1 t" krauss@22999: and ih2: "\t. ?P (N\\1) (N'\\1) \2 t" krauss@22999: by (auto split:option.split_asm) krauss@22999: krauss@22999: show ?case krauss@22999: proof krauss@22999: fix v assume a: "v \ vars_of (t \ \)" krauss@22999: krauss@22999: show "v \ vars_of (M \ N) \ vars_of (M' \ N') \ vars_of t" krauss@22999: proof (cases "v \ vars_of M \ v \ vars_of M' wenzelm@32960: \ v \ vars_of N \ v \ vars_of N'") krauss@22999: case True krauss@22999: with ih1 have l:"\t. v \ vars_of (t \ \1) \ v \ vars_of t" wenzelm@32960: by auto krauss@22999: krauss@22999: from a and ih2[where t="t \ \1"] krauss@22999: have "v \ vars_of (N \ \1) \ vars_of (N' \ \1) krauss@22999: \ v \ vars_of (t \ \1)" unfolding \ wenzelm@32960: by auto krauss@22999: hence "v \ vars_of t" krauss@22999: proof wenzelm@32960: assume "v \ vars_of (N \ \1) \ vars_of (N' \ \1)" wenzelm@32960: with True show ?thesis by (auto dest:l) krauss@22999: next wenzelm@32960: assume "v \ vars_of (t \ \1)" wenzelm@32960: thus ?thesis by (rule l) krauss@22999: qed krauss@22999: krauss@22999: thus ?thesis by auto krauss@22999: qed auto krauss@22999: qed krauss@22999: qed (auto split: split_if_asm) krauss@22999: krauss@22999: krauss@22999: text {* The result of a unification is either the identity krauss@22999: substitution or it eliminates a variable from one of the terms: *} krauss@22999: krauss@22999: lemma unify_eliminates: krauss@22999: assumes "unify_dom (M, N)" krauss@22999: assumes "unify M N = Some \" krauss@22999: shows "(\v\vars_of M \ vars_of N. elim \ v) \ \ =\<^sub>s []" krauss@22999: (is "?P M N \") wenzelm@24444: using assms krauss@22999: proof (induct M N arbitrary:\) krauss@22999: case 1 thus ?case by simp krauss@22999: next krauss@22999: case 2 thus ?case by simp krauss@22999: next krauss@22999: case (3 c v) krauss@22999: have no_occ: "\ occ (Var v) (Const c)" by simp wenzelm@24444: with 3 have "\ = [(v, Const c)]" by simp krauss@22999: with occ_elim[OF no_occ] krauss@22999: show ?case by auto krauss@22999: next krauss@22999: case (4 M N v) krauss@22999: hence no_occ: "\occ (Var v) (M\N)" by (cases "occ (Var v) (M\N)", auto) wenzelm@24444: with 4 have "\ = [(v, M\N)]" by simp krauss@22999: with occ_elim[OF no_occ] krauss@22999: show ?case by auto krauss@22999: next krauss@22999: case (5 v M) krauss@22999: hence no_occ: "\occ (Var v) M" by (cases "occ (Var v) M", auto) wenzelm@24444: with 5 have "\ = [(v, M)]" by simp krauss@22999: with occ_elim[OF no_occ] krauss@22999: show ?case by auto krauss@22999: next krauss@22999: case (6 c d) thus ?case krauss@22999: by (cases "c = d") auto krauss@22999: next krauss@22999: case (7 M N M' N' \) krauss@22999: then obtain \1 \2 krauss@22999: where "unify M M' = Some \1" krauss@22999: and "unify (N \ \1) (N' \ \1) = Some \2" krauss@22999: and \: "\ = \1 \ \2" krauss@22999: and ih1: "?P M M' \1" krauss@22999: and ih2: "?P (N\\1) (N'\\1) \2" krauss@22999: by (auto split:option.split_asm) krauss@22999: krauss@22999: from `unify_dom (M \ N, M' \ N')` krauss@22999: have "unify_dom (M, M')" berghofe@23777: by (rule accp_downward) (rule unify_rel.intros) krauss@22999: hence no_new_vars: krauss@22999: "\t. vars_of (t \ \1) \ vars_of M \ vars_of M' \ vars_of t" wenzelm@23373: by (rule unify_vars) (rule `unify M M' = Some \1`) krauss@22999: krauss@22999: from ih2 show ?case krauss@22999: proof krauss@22999: assume "\v\vars_of (N \ \1) \ vars_of (N' \ \1). elim \2 v" krauss@22999: then obtain v krauss@22999: where "v\vars_of (N \ \1) \ vars_of (N' \ \1)" krauss@22999: and el: "elim \2 v" by auto krauss@22999: with no_new_vars show ?thesis unfolding \ krauss@22999: by (auto simp:elim_def) krauss@22999: next krauss@22999: assume empty[simp]: "\2 =\<^sub>s []" krauss@22999: krauss@22999: have "\ =\<^sub>s (\1 \ [])" unfolding \ krauss@22999: by (rule compose_eqv) auto krauss@22999: also have "\ =\<^sub>s \1" by auto krauss@22999: finally have "\ =\<^sub>s \1" . krauss@22999: krauss@22999: from ih1 show ?thesis krauss@22999: proof krauss@22999: assume "\v\vars_of M \ vars_of M'. elim \1 v" krauss@22999: with elim_eqv[OF `\ =\<^sub>s \1`] krauss@22999: show ?thesis by auto krauss@22999: next krauss@22999: note `\ =\<^sub>s \1` krauss@22999: also assume "\1 =\<^sub>s []" krauss@22999: finally show ?thesis .. krauss@22999: qed krauss@22999: qed krauss@22999: qed krauss@22999: krauss@22999: krauss@22999: subsection {* Termination proof *} krauss@22999: krauss@22999: termination unify krauss@22999: proof krauss@22999: let ?R = "measures [\(M,N). card (vars_of M \ vars_of N), krauss@22999: \(M, N). size M]" krauss@22999: show "wf ?R" by simp krauss@22999: krauss@22999: fix M N M' N' krauss@22999: show "((M, M'), (M \ N, M' \ N')) \ ?R" -- "Inner call" krauss@22999: by (rule measures_lesseq) (auto intro: card_mono) krauss@22999: krauss@22999: fix \ -- "Outer call" krauss@22999: assume inner: "unify_dom (M, M')" krauss@22999: "unify M M' = Some \" krauss@22999: krauss@22999: from unify_eliminates[OF inner] krauss@22999: show "((N \ \, N' \ \), (M \ N, M' \ N')) \?R" krauss@22999: proof krauss@22999: -- {* Either a variable is eliminated \ldots *} krauss@22999: assume "(\v\vars_of M \ vars_of M'. elim \ v)" krauss@22999: then obtain v wenzelm@32960: where "elim \ v" wenzelm@32960: and "v\vars_of M \ vars_of M'" by auto krauss@22999: with unify_vars[OF inner] krauss@22999: have "vars_of (N\\) \ vars_of (N'\\) wenzelm@32960: \ vars_of (M\N) \ vars_of (M'\N')" wenzelm@32960: by auto krauss@22999: krauss@22999: thus ?thesis krauss@22999: by (auto intro!: measures_less intro: psubset_card_mono) krauss@22999: next krauss@22999: -- {* Or the substitution is empty *} krauss@22999: assume "\ =\<^sub>s []" krauss@22999: hence "N \ \ = N" wenzelm@32960: and "N' \ \ = N'" by auto krauss@22999: thus ?thesis krauss@22999: by (auto intro!: measures_less intro: psubset_card_mono) krauss@22999: qed krauss@22999: qed krauss@22999: wenzelm@23219: end