paulson@14365: (* Title: HOL/Library/Rational.thy paulson@14365: ID: $Id$ paulson@14365: Author: Markus Wenzel, TU Muenchen paulson@14365: *) paulson@14365: wenzelm@14691: header {* Rational numbers *} paulson@14365: nipkow@15131: theory Rational huffman@18913: imports Main haftmann@16417: uses ("rat_arith.ML") nipkow@15131: begin paulson@14365: huffman@18913: subsection {* Rational numbers *} paulson@14365: paulson@14365: subsubsection {* Equivalence of fractions *} paulson@14365: wenzelm@19765: definition wenzelm@21404: fraction :: "(int \ int) set" where wenzelm@19765: "fraction = {x. snd x \ 0}" huffman@18913: wenzelm@21404: definition wenzelm@21404: ratrel :: "((int \ int) \ (int \ int)) set" where wenzelm@19765: "ratrel = {(x,y). snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x}" paulson@14365: huffman@18913: lemma fraction_iff [simp]: "(x \ fraction) = (snd x \ 0)" huffman@18913: by (simp add: fraction_def) paulson@14365: huffman@18913: lemma ratrel_iff [simp]: huffman@18913: "((x,y) \ ratrel) = huffman@18913: (snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x)" huffman@18913: by (simp add: ratrel_def) paulson@14365: huffman@18913: lemma refl_ratrel: "refl fraction ratrel" huffman@18913: by (auto simp add: refl_def fraction_def ratrel_def) huffman@18913: huffman@18913: lemma sym_ratrel: "sym ratrel" huffman@18913: by (simp add: ratrel_def sym_def) huffman@18913: huffman@18913: lemma trans_ratrel_lemma: huffman@18913: assumes 1: "a * b' = a' * b" huffman@18913: assumes 2: "a' * b'' = a'' * b'" huffman@18913: assumes 3: "b' \ (0::int)" huffman@18913: shows "a * b'' = a'' * b" huffman@18913: proof - huffman@18913: have "b' * (a * b'') = b'' * (a * b')" by simp huffman@18913: also note 1 huffman@18913: also have "b'' * (a' * b) = b * (a' * b'')" by simp huffman@18913: also note 2 huffman@18913: also have "b * (a'' * b') = b' * (a'' * b)" by simp huffman@18913: finally have "b' * (a * b'') = b' * (a'' * b)" . huffman@18913: with 3 show "a * b'' = a'' * b" by simp paulson@14365: qed paulson@14365: huffman@18913: lemma trans_ratrel: "trans ratrel" huffman@18913: by (auto simp add: trans_def elim: trans_ratrel_lemma) huffman@18913: huffman@18913: lemma equiv_ratrel: "equiv fraction ratrel" huffman@18913: by (rule equiv.intro [OF refl_ratrel sym_ratrel trans_ratrel]) huffman@18913: huffman@18913: lemmas equiv_ratrel_iff [iff] = eq_equiv_class_iff [OF equiv_ratrel] huffman@18913: huffman@18913: lemma equiv_ratrel_iff2: huffman@18913: "\snd x \ 0; snd y \ 0\ huffman@18913: \ (ratrel `` {x} = ratrel `` {y}) = ((x,y) \ ratrel)" huffman@18913: by (rule eq_equiv_class_iff [OF equiv_ratrel], simp_all) paulson@14365: paulson@14365: huffman@18913: subsubsection {* The type of rational numbers *} paulson@14365: huffman@18913: typedef (Rat) rat = "fraction//ratrel" huffman@18913: proof huffman@18913: have "(0,1) \ fraction" by (simp add: fraction_def) huffman@18913: thus "ratrel``{(0,1)} \ fraction//ratrel" by (rule quotientI) paulson@14365: qed paulson@14365: huffman@18913: lemma ratrel_in_Rat [simp]: "snd x \ 0 \ ratrel``{x} \ Rat" huffman@18913: by (simp add: Rat_def quotientI) huffman@18913: huffman@18913: declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp] huffman@18913: huffman@18913: wenzelm@19765: definition wenzelm@21404: Fract :: "int \ int \ rat" where wenzelm@19765: "Fract a b = Abs_Rat (ratrel``{(a,b)})" huffman@18913: huffman@18913: theorem Rat_cases [case_names Fract, cases type: rat]: wenzelm@21404: "(!!a b. q = Fract a b ==> b \ 0 ==> C) ==> C" wenzelm@21404: by (cases q) (clarsimp simp add: Fract_def Rat_def fraction_def quotient_def) huffman@18913: huffman@18913: theorem Rat_induct [case_names Fract, induct type: rat]: huffman@18913: "(!!a b. b \ 0 ==> P (Fract a b)) ==> P q" huffman@18913: by (cases q) simp huffman@18913: huffman@18913: huffman@18913: subsubsection {* Congruence lemmas *} paulson@14365: huffman@18913: lemma add_congruent2: huffman@18913: "(\x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)}) huffman@18913: respects2 ratrel" huffman@18913: apply (rule equiv_ratrel [THEN congruent2_commuteI]) huffman@18913: apply (simp_all add: left_distrib) huffman@18913: done huffman@18913: huffman@18913: lemma minus_congruent: huffman@18913: "(\x. ratrel``{(- fst x, snd x)}) respects ratrel" huffman@18913: by (simp add: congruent_def) huffman@18913: huffman@18913: lemma mult_congruent2: huffman@18913: "(\x y. ratrel``{(fst x * fst y, snd x * snd y)}) respects2 ratrel" huffman@18913: by (rule equiv_ratrel [THEN congruent2_commuteI], simp_all) huffman@18913: huffman@18913: lemma inverse_congruent: huffman@18913: "(\x. ratrel``{if fst x=0 then (0,1) else (snd x, fst x)}) respects ratrel" huffman@18913: by (auto simp add: congruent_def mult_commute) huffman@18913: huffman@18913: lemma le_congruent2: huffman@18982: "(\x y. {(fst x * snd y)*(snd x * snd y) \ (fst y * snd x)*(snd x * snd y)}) huffman@18913: respects2 ratrel" huffman@18913: proof (clarsimp simp add: congruent2_def) huffman@18913: fix a b a' b' c d c' d'::int paulson@14365: assume neq: "b \ 0" "b' \ 0" "d \ 0" "d' \ 0" huffman@18913: assume eq1: "a * b' = a' * b" huffman@18913: assume eq2: "c * d' = c' * d" paulson@14365: paulson@14365: let ?le = "\a b c d. ((a * d) * (b * d) \ (c * b) * (b * d))" paulson@14365: { paulson@14365: fix a b c d x :: int assume x: "x \ 0" paulson@14365: have "?le a b c d = ?le (a * x) (b * x) c d" paulson@14365: proof - paulson@14365: from x have "0 < x * x" by (auto simp add: zero_less_mult_iff) paulson@14365: hence "?le a b c d = paulson@14365: ((a * d) * (b * d) * (x * x) \ (c * b) * (b * d) * (x * x))" paulson@14365: by (simp add: mult_le_cancel_right) paulson@14365: also have "... = ?le (a * x) (b * x) c d" paulson@14365: by (simp add: mult_ac) paulson@14365: finally show ?thesis . paulson@14365: qed paulson@14365: } note le_factor = this paulson@14365: paulson@14365: let ?D = "b * d" and ?D' = "b' * d'" paulson@14365: from neq have D: "?D \ 0" by simp paulson@14365: from neq have "?D' \ 0" by simp paulson@14365: hence "?le a b c d = ?le (a * ?D') (b * ?D') c d" paulson@14365: by (rule le_factor) paulson@14365: also have "... = ((a * b') * ?D * ?D' * d * d' \ (c * d') * ?D * ?D' * b * b')" paulson@14365: by (simp add: mult_ac) paulson@14365: also have "... = ((a' * b) * ?D * ?D' * d * d' \ (c' * d) * ?D * ?D' * b * b')" paulson@14365: by (simp only: eq1 eq2) paulson@14365: also have "... = ?le (a' * ?D) (b' * ?D) c' d'" paulson@14365: by (simp add: mult_ac) paulson@14365: also from D have "... = ?le a' b' c' d'" paulson@14365: by (rule le_factor [symmetric]) huffman@18913: finally show "?le a b c d = ?le a' b' c' d'" . paulson@14365: qed paulson@14365: huffman@18913: lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel] huffman@18913: lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel] paulson@14365: paulson@14365: paulson@14365: subsubsection {* Standard operations on rational numbers *} paulson@14365: huffman@20522: instance rat :: "{ord, zero, one, plus, times, minus, inverse, power}" .. paulson@14365: paulson@14365: defs (overloaded) huffman@18913: Zero_rat_def: "0 == Fract 0 1" huffman@18913: One_rat_def: "1 == Fract 1 1" huffman@18913: huffman@18913: add_rat_def: huffman@18913: "q + r == huffman@18913: Abs_Rat (\x \ Rep_Rat q. \y \ Rep_Rat r. huffman@18913: ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})" huffman@18913: huffman@18913: minus_rat_def: huffman@18913: "- q == Abs_Rat (\x \ Rep_Rat q. ratrel``{(- fst x, snd x)})" huffman@18913: huffman@18913: diff_rat_def: "q - r == q + - (r::rat)" huffman@18913: huffman@18913: mult_rat_def: huffman@18913: "q * r == huffman@18913: Abs_Rat (\x \ Rep_Rat q. \y \ Rep_Rat r. huffman@18913: ratrel``{(fst x * fst y, snd x * snd y)})" huffman@18913: huffman@18913: inverse_rat_def: huffman@18913: "inverse q == huffman@18913: Abs_Rat (\x \ Rep_Rat q. huffman@18913: ratrel``{if fst x=0 then (0,1) else (snd x, fst x)})" huffman@18913: huffman@18913: divide_rat_def: "q / r == q * inverse (r::rat)" huffman@18913: huffman@18913: le_rat_def: huffman@18982: "q \ r == contents (\x \ Rep_Rat q. \y \ Rep_Rat r. huffman@18982: {(fst x * snd y)*(snd x * snd y) \ (fst y * snd x)*(snd x * snd y)})" huffman@18913: huffman@18913: less_rat_def: "(z < (w::rat)) == (z \ w & z \ w)" huffman@18913: paulson@14365: abs_rat_def: "\q\ == if q < 0 then -q else (q::rat)" paulson@14365: huffman@20522: primrec (rat) huffman@20522: rat_power_0: "q ^ 0 = 1" huffman@20522: rat_power_Suc: "q ^ (Suc n) = (q::rat) * (q ^ n)" huffman@20522: huffman@18913: lemma zero_rat: "0 = Fract 0 1" huffman@18913: by (simp add: Zero_rat_def) paulson@14365: huffman@18913: lemma one_rat: "1 = Fract 1 1" huffman@18913: by (simp add: One_rat_def) huffman@18913: huffman@18913: theorem eq_rat: "b \ 0 ==> d \ 0 ==> huffman@18913: (Fract a b = Fract c d) = (a * d = c * b)" huffman@18913: by (simp add: Fract_def) paulson@14365: paulson@14365: theorem add_rat: "b \ 0 ==> d \ 0 ==> paulson@14365: Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" huffman@18913: by (simp add: Fract_def add_rat_def add_congruent2 UN_ratrel2) paulson@14365: paulson@14365: theorem minus_rat: "b \ 0 ==> -(Fract a b) = Fract (-a) b" huffman@18913: by (simp add: Fract_def minus_rat_def minus_congruent UN_ratrel) paulson@14365: paulson@14365: theorem diff_rat: "b \ 0 ==> d \ 0 ==> paulson@14365: Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" huffman@18913: by (simp add: diff_rat_def add_rat minus_rat) paulson@14365: paulson@14365: theorem mult_rat: "b \ 0 ==> d \ 0 ==> paulson@14365: Fract a b * Fract c d = Fract (a * c) (b * d)" huffman@18913: by (simp add: Fract_def mult_rat_def mult_congruent2 UN_ratrel2) paulson@14365: huffman@18913: theorem inverse_rat: "a \ 0 ==> b \ 0 ==> paulson@14365: inverse (Fract a b) = Fract b a" huffman@18913: by (simp add: Fract_def inverse_rat_def inverse_congruent UN_ratrel) paulson@14365: huffman@18913: theorem divide_rat: "c \ 0 ==> b \ 0 ==> d \ 0 ==> paulson@14365: Fract a b / Fract c d = Fract (a * d) (b * c)" huffman@18913: by (simp add: divide_rat_def inverse_rat mult_rat) paulson@14365: paulson@14365: theorem le_rat: "b \ 0 ==> d \ 0 ==> paulson@14365: (Fract a b \ Fract c d) = ((a * d) * (b * d) \ (c * b) * (b * d))" huffman@18982: by (simp add: Fract_def le_rat_def le_congruent2 UN_ratrel2) paulson@14365: paulson@14365: theorem less_rat: "b \ 0 ==> d \ 0 ==> paulson@14365: (Fract a b < Fract c d) = ((a * d) * (b * d) < (c * b) * (b * d))" huffman@18913: by (simp add: less_rat_def le_rat eq_rat order_less_le) paulson@14365: paulson@14365: theorem abs_rat: "b \ 0 ==> \Fract a b\ = Fract \a\ \b\" paulson@14365: by (simp add: abs_rat_def minus_rat zero_rat less_rat eq_rat) wenzelm@14691: (auto simp add: mult_less_0_iff zero_less_mult_iff order_le_less paulson@14365: split: abs_split) paulson@14365: paulson@14365: paulson@14365: subsubsection {* The ordered field of rational numbers *} paulson@14365: paulson@14365: instance rat :: field paulson@14365: proof paulson@14365: fix q r s :: rat paulson@14365: show "(q + r) + s = q + (r + s)" huffman@18913: by (induct q, induct r, induct s) huffman@18913: (simp add: add_rat add_ac mult_ac int_distrib) paulson@14365: show "q + r = r + q" paulson@14365: by (induct q, induct r) (simp add: add_rat add_ac mult_ac) paulson@14365: show "0 + q = q" paulson@14365: by (induct q) (simp add: zero_rat add_rat) paulson@14365: show "(-q) + q = 0" huffman@18913: by (induct q) (simp add: zero_rat minus_rat add_rat eq_rat) paulson@14365: show "q - r = q + (-r)" paulson@14365: by (induct q, induct r) (simp add: add_rat minus_rat diff_rat) paulson@14365: show "(q * r) * s = q * (r * s)" paulson@14365: by (induct q, induct r, induct s) (simp add: mult_rat mult_ac) paulson@14365: show "q * r = r * q" paulson@14365: by (induct q, induct r) (simp add: mult_rat mult_ac) paulson@14365: show "1 * q = q" paulson@14365: by (induct q) (simp add: one_rat mult_rat) paulson@14365: show "(q + r) * s = q * s + r * s" wenzelm@14691: by (induct q, induct r, induct s) paulson@14365: (simp add: add_rat mult_rat eq_rat int_distrib) paulson@14365: show "q \ 0 ==> inverse q * q = 1" paulson@14365: by (induct q) (simp add: inverse_rat mult_rat one_rat zero_rat eq_rat) paulson@14430: show "q / r = q * inverse r" wenzelm@14691: by (simp add: divide_rat_def) paulson@14365: show "0 \ (1::rat)" wenzelm@14691: by (simp add: zero_rat one_rat eq_rat) paulson@14365: qed paulson@14365: paulson@14365: instance rat :: linorder paulson@14365: proof paulson@14365: fix q r s :: rat paulson@14365: { paulson@14365: assume "q \ r" and "r \ s" paulson@14365: show "q \ s" paulson@14365: proof (insert prems, induct q, induct r, induct s) paulson@14365: fix a b c d e f :: int paulson@14365: assume neq: "b \ 0" "d \ 0" "f \ 0" paulson@14365: assume 1: "Fract a b \ Fract c d" and 2: "Fract c d \ Fract e f" paulson@14365: show "Fract a b \ Fract e f" paulson@14365: proof - paulson@14365: from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f" paulson@14365: by (auto simp add: zero_less_mult_iff linorder_neq_iff) paulson@14365: have "(a * d) * (b * d) * (f * f) \ (c * b) * (b * d) * (f * f)" paulson@14365: proof - paulson@14365: from neq 1 have "(a * d) * (b * d) \ (c * b) * (b * d)" paulson@14365: by (simp add: le_rat) paulson@14365: with ff show ?thesis by (simp add: mult_le_cancel_right) paulson@14365: qed paulson@14365: also have "... = (c * f) * (d * f) * (b * b)" paulson@14365: by (simp only: mult_ac) paulson@14365: also have "... \ (e * d) * (d * f) * (b * b)" paulson@14365: proof - paulson@14365: from neq 2 have "(c * f) * (d * f) \ (e * d) * (d * f)" paulson@14365: by (simp add: le_rat) paulson@14365: with bb show ?thesis by (simp add: mult_le_cancel_right) paulson@14365: qed paulson@14365: finally have "(a * f) * (b * f) * (d * d) \ e * b * (b * f) * (d * d)" paulson@14365: by (simp only: mult_ac) paulson@14365: with dd have "(a * f) * (b * f) \ (e * b) * (b * f)" paulson@14365: by (simp add: mult_le_cancel_right) paulson@14365: with neq show ?thesis by (simp add: le_rat) paulson@14365: qed paulson@14365: qed paulson@14365: next paulson@14365: assume "q \ r" and "r \ q" paulson@14365: show "q = r" paulson@14365: proof (insert prems, induct q, induct r) paulson@14365: fix a b c d :: int paulson@14365: assume neq: "b \ 0" "d \ 0" paulson@14365: assume 1: "Fract a b \ Fract c d" and 2: "Fract c d \ Fract a b" paulson@14365: show "Fract a b = Fract c d" paulson@14365: proof - paulson@14365: from neq 1 have "(a * d) * (b * d) \ (c * b) * (b * d)" paulson@14365: by (simp add: le_rat) paulson@14365: also have "... \ (a * d) * (b * d)" paulson@14365: proof - paulson@14365: from neq 2 have "(c * b) * (d * b) \ (a * d) * (d * b)" paulson@14365: by (simp add: le_rat) paulson@14365: thus ?thesis by (simp only: mult_ac) paulson@14365: qed paulson@14365: finally have "(a * d) * (b * d) = (c * b) * (b * d)" . paulson@14365: moreover from neq have "b * d \ 0" by simp paulson@14365: ultimately have "a * d = c * b" by simp paulson@14365: with neq show ?thesis by (simp add: eq_rat) paulson@14365: qed paulson@14365: qed paulson@14365: next paulson@14365: show "q \ q" paulson@14365: by (induct q) (simp add: le_rat) paulson@14365: show "(q < r) = (q \ r \ q \ r)" paulson@14365: by (simp only: less_rat_def) paulson@14365: show "q \ r \ r \ q" huffman@18913: by (induct q, induct r) huffman@18913: (simp add: le_rat mult_commute, rule linorder_linear) paulson@14365: } paulson@14365: qed paulson@14365: haftmann@22456: instance rat :: distrib_lattice haftmann@22456: "inf r s \ min r s" haftmann@22456: "sup r s \ max r s" haftmann@22456: by default (auto simp add: min_max.sup_inf_distrib1 inf_rat_def sup_rat_def) haftmann@22456: paulson@14365: instance rat :: ordered_field paulson@14365: proof paulson@14365: fix q r s :: rat paulson@14365: show "q \ r ==> s + q \ s + r" paulson@14365: proof (induct q, induct r, induct s) paulson@14365: fix a b c d e f :: int paulson@14365: assume neq: "b \ 0" "d \ 0" "f \ 0" paulson@14365: assume le: "Fract a b \ Fract c d" paulson@14365: show "Fract e f + Fract a b \ Fract e f + Fract c d" paulson@14365: proof - paulson@14365: let ?F = "f * f" from neq have F: "0 < ?F" paulson@14365: by (auto simp add: zero_less_mult_iff) paulson@14365: from neq le have "(a * d) * (b * d) \ (c * b) * (b * d)" paulson@14365: by (simp add: le_rat) paulson@14365: with F have "(a * d) * (b * d) * ?F * ?F \ (c * b) * (b * d) * ?F * ?F" paulson@14365: by (simp add: mult_le_cancel_right) paulson@14365: with neq show ?thesis by (simp add: add_rat le_rat mult_ac int_distrib) paulson@14365: qed paulson@14365: qed paulson@14365: show "q < r ==> 0 < s ==> s * q < s * r" paulson@14365: proof (induct q, induct r, induct s) paulson@14365: fix a b c d e f :: int paulson@14365: assume neq: "b \ 0" "d \ 0" "f \ 0" paulson@14365: assume le: "Fract a b < Fract c d" paulson@14365: assume gt: "0 < Fract e f" paulson@14365: show "Fract e f * Fract a b < Fract e f * Fract c d" paulson@14365: proof - paulson@14365: let ?E = "e * f" and ?F = "f * f" paulson@14365: from neq gt have "0 < ?E" paulson@14378: by (auto simp add: zero_rat less_rat le_rat order_less_le eq_rat) paulson@14365: moreover from neq have "0 < ?F" paulson@14365: by (auto simp add: zero_less_mult_iff) paulson@14365: moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)" paulson@14365: by (simp add: less_rat) paulson@14365: ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F" paulson@14365: by (simp add: mult_less_cancel_right) paulson@14365: with neq show ?thesis paulson@14365: by (simp add: less_rat mult_rat mult_ac) paulson@14365: qed paulson@14365: qed paulson@14365: show "\q\ = (if q < 0 then -q else q)" paulson@14365: by (simp only: abs_rat_def) haftmann@22456: qed auto paulson@14365: paulson@14365: instance rat :: division_by_zero paulson@14365: proof huffman@18913: show "inverse 0 = (0::rat)" huffman@18913: by (simp add: zero_rat Fract_def inverse_rat_def huffman@18913: inverse_congruent UN_ratrel) paulson@14365: qed paulson@14365: huffman@20522: instance rat :: recpower huffman@20522: proof huffman@20522: fix q :: rat huffman@20522: fix n :: nat huffman@20522: show "q ^ 0 = 1" by simp huffman@20522: show "q ^ (Suc n) = q * (q ^ n)" by simp huffman@20522: qed huffman@20522: paulson@14365: paulson@14365: subsection {* Various Other Results *} paulson@14365: paulson@14365: lemma minus_rat_cancel [simp]: "b \ 0 ==> Fract (-a) (-b) = Fract a b" huffman@18913: by (simp add: eq_rat) paulson@14365: paulson@14365: theorem Rat_induct_pos [case_names Fract, induct type: rat]: paulson@14365: assumes step: "!!a b. 0 < b ==> P (Fract a b)" paulson@14365: shows "P q" paulson@14365: proof (cases q) paulson@14365: have step': "!!a b. b < 0 ==> P (Fract a b)" paulson@14365: proof - paulson@14365: fix a::int and b::int paulson@14365: assume b: "b < 0" paulson@14365: hence "0 < -b" by simp paulson@14365: hence "P (Fract (-a) (-b))" by (rule step) paulson@14365: thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b]) paulson@14365: qed paulson@14365: case (Fract a b) paulson@14365: thus "P q" by (force simp add: linorder_neq_iff step step') paulson@14365: qed paulson@14365: paulson@14365: lemma zero_less_Fract_iff: paulson@14365: "0 < b ==> (0 < Fract a b) = (0 < a)" wenzelm@14691: by (simp add: zero_rat less_rat order_less_imp_not_eq2 zero_less_mult_iff) paulson@14365: paulson@14378: lemma Fract_add_one: "n \ 0 ==> Fract (m + n) n = Fract m n + 1" paulson@14378: apply (insert add_rat [of concl: m n 1 1]) wenzelm@14691: apply (simp add: one_rat [symmetric]) paulson@14378: done paulson@14378: paulson@14378: lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" wenzelm@14691: apply (induct k) wenzelm@14691: apply (simp add: zero_rat) wenzelm@14691: apply (simp add: Fract_add_one) paulson@14378: done paulson@14378: paulson@14378: lemma Fract_of_int_eq: "Fract k 1 = of_int k" wenzelm@14691: proof (cases k rule: int_cases) paulson@14378: case (nonneg n) paulson@14378: thus ?thesis by (simp add: int_eq_of_nat Fract_of_nat_eq) wenzelm@14691: next paulson@14378: case (neg n) paulson@14378: hence "Fract k 1 = - (Fract (of_nat (Suc n)) 1)" wenzelm@14691: by (simp only: minus_rat int_eq_of_nat) paulson@14378: also have "... = - (of_nat (Suc n))" paulson@14378: by (simp only: Fract_of_nat_eq) wenzelm@14691: finally show ?thesis wenzelm@14691: by (simp add: only: prems int_eq_of_nat of_int_minus of_int_of_nat_eq) wenzelm@14691: qed paulson@14378: paulson@14378: wenzelm@14691: subsection {* Numerals and Arithmetic *} paulson@14387: haftmann@22456: instance rat :: number haftmann@22456: rat_number_of_def: "(number_of w :: rat) \ of_int w" .. paulson@14387: paulson@14387: instance rat :: number_ring wenzelm@19765: by default (simp add: rat_number_of_def) paulson@14387: paulson@14387: use "rat_arith.ML" paulson@14387: setup rat_arith_setup paulson@14387: huffman@23342: huffman@23342: subsection {* Embedding from Rationals to other Fields *} huffman@23342: huffman@23342: axclass field_char_0 < field, ring_char_0 huffman@23342: huffman@23342: instance ordered_field < field_char_0 .. huffman@23342: huffman@23342: definition huffman@23342: of_rat :: "rat \ 'a::field_char_0" huffman@23342: where huffman@23342: "of_rat q = contents (\(a,b) \ Rep_Rat q. {of_int a / of_int b})" huffman@23342: huffman@23342: lemma of_rat_congruent: huffman@23342: "(\(a, b). {of_int a / of_int b::'a::field_char_0}) respects ratrel" huffman@23342: apply (rule congruent.intro) huffman@23342: apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) huffman@23342: apply (simp only: of_int_mult [symmetric]) huffman@23342: done huffman@23342: huffman@23342: lemma of_rat_rat: huffman@23342: "b \ 0 \ of_rat (Fract a b) = of_int a / of_int b" huffman@23342: unfolding Fract_def of_rat_def huffman@23342: by (simp add: UN_ratrel of_rat_congruent) huffman@23342: huffman@23342: lemma of_rat_0 [simp]: "of_rat 0 = 0" huffman@23342: by (simp add: Zero_rat_def of_rat_rat) huffman@23342: huffman@23342: lemma of_rat_1 [simp]: "of_rat 1 = 1" huffman@23342: by (simp add: One_rat_def of_rat_rat) huffman@23342: huffman@23342: lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b" huffman@23342: by (induct a, induct b, simp add: add_rat of_rat_rat add_frac_eq) huffman@23342: huffman@23343: lemma of_rat_minus: "of_rat (- a) = - of_rat a" huffman@23343: by (induct a, simp add: minus_rat of_rat_rat) huffman@23343: huffman@23343: lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b" huffman@23343: by (simp only: diff_minus of_rat_add of_rat_minus) huffman@23343: huffman@23342: lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b" huffman@23342: apply (induct a, induct b, simp add: mult_rat of_rat_rat) huffman@23342: apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac) huffman@23342: done huffman@23342: huffman@23342: lemma nonzero_of_rat_inverse: huffman@23342: "a \ 0 \ of_rat (inverse a) = inverse (of_rat a)" huffman@23343: apply (rule inverse_unique [symmetric]) huffman@23343: apply (simp add: of_rat_mult [symmetric]) huffman@23342: done huffman@23342: huffman@23342: lemma of_rat_inverse: huffman@23342: "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) = huffman@23342: inverse (of_rat a)" huffman@23342: by (cases "a = 0", simp_all add: nonzero_of_rat_inverse) huffman@23342: huffman@23342: lemma nonzero_of_rat_divide: huffman@23342: "b \ 0 \ of_rat (a / b) = of_rat a / of_rat b" huffman@23342: by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse) huffman@23342: huffman@23342: lemma of_rat_divide: huffman@23342: "(of_rat (a / b)::'a::{field_char_0,division_by_zero}) huffman@23342: = of_rat a / of_rat b" huffman@23342: by (cases "b = 0", simp_all add: nonzero_of_rat_divide) huffman@23342: huffman@23343: lemma of_rat_power: huffman@23343: "(of_rat (a ^ n)::'a::{field_char_0,recpower}) = of_rat a ^ n" huffman@23343: by (induct n) (simp_all add: of_rat_mult power_Suc) huffman@23343: huffman@23343: lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)" huffman@23343: apply (induct a, induct b) huffman@23343: apply (simp add: of_rat_rat eq_rat) huffman@23343: apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) huffman@23343: apply (simp only: of_int_mult [symmetric] of_int_eq_iff) huffman@23343: done huffman@23343: huffman@23343: lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified] huffman@23343: huffman@23343: lemma of_rat_eq_id [simp]: "of_rat = (id :: rat \ rat)" huffman@23343: proof huffman@23343: fix a huffman@23343: show "of_rat a = id a" huffman@23343: by (induct a) huffman@23343: (simp add: of_rat_rat divide_rat Fract_of_int_eq [symmetric]) huffman@23343: qed huffman@23343: huffman@23343: text{*Collapse nested embeddings*} huffman@23343: lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" huffman@23343: by (induct n) (simp_all add: of_rat_add) huffman@23343: huffman@23343: lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z" huffman@23343: by (cases z rule: int_diff_cases', simp add: of_rat_diff) huffman@23343: huffman@23343: lemma of_rat_number_of_eq [simp]: huffman@23343: "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})" huffman@23343: by (simp add: number_of_eq) huffman@23343: paulson@14365: end