paulson@12224: (* Title : Log.thy paulson@12224: Author : Jacques D. Fleuriot avigad@16819: Additional contributions by Jeremy Avigad paulson@12224: Copyright : 2000,2001 University of Edinburgh paulson@12224: *) paulson@12224: paulson@14411: header{*Logarithms: Standard Version*} paulson@14411: nipkow@15131: theory Log nipkow@15140: imports Transcendental nipkow@15131: begin paulson@12224: wenzelm@19765: definition wenzelm@21404: powr :: "[real,real] => real" (infixr "powr" 80) where paulson@14411: --{*exponentation with real exponent*} wenzelm@19765: "x powr a = exp(a * ln x)" paulson@12224: wenzelm@21404: definition wenzelm@21404: log :: "[real,real] => real" where nipkow@15053: --{*logarithm of @{term x} to base @{term a}*} wenzelm@19765: "log a x = ln x / ln a" paulson@12224: paulson@14411: paulson@14411: paulson@14411: lemma powr_one_eq_one [simp]: "1 powr a = 1" paulson@14411: by (simp add: powr_def) paulson@14411: paulson@14411: lemma powr_zero_eq_one [simp]: "x powr 0 = 1" paulson@14411: by (simp add: powr_def) paulson@14411: paulson@14411: lemma powr_one_gt_zero_iff [simp]: "(x powr 1 = x) = (0 < x)" paulson@14411: by (simp add: powr_def) paulson@14411: declare powr_one_gt_zero_iff [THEN iffD2, simp] paulson@14411: paulson@14411: lemma powr_mult: paulson@14411: "[| 0 < x; 0 < y |] ==> (x * y) powr a = (x powr a) * (y powr a)" paulson@14411: by (simp add: powr_def exp_add [symmetric] ln_mult right_distrib) paulson@14411: paulson@14411: lemma powr_gt_zero [simp]: "0 < x powr a" paulson@14411: by (simp add: powr_def) paulson@14411: avigad@16819: lemma powr_ge_pzero [simp]: "0 <= x powr y" avigad@16819: by (rule order_less_imp_le, rule powr_gt_zero) avigad@16819: paulson@14411: lemma powr_not_zero [simp]: "x powr a \ 0" paulson@14411: by (simp add: powr_def) paulson@14411: paulson@14411: lemma powr_divide: paulson@14411: "[| 0 < x; 0 < y |] ==> (x / y) powr a = (x powr a)/(y powr a)" paulson@14430: apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult) paulson@14411: apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse) paulson@14411: done paulson@14411: avigad@16819: lemma powr_divide2: "x powr a / x powr b = x powr (a - b)" avigad@16819: apply (simp add: powr_def) avigad@16819: apply (subst exp_diff [THEN sym]) avigad@16819: apply (simp add: left_diff_distrib) avigad@16819: done avigad@16819: paulson@14411: lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)" paulson@14411: by (simp add: powr_def exp_add [symmetric] left_distrib) paulson@14411: paulson@14411: lemma powr_powr: "(x powr a) powr b = x powr (a * b)" paulson@14411: by (simp add: powr_def) paulson@14411: paulson@14411: lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a" huffman@36777: by (simp add: powr_powr mult_commute) paulson@14411: paulson@14411: lemma powr_minus: "x powr (-a) = inverse (x powr a)" paulson@14411: by (simp add: powr_def exp_minus [symmetric]) paulson@14411: paulson@14411: lemma powr_minus_divide: "x powr (-a) = 1/(x powr a)" paulson@14430: by (simp add: divide_inverse powr_minus) paulson@14411: paulson@14411: lemma powr_less_mono: "[| a < b; 1 < x |] ==> x powr a < x powr b" paulson@14411: by (simp add: powr_def) paulson@14411: paulson@14411: lemma powr_less_cancel: "[| x powr a < x powr b; 1 < x |] ==> a < b" paulson@14411: by (simp add: powr_def) paulson@14411: paulson@14411: lemma powr_less_cancel_iff [simp]: "1 < x ==> (x powr a < x powr b) = (a < b)" paulson@14411: by (blast intro: powr_less_cancel powr_less_mono) paulson@14411: paulson@14411: lemma powr_le_cancel_iff [simp]: "1 < x ==> (x powr a \ x powr b) = (a \ b)" paulson@14411: by (simp add: linorder_not_less [symmetric]) paulson@14411: paulson@14411: lemma log_ln: "ln x = log (exp(1)) x" paulson@14411: by (simp add: log_def) paulson@14411: hoelzl@45916: lemma DERIV_log: assumes "x > 0" shows "DERIV (\y. log b y) x :> 1 / (ln b * x)" hoelzl@45916: proof - hoelzl@45916: def lb \ "1 / ln b" hoelzl@45916: moreover have "DERIV (\y. lb * ln y) x :> lb / x" hoelzl@45916: using `x > 0` by (auto intro!: DERIV_intros) hoelzl@45916: ultimately show ?thesis hoelzl@45916: by (simp add: log_def) hoelzl@45916: qed hoelzl@45916: hoelzl@45916: lemmas DERIV_log[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros] paulson@33716: paulson@14411: lemma powr_log_cancel [simp]: paulson@14411: "[| 0 < a; a \ 1; 0 < x |] ==> a powr (log a x) = x" paulson@14411: by (simp add: powr_def log_def) paulson@14411: paulson@14411: lemma log_powr_cancel [simp]: "[| 0 < a; a \ 1 |] ==> log a (a powr y) = y" paulson@14411: by (simp add: log_def powr_def) paulson@14411: paulson@14411: lemma log_mult: paulson@14411: "[| 0 < a; a \ 1; 0 < x; 0 < y |] paulson@14411: ==> log a (x * y) = log a x + log a y" paulson@14430: by (simp add: log_def ln_mult divide_inverse left_distrib) paulson@14411: paulson@14411: lemma log_eq_div_ln_mult_log: paulson@14411: "[| 0 < a; a \ 1; 0 < b; b \ 1; 0 < x |] paulson@14411: ==> log a x = (ln b/ln a) * log b x" paulson@14430: by (simp add: log_def divide_inverse) paulson@14411: paulson@14411: text{*Base 10 logarithms*} paulson@14411: lemma log_base_10_eq1: "0 < x ==> log 10 x = (ln (exp 1) / ln 10) * ln x" paulson@14411: by (simp add: log_def) paulson@14411: paulson@14411: lemma log_base_10_eq2: "0 < x ==> log 10 x = (log 10 (exp 1)) * ln x" paulson@14411: by (simp add: log_def) paulson@14411: paulson@14411: lemma log_one [simp]: "log a 1 = 0" paulson@14411: by (simp add: log_def) paulson@14411: paulson@14411: lemma log_eq_one [simp]: "[| 0 < a; a \ 1 |] ==> log a a = 1" paulson@14411: by (simp add: log_def) paulson@14411: paulson@14411: lemma log_inverse: paulson@14411: "[| 0 < a; a \ 1; 0 < x |] ==> log a (inverse x) = - log a x" paulson@14411: apply (rule_tac a1 = "log a x" in add_left_cancel [THEN iffD1]) paulson@14411: apply (simp add: log_mult [symmetric]) paulson@14411: done paulson@14411: paulson@14411: lemma log_divide: paulson@14411: "[|0 < a; a \ 1; 0 < x; 0 < y|] ==> log a (x/y) = log a x - log a y" paulson@14430: by (simp add: log_mult divide_inverse log_inverse) paulson@14411: paulson@14411: lemma log_less_cancel_iff [simp]: paulson@14411: "[| 1 < a; 0 < x; 0 < y |] ==> (log a x < log a y) = (x < y)" paulson@14411: apply safe paulson@14411: apply (rule_tac [2] powr_less_cancel) paulson@14411: apply (drule_tac a = "log a x" in powr_less_mono, auto) paulson@14411: done paulson@14411: hoelzl@36622: lemma log_inj: assumes "1 < b" shows "inj_on (log b) {0 <..}" hoelzl@36622: proof (rule inj_onI, simp) hoelzl@36622: fix x y assume pos: "0 < x" "0 < y" and *: "log b x = log b y" hoelzl@36622: show "x = y" hoelzl@36622: proof (cases rule: linorder_cases) hoelzl@36622: assume "x < y" hence "log b x < log b y" hoelzl@36622: using log_less_cancel_iff[OF `1 < b`] pos by simp hoelzl@36622: thus ?thesis using * by simp hoelzl@36622: next hoelzl@36622: assume "y < x" hence "log b y < log b x" hoelzl@36622: using log_less_cancel_iff[OF `1 < b`] pos by simp hoelzl@36622: thus ?thesis using * by simp hoelzl@36622: qed simp hoelzl@36622: qed hoelzl@36622: paulson@14411: lemma log_le_cancel_iff [simp]: paulson@14411: "[| 1 < a; 0 < x; 0 < y |] ==> (log a x \ log a y) = (x \ y)" paulson@14411: by (simp add: linorder_not_less [symmetric]) paulson@14411: paulson@14411: paulson@15085: lemma powr_realpow: "0 < x ==> x powr (real n) = x^n" paulson@15085: apply (induct n, simp) paulson@15085: apply (subgoal_tac "real(Suc n) = real n + 1") paulson@15085: apply (erule ssubst) paulson@15085: apply (subst powr_add, simp, simp) paulson@15085: done paulson@15085: paulson@15085: lemma powr_realpow2: "0 <= x ==> 0 < n ==> x^n = (if (x = 0) then 0 paulson@15085: else x powr (real n))" paulson@15085: apply (case_tac "x = 0", simp, simp) paulson@15085: apply (rule powr_realpow [THEN sym], simp) paulson@15085: done paulson@15085: paulson@33716: lemma ln_powr: "0 < x ==> 0 < y ==> ln(x powr y) = y * ln x" paulson@15085: by (unfold powr_def, simp) paulson@15085: paulson@33716: lemma log_powr: "0 < x ==> 0 \ y ==> log b (x powr y) = y * log b x" paulson@33716: apply (case_tac "y = 0") paulson@33716: apply force paulson@33716: apply (auto simp add: log_def ln_powr field_simps) paulson@33716: done paulson@33716: paulson@33716: lemma log_nat_power: "0 < x ==> log b (x^n) = real n * log b x" paulson@33716: apply (subst powr_realpow [symmetric]) paulson@33716: apply (auto simp add: log_powr) paulson@33716: done paulson@33716: paulson@15085: lemma ln_bound: "1 <= x ==> ln x <= x" paulson@15085: apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1") paulson@15085: apply simp paulson@15085: apply (rule ln_add_one_self_le_self, simp) paulson@15085: done paulson@15085: paulson@15085: lemma powr_mono: "a <= b ==> 1 <= x ==> x powr a <= x powr b" paulson@15085: apply (case_tac "x = 1", simp) paulson@15085: apply (case_tac "a = b", simp) paulson@15085: apply (rule order_less_imp_le) paulson@15085: apply (rule powr_less_mono, auto) paulson@15085: done paulson@15085: paulson@15085: lemma ge_one_powr_ge_zero: "1 <= x ==> 0 <= a ==> 1 <= x powr a" paulson@15085: apply (subst powr_zero_eq_one [THEN sym]) paulson@15085: apply (rule powr_mono, assumption+) paulson@15085: done paulson@15085: paulson@15085: lemma powr_less_mono2: "0 < a ==> 0 < x ==> x < y ==> x powr a < paulson@15085: y powr a" paulson@15085: apply (unfold powr_def) paulson@15085: apply (rule exp_less_mono) paulson@15085: apply (rule mult_strict_left_mono) paulson@15085: apply (subst ln_less_cancel_iff, assumption) paulson@15085: apply (rule order_less_trans) paulson@15085: prefer 2 paulson@15085: apply assumption+ paulson@15085: done paulson@15085: avigad@16819: lemma powr_less_mono2_neg: "a < 0 ==> 0 < x ==> x < y ==> y powr a < avigad@16819: x powr a" avigad@16819: apply (unfold powr_def) avigad@16819: apply (rule exp_less_mono) avigad@16819: apply (rule mult_strict_left_mono_neg) avigad@16819: apply (subst ln_less_cancel_iff) avigad@16819: apply assumption avigad@16819: apply (rule order_less_trans) avigad@16819: prefer 2 avigad@16819: apply assumption+ avigad@16819: done avigad@16819: avigad@16819: lemma powr_mono2: "0 <= a ==> 0 < x ==> x <= y ==> x powr a <= y powr a" paulson@15085: apply (case_tac "a = 0", simp) paulson@15085: apply (case_tac "x = y", simp) paulson@15085: apply (rule order_less_imp_le) paulson@15085: apply (rule powr_less_mono2, auto) paulson@15085: done paulson@15085: avigad@16819: lemma ln_powr_bound: "1 <= x ==> 0 < a ==> ln x <= (x powr a) / a" avigad@16819: apply (rule mult_imp_le_div_pos) avigad@16819: apply (assumption) avigad@16819: apply (subst mult_commute) paulson@33716: apply (subst ln_powr [THEN sym]) avigad@16819: apply auto avigad@16819: apply (rule ln_bound) avigad@16819: apply (erule ge_one_powr_ge_zero) avigad@16819: apply (erule order_less_imp_le) avigad@16819: done avigad@16819: wenzelm@41550: lemma ln_powr_bound2: wenzelm@41550: assumes "1 < x" and "0 < a" wenzelm@41550: shows "(ln x) powr a <= (a powr a) * x" avigad@16819: proof - wenzelm@41550: from assms have "ln x <= (x powr (1 / a)) / (1 / a)" avigad@16819: apply (intro ln_powr_bound) avigad@16819: apply (erule order_less_imp_le) avigad@16819: apply (rule divide_pos_pos) avigad@16819: apply simp_all avigad@16819: done avigad@16819: also have "... = a * (x powr (1 / a))" avigad@16819: by simp avigad@16819: finally have "(ln x) powr a <= (a * (x powr (1 / a))) powr a" avigad@16819: apply (intro powr_mono2) wenzelm@41550: apply (rule order_less_imp_le, rule assms) avigad@16819: apply (rule ln_gt_zero) wenzelm@41550: apply (rule assms) avigad@16819: apply assumption avigad@16819: done avigad@16819: also have "... = (a powr a) * ((x powr (1 / a)) powr a)" avigad@16819: apply (rule powr_mult) wenzelm@41550: apply (rule assms) avigad@16819: apply (rule powr_gt_zero) avigad@16819: done avigad@16819: also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)" avigad@16819: by (rule powr_powr) avigad@16819: also have "... = x" avigad@16819: apply simp avigad@16819: apply (subgoal_tac "a ~= 0") wenzelm@41550: using assms apply auto avigad@16819: done avigad@16819: finally show ?thesis . avigad@16819: qed avigad@16819: huffman@45915: lemma tendsto_powr [tendsto_intros]: huffman@45915: "\(f ---> a) F; (g ---> b) F; 0 < a\ \ ((\x. f x powr g x) ---> a powr b) F" huffman@45915: unfolding powr_def by (intro tendsto_intros) huffman@45915: noschinl@45892: (* FIXME: generalize by replacing d by with g x and g ---> d? *) noschinl@45892: lemma tendsto_zero_powrI: noschinl@45892: assumes "eventually (\x. 0 < f x ) F" and "(f ---> 0) F" noschinl@45892: assumes "0 < d" noschinl@45892: shows "((\x. f x powr d) ---> 0) F" noschinl@45892: proof (rule tendstoI) noschinl@45892: fix e :: real assume "0 < e" noschinl@45892: def Z \ "e powr (1 / d)" noschinl@45892: with `0 < e` have "0 < Z" by simp noschinl@45892: with assms have "eventually (\x. 0 < f x \ dist (f x) 0 < Z) F" noschinl@45892: by (intro eventually_conj tendstoD) noschinl@45892: moreover noschinl@45892: from assms have "\x. 0 < x \ dist x 0 < Z \ x powr d < Z powr d" noschinl@45892: by (intro powr_less_mono2) (auto simp: dist_real_def) noschinl@45892: with assms `0 < e` have "\x. 0 < x \ dist x 0 < Z \ dist (x powr d) 0 < e" noschinl@45892: unfolding dist_real_def Z_def by (auto simp: powr_powr) noschinl@45892: ultimately noschinl@45892: show "eventually (\x. dist (f x powr d) 0 < e) F" by (rule eventually_elim1) noschinl@45892: qed noschinl@45892: noschinl@45892: lemma tendsto_neg_powr: noschinl@45892: assumes "s < 0" and "real_tendsto_inf f F" noschinl@45892: shows "((\x. f x powr s) ---> 0) F" noschinl@45892: proof (rule tendstoI) noschinl@45892: fix e :: real assume "0 < e" noschinl@45892: def Z \ "e powr (1 / s)" noschinl@45892: from assms have "eventually (\x. Z < f x) F" by (simp add: real_tendsto_inf_def) noschinl@45892: moreover noschinl@45892: from assms have "\x. Z < x \ x powr s < Z powr s" noschinl@45892: by (auto simp: Z_def intro!: powr_less_mono2_neg) noschinl@45892: with assms `0 < e` have "\x. Z < x \ dist (x powr s) 0 < e" noschinl@45892: by (simp add: powr_powr Z_def dist_real_def) noschinl@45892: ultimately noschinl@45892: show "eventually (\x. dist (f x powr s) 0 < e) F" by (rule eventually_elim1) wenzelm@41550: qed avigad@16819: paulson@12224: end