haftmann@28952: (* Title: HOL/Rational.thy paulson@14365: Author: Markus Wenzel, TU Muenchen paulson@14365: *) paulson@14365: wenzelm@14691: header {* Rational numbers *} paulson@14365: nipkow@15131: theory Rational huffman@29880: imports GCD haftmann@28952: uses ("Tools/rat_arith.ML") nipkow@15131: begin paulson@14365: haftmann@27551: subsection {* Rational numbers as quotient *} paulson@14365: haftmann@27551: subsubsection {* Construction of the type of rational numbers *} huffman@18913: wenzelm@21404: definition wenzelm@21404: ratrel :: "((int \ int) \ (int \ int)) set" where haftmann@27551: "ratrel = {(x, y). snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x}" paulson@14365: huffman@18913: lemma ratrel_iff [simp]: haftmann@27551: "(x, y) \ ratrel \ snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x" haftmann@27551: by (simp add: ratrel_def) paulson@14365: haftmann@27551: lemma refl_ratrel: "refl {x. snd x \ 0} ratrel" haftmann@27551: by (auto simp add: refl_def ratrel_def) huffman@18913: huffman@18913: lemma sym_ratrel: "sym ratrel" haftmann@27551: by (simp add: ratrel_def sym_def) paulson@14365: huffman@18913: lemma trans_ratrel: "trans ratrel" haftmann@27551: proof (rule transI, unfold split_paired_all) haftmann@27551: fix a b a' b' a'' b'' :: int haftmann@27551: assume A: "((a, b), (a', b')) \ ratrel" haftmann@27551: assume B: "((a', b'), (a'', b'')) \ ratrel" haftmann@27551: have "b' * (a * b'') = b'' * (a * b')" by simp haftmann@27551: also from A have "a * b' = a' * b" by auto haftmann@27551: also have "b'' * (a' * b) = b * (a' * b'')" by simp haftmann@27551: also from B have "a' * b'' = a'' * b'" by auto haftmann@27551: also have "b * (a'' * b') = b' * (a'' * b)" by simp haftmann@27551: finally have "b' * (a * b'') = b' * (a'' * b)" . haftmann@27551: moreover from B have "b' \ 0" by auto haftmann@27551: ultimately have "a * b'' = a'' * b" by simp haftmann@27551: with A B show "((a, b), (a'', b'')) \ ratrel" by auto paulson@14365: qed haftmann@27551: haftmann@27551: lemma equiv_ratrel: "equiv {x. snd x \ 0} ratrel" haftmann@27551: by (rule equiv.intro [OF refl_ratrel sym_ratrel trans_ratrel]) paulson@14365: huffman@18913: lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel] huffman@18913: lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel] paulson@14365: haftmann@27551: lemma equiv_ratrel_iff [iff]: haftmann@27551: assumes "snd x \ 0" and "snd y \ 0" haftmann@27551: shows "ratrel `` {x} = ratrel `` {y} \ (x, y) \ ratrel" haftmann@27551: by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms) paulson@14365: haftmann@27551: typedef (Rat) rat = "{x. snd x \ 0} // ratrel" haftmann@27551: proof haftmann@27551: have "(0::int, 1::int) \ {x. snd x \ 0}" by simp haftmann@27551: then show "ratrel `` {(0, 1)} \ {x. snd x \ 0} // ratrel" by (rule quotientI) haftmann@27551: qed haftmann@27551: haftmann@27551: lemma ratrel_in_Rat [simp]: "snd x \ 0 \ ratrel `` {x} \ Rat" haftmann@27551: by (simp add: Rat_def quotientI) haftmann@27551: haftmann@27551: declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp] haftmann@27551: haftmann@27551: haftmann@27551: subsubsection {* Representation and basic operations *} haftmann@27551: haftmann@27551: definition haftmann@27551: Fract :: "int \ int \ rat" where haftmann@28562: [code del]: "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})" paulson@14365: haftmann@27551: code_datatype Fract haftmann@27551: haftmann@27551: lemma Rat_cases [case_names Fract, cases type: rat]: haftmann@27551: assumes "\a b. q = Fract a b \ b \ 0 \ C" haftmann@27551: shows C haftmann@27551: using assms by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def) haftmann@27551: haftmann@27551: lemma Rat_induct [case_names Fract, induct type: rat]: haftmann@27551: assumes "\a b. b \ 0 \ P (Fract a b)" haftmann@27551: shows "P q" haftmann@27551: using assms by (cases q) simp haftmann@27551: haftmann@27551: lemma eq_rat: haftmann@27551: shows "\a b c d. b \ 0 \ d \ 0 \ Fract a b = Fract c d \ a * d = c * b" haftmann@27652: and "\a. Fract a 0 = Fract 0 1" haftmann@27652: and "\a c. Fract 0 a = Fract 0 c" haftmann@27551: by (simp_all add: Fract_def) haftmann@27551: haftmann@27551: instantiation rat :: "{comm_ring_1, recpower}" haftmann@25571: begin haftmann@25571: haftmann@25571: definition haftmann@27551: Zero_rat_def [code, code unfold]: "0 = Fract 0 1" paulson@14365: haftmann@25571: definition haftmann@27551: One_rat_def [code, code unfold]: "1 = Fract 1 1" huffman@18913: haftmann@25571: definition haftmann@28562: add_rat_def [code del]: haftmann@27551: "q + r = Abs_Rat (\x \ Rep_Rat q. \y \ Rep_Rat r. haftmann@27551: ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})" haftmann@27551: haftmann@27652: lemma add_rat [simp]: haftmann@27551: assumes "b \ 0" and "d \ 0" haftmann@27551: shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" haftmann@27551: proof - haftmann@27551: have "(\x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)}) haftmann@27551: respects2 ratrel" haftmann@27551: by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib) haftmann@27551: with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2) haftmann@27551: qed huffman@18913: haftmann@25571: definition haftmann@28562: minus_rat_def [code del]: haftmann@27551: "- q = Abs_Rat (\x \ Rep_Rat q. ratrel `` {(- fst x, snd x)})" haftmann@27551: haftmann@27652: lemma minus_rat [simp, code]: "- Fract a b = Fract (- a) b" haftmann@27551: proof - haftmann@27551: have "(\x. ratrel `` {(- fst x, snd x)}) respects ratrel" haftmann@27551: by (simp add: congruent_def) haftmann@27551: then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel) haftmann@27551: qed haftmann@27551: haftmann@27652: lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b" haftmann@27551: by (cases "b = 0") (simp_all add: eq_rat) haftmann@25571: haftmann@25571: definition haftmann@28562: diff_rat_def [code del]: "q - r = q + - (r::rat)" huffman@18913: haftmann@27652: lemma diff_rat [simp]: haftmann@27551: assumes "b \ 0" and "d \ 0" haftmann@27551: shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" haftmann@27652: using assms by (simp add: diff_rat_def) haftmann@25571: haftmann@25571: definition haftmann@28562: mult_rat_def [code del]: haftmann@27551: "q * r = Abs_Rat (\x \ Rep_Rat q. \y \ Rep_Rat r. haftmann@27551: ratrel``{(fst x * fst y, snd x * snd y)})" paulson@14365: haftmann@27652: lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)" haftmann@27551: proof - haftmann@27551: have "(\x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel" haftmann@27551: by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all haftmann@27551: then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2) paulson@14365: qed paulson@14365: haftmann@27652: lemma mult_rat_cancel: haftmann@27551: assumes "c \ 0" haftmann@27551: shows "Fract (c * a) (c * b) = Fract a b" haftmann@27551: proof - haftmann@27551: from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def) haftmann@27652: then show ?thesis by (simp add: mult_rat [symmetric]) haftmann@27551: qed huffman@27509: huffman@27509: primrec power_rat huffman@27509: where haftmann@27551: rat_power_0: "q ^ 0 = (1\rat)" haftmann@27551: | rat_power_Suc: "q ^ Suc n = (q\rat) * (q ^ n)" huffman@27509: huffman@27509: instance proof chaieb@27668: fix q r s :: rat show "(q * r) * s = q * (r * s)" haftmann@27652: by (cases q, cases r, cases s) (simp add: eq_rat) haftmann@27551: next haftmann@27551: fix q r :: rat show "q * r = r * q" haftmann@27652: by (cases q, cases r) (simp add: eq_rat) haftmann@27551: next haftmann@27551: fix q :: rat show "1 * q = q" haftmann@27652: by (cases q) (simp add: One_rat_def eq_rat) haftmann@27551: next haftmann@27551: fix q r s :: rat show "(q + r) + s = q + (r + s)" nipkow@29667: by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps) haftmann@27551: next haftmann@27551: fix q r :: rat show "q + r = r + q" haftmann@27652: by (cases q, cases r) (simp add: eq_rat) haftmann@27551: next haftmann@27551: fix q :: rat show "0 + q = q" haftmann@27652: by (cases q) (simp add: Zero_rat_def eq_rat) haftmann@27551: next haftmann@27551: fix q :: rat show "- q + q = 0" haftmann@27652: by (cases q) (simp add: Zero_rat_def eq_rat) haftmann@27551: next haftmann@27551: fix q r :: rat show "q - r = q + - r" haftmann@27652: by (cases q, cases r) (simp add: eq_rat) haftmann@27551: next haftmann@27551: fix q r s :: rat show "(q + r) * s = q * s + r * s" nipkow@29667: by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps) haftmann@27551: next haftmann@27551: show "(0::rat) \ 1" by (simp add: Zero_rat_def One_rat_def eq_rat) haftmann@27551: next haftmann@27551: fix q :: rat show "q * 1 = q" haftmann@27652: by (cases q) (simp add: One_rat_def eq_rat) haftmann@27551: next huffman@27509: fix q :: rat huffman@27509: fix n :: nat huffman@27509: show "q ^ 0 = 1" by simp huffman@27509: show "q ^ (Suc n) = q * (q ^ n)" by simp huffman@27509: qed huffman@27509: huffman@27509: end huffman@27509: haftmann@27551: lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1" haftmann@27652: by (induct k) (simp_all add: Zero_rat_def One_rat_def) haftmann@27551: haftmann@27551: lemma of_int_rat: "of_int k = Fract k 1" haftmann@27652: by (cases k rule: int_diff_cases) (simp add: of_nat_rat) haftmann@27551: haftmann@27551: lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" haftmann@27551: by (rule of_nat_rat [symmetric]) haftmann@27551: haftmann@27551: lemma Fract_of_int_eq: "Fract k 1 = of_int k" haftmann@27551: by (rule of_int_rat [symmetric]) haftmann@27551: haftmann@27551: instantiation rat :: number_ring haftmann@27551: begin haftmann@27551: haftmann@27551: definition haftmann@28562: rat_number_of_def [code del]: "number_of w = Fract w 1" haftmann@27551: haftmann@27551: instance by intro_classes (simp add: rat_number_of_def of_int_rat) haftmann@27551: haftmann@27551: end haftmann@27551: haftmann@27551: lemma rat_number_collapse [code post]: haftmann@27551: "Fract 0 k = 0" haftmann@27551: "Fract 1 1 = 1" haftmann@27551: "Fract (number_of k) 1 = number_of k" haftmann@27551: "Fract k 0 = 0" haftmann@27551: by (cases "k = 0") haftmann@27551: (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def) haftmann@27551: haftmann@27551: lemma rat_number_expand [code unfold]: haftmann@27551: "0 = Fract 0 1" haftmann@27551: "1 = Fract 1 1" haftmann@27551: "number_of k = Fract (number_of k) 1" haftmann@27551: by (simp_all add: rat_number_collapse) haftmann@27551: haftmann@27551: lemma iszero_rat [simp]: haftmann@27551: "iszero (number_of k :: rat) \ iszero (number_of k :: int)" haftmann@27551: by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat) haftmann@27551: haftmann@27551: lemma Rat_cases_nonzero [case_names Fract 0]: haftmann@27551: assumes Fract: "\a b. q = Fract a b \ b \ 0 \ a \ 0 \ C" haftmann@27551: assumes 0: "q = 0 \ C" haftmann@27551: shows C haftmann@27551: proof (cases "q = 0") haftmann@27551: case True then show C using 0 by auto haftmann@27551: next haftmann@27551: case False haftmann@27551: then obtain a b where "q = Fract a b" and "b \ 0" by (cases q) auto haftmann@27551: moreover with False have "0 \ Fract a b" by simp haftmann@27551: with `b \ 0` have "a \ 0" by (simp add: Zero_rat_def eq_rat) haftmann@27551: with Fract `q = Fract a b` `b \ 0` show C by auto haftmann@27551: qed haftmann@27551: haftmann@27551: haftmann@27551: haftmann@27551: subsubsection {* The field of rational numbers *} haftmann@27551: haftmann@27551: instantiation rat :: "{field, division_by_zero}" haftmann@27551: begin haftmann@27551: haftmann@27551: definition haftmann@28562: inverse_rat_def [code del]: haftmann@27551: "inverse q = Abs_Rat (\x \ Rep_Rat q. haftmann@27551: ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})" haftmann@27551: haftmann@27652: lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a" haftmann@27551: proof - haftmann@27551: have "(\x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel" haftmann@27551: by (auto simp add: congruent_def mult_commute) haftmann@27551: then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel) huffman@27509: qed huffman@27509: haftmann@27551: definition haftmann@28562: divide_rat_def [code del]: "q / r = q * inverse (r::rat)" haftmann@27551: haftmann@27652: lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)" haftmann@27652: by (simp add: divide_rat_def) haftmann@27551: haftmann@27551: instance proof haftmann@27652: show "inverse 0 = (0::rat)" by (simp add: rat_number_expand) haftmann@27551: (simp add: rat_number_collapse) haftmann@27551: next haftmann@27551: fix q :: rat haftmann@27551: assume "q \ 0" haftmann@27551: then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero) haftmann@27551: (simp_all add: mult_rat inverse_rat rat_number_expand eq_rat) haftmann@27551: next haftmann@27551: fix q r :: rat haftmann@27551: show "q / r = q * inverse r" by (simp add: divide_rat_def) haftmann@27551: qed haftmann@27551: haftmann@27551: end haftmann@27551: haftmann@27551: haftmann@27551: subsubsection {* Various *} haftmann@27551: haftmann@27551: lemma Fract_add_one: "n \ 0 ==> Fract (m + n) n = Fract m n + 1" haftmann@27652: by (simp add: rat_number_expand) haftmann@27551: haftmann@27551: lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l" haftmann@27652: by (simp add: Fract_of_int_eq [symmetric]) haftmann@27551: haftmann@27551: lemma Fract_number_of_quotient [code post]: haftmann@27551: "Fract (number_of k) (number_of l) = number_of k / number_of l" haftmann@27551: unfolding Fract_of_int_quotient number_of_is_id number_of_eq .. haftmann@27551: haftmann@27652: lemma Fract_1_number_of [code post]: haftmann@27652: "Fract 1 (number_of k) = 1 / number_of k" haftmann@27652: unfolding Fract_of_int_quotient number_of_eq by simp haftmann@27551: haftmann@27551: subsubsection {* The ordered field of rational numbers *} huffman@27509: huffman@27509: instantiation rat :: linorder huffman@27509: begin huffman@27509: huffman@27509: definition haftmann@28562: le_rat_def [code del]: huffman@27509: "q \ r \ contents (\x \ Rep_Rat q. \y \ Rep_Rat r. haftmann@27551: {(fst x * snd y) * (snd x * snd y) \ (fst y * snd x) * (snd x * snd y)})" haftmann@27551: haftmann@27652: lemma le_rat [simp]: haftmann@27551: assumes "b \ 0" and "d \ 0" haftmann@27551: shows "Fract a b \ Fract c d \ (a * d) * (b * d) \ (c * b) * (b * d)" haftmann@27551: proof - haftmann@27551: have "(\x y. {(fst x * snd y) * (snd x * snd y) \ (fst y * snd x) * (snd x * snd y)}) haftmann@27551: respects2 ratrel" haftmann@27551: proof (clarsimp simp add: congruent2_def) haftmann@27551: fix a b a' b' c d c' d'::int haftmann@27551: assume neq: "b \ 0" "b' \ 0" "d \ 0" "d' \ 0" haftmann@27551: assume eq1: "a * b' = a' * b" haftmann@27551: assume eq2: "c * d' = c' * d" haftmann@27551: haftmann@27551: let ?le = "\a b c d. ((a * d) * (b * d) \ (c * b) * (b * d))" haftmann@27551: { haftmann@27551: fix a b c d x :: int assume x: "x \ 0" haftmann@27551: have "?le a b c d = ?le (a * x) (b * x) c d" haftmann@27551: proof - haftmann@27551: from x have "0 < x * x" by (auto simp add: zero_less_mult_iff) haftmann@27551: hence "?le a b c d = haftmann@27551: ((a * d) * (b * d) * (x * x) \ (c * b) * (b * d) * (x * x))" haftmann@27551: by (simp add: mult_le_cancel_right) haftmann@27551: also have "... = ?le (a * x) (b * x) c d" haftmann@27551: by (simp add: mult_ac) haftmann@27551: finally show ?thesis . haftmann@27551: qed haftmann@27551: } note le_factor = this haftmann@27551: haftmann@27551: let ?D = "b * d" and ?D' = "b' * d'" haftmann@27551: from neq have D: "?D \ 0" by simp haftmann@27551: from neq have "?D' \ 0" by simp haftmann@27551: hence "?le a b c d = ?le (a * ?D') (b * ?D') c d" haftmann@27551: by (rule le_factor) chaieb@27668: also have "... = ((a * b') * ?D * ?D' * d * d' \ (c * d') * ?D * ?D' * b * b')" haftmann@27551: by (simp add: mult_ac) haftmann@27551: also have "... = ((a' * b) * ?D * ?D' * d * d' \ (c' * d) * ?D * ?D' * b * b')" haftmann@27551: by (simp only: eq1 eq2) haftmann@27551: also have "... = ?le (a' * ?D) (b' * ?D) c' d'" haftmann@27551: by (simp add: mult_ac) haftmann@27551: also from D have "... = ?le a' b' c' d'" haftmann@27551: by (rule le_factor [symmetric]) haftmann@27551: finally show "?le a b c d = ?le a' b' c' d'" . haftmann@27551: qed haftmann@27551: with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2) haftmann@27551: qed huffman@27509: huffman@27509: definition haftmann@28562: less_rat_def [code del]: "z < (w::rat) \ z \ w \ z \ w" huffman@27509: haftmann@27652: lemma less_rat [simp]: haftmann@27551: assumes "b \ 0" and "d \ 0" haftmann@27551: shows "Fract a b < Fract c d \ (a * d) * (b * d) < (c * b) * (b * d)" haftmann@27652: using assms by (simp add: less_rat_def eq_rat order_less_le) huffman@27509: huffman@27509: instance proof paulson@14365: fix q r s :: rat paulson@14365: { paulson@14365: assume "q \ r" and "r \ s" paulson@14365: show "q \ s" paulson@14365: proof (insert prems, induct q, induct r, induct s) paulson@14365: fix a b c d e f :: int paulson@14365: assume neq: "b \ 0" "d \ 0" "f \ 0" paulson@14365: assume 1: "Fract a b \ Fract c d" and 2: "Fract c d \ Fract e f" paulson@14365: show "Fract a b \ Fract e f" paulson@14365: proof - paulson@14365: from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f" paulson@14365: by (auto simp add: zero_less_mult_iff linorder_neq_iff) paulson@14365: have "(a * d) * (b * d) * (f * f) \ (c * b) * (b * d) * (f * f)" paulson@14365: proof - paulson@14365: from neq 1 have "(a * d) * (b * d) \ (c * b) * (b * d)" haftmann@27652: by simp paulson@14365: with ff show ?thesis by (simp add: mult_le_cancel_right) paulson@14365: qed chaieb@27668: also have "... = (c * f) * (d * f) * (b * b)" by algebra paulson@14365: also have "... \ (e * d) * (d * f) * (b * b)" paulson@14365: proof - paulson@14365: from neq 2 have "(c * f) * (d * f) \ (e * d) * (d * f)" haftmann@27652: by simp paulson@14365: with bb show ?thesis by (simp add: mult_le_cancel_right) paulson@14365: qed paulson@14365: finally have "(a * f) * (b * f) * (d * d) \ e * b * (b * f) * (d * d)" paulson@14365: by (simp only: mult_ac) paulson@14365: with dd have "(a * f) * (b * f) \ (e * b) * (b * f)" paulson@14365: by (simp add: mult_le_cancel_right) haftmann@27652: with neq show ?thesis by simp paulson@14365: qed paulson@14365: qed paulson@14365: next paulson@14365: assume "q \ r" and "r \ q" paulson@14365: show "q = r" paulson@14365: proof (insert prems, induct q, induct r) paulson@14365: fix a b c d :: int paulson@14365: assume neq: "b \ 0" "d \ 0" paulson@14365: assume 1: "Fract a b \ Fract c d" and 2: "Fract c d \ Fract a b" paulson@14365: show "Fract a b = Fract c d" paulson@14365: proof - paulson@14365: from neq 1 have "(a * d) * (b * d) \ (c * b) * (b * d)" haftmann@27652: by simp paulson@14365: also have "... \ (a * d) * (b * d)" paulson@14365: proof - paulson@14365: from neq 2 have "(c * b) * (d * b) \ (a * d) * (d * b)" haftmann@27652: by simp paulson@14365: thus ?thesis by (simp only: mult_ac) paulson@14365: qed paulson@14365: finally have "(a * d) * (b * d) = (c * b) * (b * d)" . paulson@14365: moreover from neq have "b * d \ 0" by simp paulson@14365: ultimately have "a * d = c * b" by simp paulson@14365: with neq show ?thesis by (simp add: eq_rat) paulson@14365: qed paulson@14365: qed paulson@14365: next paulson@14365: show "q \ q" haftmann@27652: by (induct q) simp haftmann@27682: show "(q < r) = (q \ r \ \ r \ q)" haftmann@27682: by (induct q, induct r) (auto simp add: le_less mult_commute) paulson@14365: show "q \ r \ r \ q" huffman@18913: by (induct q, induct r) haftmann@27652: (simp add: mult_commute, rule linorder_linear) paulson@14365: } paulson@14365: qed paulson@14365: huffman@27509: end huffman@27509: haftmann@27551: instantiation rat :: "{distrib_lattice, abs_if, sgn_if}" haftmann@25571: begin haftmann@25571: haftmann@25571: definition haftmann@28562: abs_rat_def [code del]: "\q\ = (if q < 0 then -q else (q::rat))" haftmann@27551: haftmann@27652: lemma abs_rat [simp, code]: "\Fract a b\ = Fract \a\ \b\" haftmann@27551: by (auto simp add: abs_rat_def zabs_def Zero_rat_def less_rat not_less le_less minus_rat eq_rat zero_compare_simps) haftmann@27551: haftmann@27551: definition haftmann@28562: sgn_rat_def [code del]: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)" haftmann@27551: haftmann@27652: lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)" haftmann@27551: unfolding Fract_of_int_eq haftmann@27652: by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat) haftmann@27551: (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff) haftmann@27551: haftmann@27551: definition haftmann@25571: "(inf \ rat \ rat \ rat) = min" haftmann@25571: haftmann@25571: definition haftmann@25571: "(sup \ rat \ rat \ rat) = max" haftmann@25571: haftmann@27551: instance by intro_classes haftmann@27551: (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def) haftmann@22456: haftmann@25571: end haftmann@25571: haftmann@27551: instance rat :: ordered_field haftmann@27551: proof paulson@14365: fix q r s :: rat paulson@14365: show "q \ r ==> s + q \ s + r" paulson@14365: proof (induct q, induct r, induct s) paulson@14365: fix a b c d e f :: int paulson@14365: assume neq: "b \ 0" "d \ 0" "f \ 0" paulson@14365: assume le: "Fract a b \ Fract c d" paulson@14365: show "Fract e f + Fract a b \ Fract e f + Fract c d" paulson@14365: proof - paulson@14365: let ?F = "f * f" from neq have F: "0 < ?F" paulson@14365: by (auto simp add: zero_less_mult_iff) paulson@14365: from neq le have "(a * d) * (b * d) \ (c * b) * (b * d)" haftmann@27652: by simp paulson@14365: with F have "(a * d) * (b * d) * ?F * ?F \ (c * b) * (b * d) * ?F * ?F" paulson@14365: by (simp add: mult_le_cancel_right) haftmann@27652: with neq show ?thesis by (simp add: mult_ac int_distrib) paulson@14365: qed paulson@14365: qed paulson@14365: show "q < r ==> 0 < s ==> s * q < s * r" paulson@14365: proof (induct q, induct r, induct s) paulson@14365: fix a b c d e f :: int paulson@14365: assume neq: "b \ 0" "d \ 0" "f \ 0" paulson@14365: assume le: "Fract a b < Fract c d" paulson@14365: assume gt: "0 < Fract e f" paulson@14365: show "Fract e f * Fract a b < Fract e f * Fract c d" paulson@14365: proof - paulson@14365: let ?E = "e * f" and ?F = "f * f" paulson@14365: from neq gt have "0 < ?E" haftmann@27652: by (auto simp add: Zero_rat_def order_less_le eq_rat) paulson@14365: moreover from neq have "0 < ?F" paulson@14365: by (auto simp add: zero_less_mult_iff) paulson@14365: moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)" haftmann@27652: by simp paulson@14365: ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F" paulson@14365: by (simp add: mult_less_cancel_right) paulson@14365: with neq show ?thesis haftmann@27652: by (simp add: mult_ac) paulson@14365: qed paulson@14365: qed haftmann@27551: qed auto paulson@14365: haftmann@27551: lemma Rat_induct_pos [case_names Fract, induct type: rat]: haftmann@27551: assumes step: "\a b. 0 < b \ P (Fract a b)" haftmann@27551: shows "P q" paulson@14365: proof (cases q) haftmann@27551: have step': "\a b. b < 0 \ P (Fract a b)" paulson@14365: proof - paulson@14365: fix a::int and b::int paulson@14365: assume b: "b < 0" paulson@14365: hence "0 < -b" by simp paulson@14365: hence "P (Fract (-a) (-b))" by (rule step) paulson@14365: thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b]) paulson@14365: qed paulson@14365: case (Fract a b) paulson@14365: thus "P q" by (force simp add: linorder_neq_iff step step') paulson@14365: qed paulson@14365: paulson@14365: lemma zero_less_Fract_iff: haftmann@27652: "0 < b ==> (0 < Fract a b) = (0 < a)" haftmann@27652: by (simp add: Zero_rat_def order_less_imp_not_eq2 zero_less_mult_iff) paulson@14365: paulson@14378: haftmann@27551: subsection {* Arithmetic setup *} paulson@14387: haftmann@28952: use "Tools/rat_arith.ML" wenzelm@24075: declaration {* K rat_arith_setup *} paulson@14387: huffman@23342: huffman@23342: subsection {* Embedding from Rationals to other Fields *} huffman@23342: haftmann@24198: class field_char_0 = field + ring_char_0 huffman@23342: haftmann@27551: subclass (in ordered_field) field_char_0 .. huffman@23342: haftmann@27551: context field_char_0 haftmann@27551: begin haftmann@27551: haftmann@27551: definition of_rat :: "rat \ 'a" where haftmann@28562: [code del]: "of_rat q = contents (\(a,b) \ Rep_Rat q. {of_int a / of_int b})" huffman@23342: haftmann@27551: end haftmann@27551: huffman@23342: lemma of_rat_congruent: haftmann@27551: "(\(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel" huffman@23342: apply (rule congruent.intro) huffman@23342: apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) huffman@23342: apply (simp only: of_int_mult [symmetric]) huffman@23342: done huffman@23342: haftmann@27551: lemma of_rat_rat: "b \ 0 \ of_rat (Fract a b) = of_int a / of_int b" haftmann@27551: unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent) huffman@23342: huffman@23342: lemma of_rat_0 [simp]: "of_rat 0 = 0" huffman@23342: by (simp add: Zero_rat_def of_rat_rat) huffman@23342: huffman@23342: lemma of_rat_1 [simp]: "of_rat 1 = 1" huffman@23342: by (simp add: One_rat_def of_rat_rat) huffman@23342: huffman@23342: lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b" haftmann@27652: by (induct a, induct b, simp add: of_rat_rat add_frac_eq) huffman@23342: huffman@23343: lemma of_rat_minus: "of_rat (- a) = - of_rat a" haftmann@27652: by (induct a, simp add: of_rat_rat) huffman@23343: huffman@23343: lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b" huffman@23343: by (simp only: diff_minus of_rat_add of_rat_minus) huffman@23343: huffman@23342: lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b" haftmann@27652: apply (induct a, induct b, simp add: of_rat_rat) huffman@23342: apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac) huffman@23342: done huffman@23342: huffman@23342: lemma nonzero_of_rat_inverse: huffman@23342: "a \ 0 \ of_rat (inverse a) = inverse (of_rat a)" huffman@23343: apply (rule inverse_unique [symmetric]) huffman@23343: apply (simp add: of_rat_mult [symmetric]) huffman@23342: done huffman@23342: huffman@23342: lemma of_rat_inverse: huffman@23342: "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) = huffman@23342: inverse (of_rat a)" huffman@23342: by (cases "a = 0", simp_all add: nonzero_of_rat_inverse) huffman@23342: huffman@23342: lemma nonzero_of_rat_divide: huffman@23342: "b \ 0 \ of_rat (a / b) = of_rat a / of_rat b" huffman@23342: by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse) huffman@23342: huffman@23342: lemma of_rat_divide: huffman@23342: "(of_rat (a / b)::'a::{field_char_0,division_by_zero}) huffman@23342: = of_rat a / of_rat b" haftmann@27652: by (cases "b = 0") (simp_all add: nonzero_of_rat_divide) huffman@23342: huffman@23343: lemma of_rat_power: huffman@23343: "(of_rat (a ^ n)::'a::{field_char_0,recpower}) = of_rat a ^ n" huffman@23343: by (induct n) (simp_all add: of_rat_mult power_Suc) huffman@23343: huffman@23343: lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)" huffman@23343: apply (induct a, induct b) huffman@23343: apply (simp add: of_rat_rat eq_rat) huffman@23343: apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) huffman@23343: apply (simp only: of_int_mult [symmetric] of_int_eq_iff) huffman@23343: done huffman@23343: haftmann@27652: lemma of_rat_less: haftmann@27652: "(of_rat r :: 'a::ordered_field) < of_rat s \ r < s" haftmann@27652: proof (induct r, induct s) haftmann@27652: fix a b c d :: int haftmann@27652: assume not_zero: "b > 0" "d > 0" haftmann@27652: then have "b * d > 0" by (rule mult_pos_pos) haftmann@27652: have of_int_divide_less_eq: haftmann@27652: "(of_int a :: 'a) / of_int b < of_int c / of_int d haftmann@27652: \ (of_int a :: 'a) * of_int d < of_int c * of_int b" haftmann@27652: using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq) haftmann@27652: show "(of_rat (Fract a b) :: 'a::ordered_field) < of_rat (Fract c d) haftmann@27652: \ Fract a b < Fract c d" haftmann@27652: using not_zero `b * d > 0` haftmann@27652: by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult) haftmann@27652: (auto intro: mult_strict_right_mono mult_right_less_imp_less) haftmann@27652: qed haftmann@27652: haftmann@27652: lemma of_rat_less_eq: haftmann@27652: "(of_rat r :: 'a::ordered_field) \ of_rat s \ r \ s" haftmann@27652: unfolding le_less by (auto simp add: of_rat_less) haftmann@27652: huffman@23343: lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified] huffman@23343: haftmann@27652: lemma of_rat_eq_id [simp]: "of_rat = id" huffman@23343: proof huffman@23343: fix a huffman@23343: show "of_rat a = id a" huffman@23343: by (induct a) haftmann@27652: (simp add: of_rat_rat Fract_of_int_eq [symmetric]) huffman@23343: qed huffman@23343: huffman@23343: text{*Collapse nested embeddings*} huffman@23343: lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" huffman@23343: by (induct n) (simp_all add: of_rat_add) huffman@23343: huffman@23343: lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z" haftmann@27652: by (cases z rule: int_diff_cases) (simp add: of_rat_diff) huffman@23343: huffman@23343: lemma of_rat_number_of_eq [simp]: huffman@23343: "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})" huffman@23343: by (simp add: number_of_eq) huffman@23343: haftmann@23879: lemmas zero_rat = Zero_rat_def haftmann@23879: lemmas one_rat = One_rat_def haftmann@23879: haftmann@24198: abbreviation haftmann@24198: rat_of_nat :: "nat \ rat" haftmann@24198: where haftmann@24198: "rat_of_nat \ of_nat" haftmann@24198: haftmann@24198: abbreviation haftmann@24198: rat_of_int :: "int \ rat" haftmann@24198: where haftmann@24198: "rat_of_int \ of_int" haftmann@24198: huffman@28010: subsection {* The Set of Rational Numbers *} berghofe@24533: nipkow@28001: context field_char_0 nipkow@28001: begin nipkow@28001: nipkow@28001: definition nipkow@28001: Rats :: "'a set" where haftmann@28562: [code del]: "Rats = range of_rat" nipkow@28001: nipkow@28001: notation (xsymbols) nipkow@28001: Rats ("\") nipkow@28001: nipkow@28001: end nipkow@28001: huffman@28010: lemma Rats_of_rat [simp]: "of_rat r \ Rats" huffman@28010: by (simp add: Rats_def) huffman@28010: huffman@28010: lemma Rats_of_int [simp]: "of_int z \ Rats" huffman@28010: by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat) huffman@28010: huffman@28010: lemma Rats_of_nat [simp]: "of_nat n \ Rats" huffman@28010: by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat) huffman@28010: huffman@28010: lemma Rats_number_of [simp]: huffman@28010: "(number_of w::'a::{number_ring,field_char_0}) \ Rats" huffman@28010: by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat) huffman@28010: huffman@28010: lemma Rats_0 [simp]: "0 \ Rats" huffman@28010: apply (unfold Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_0 [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_1 [simp]: "1 \ Rats" huffman@28010: apply (unfold Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_1 [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_add [simp]: "\a \ Rats; b \ Rats\ \ a + b \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_add [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_minus [simp]: "a \ Rats \ - a \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_minus [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_diff [simp]: "\a \ Rats; b \ Rats\ \ a - b \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_diff [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_mult [simp]: "\a \ Rats; b \ Rats\ \ a * b \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_mult [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma nonzero_Rats_inverse: huffman@28010: fixes a :: "'a::field_char_0" huffman@28010: shows "\a \ Rats; a \ 0\ \ inverse a \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (erule nonzero_of_rat_inverse [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_inverse [simp]: huffman@28010: fixes a :: "'a::{field_char_0,division_by_zero}" huffman@28010: shows "a \ Rats \ inverse a \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_inverse [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma nonzero_Rats_divide: huffman@28010: fixes a b :: "'a::field_char_0" huffman@28010: shows "\a \ Rats; b \ Rats; b \ 0\ \ a / b \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (erule nonzero_of_rat_divide [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_divide [simp]: huffman@28010: fixes a b :: "'a::{field_char_0,division_by_zero}" huffman@28010: shows "\a \ Rats; b \ Rats\ \ a / b \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_divide [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_power [simp]: huffman@28010: fixes a :: "'a::{field_char_0,recpower}" huffman@28010: shows "a \ Rats \ a ^ n \ Rats" huffman@28010: apply (auto simp add: Rats_def) huffman@28010: apply (rule range_eqI) huffman@28010: apply (rule of_rat_power [symmetric]) huffman@28010: done huffman@28010: huffman@28010: lemma Rats_cases [cases set: Rats]: huffman@28010: assumes "q \ \" huffman@28010: obtains (of_rat) r where "q = of_rat r" huffman@28010: unfolding Rats_def huffman@28010: proof - huffman@28010: from `q \ \` have "q \ range of_rat" unfolding Rats_def . huffman@28010: then obtain r where "q = of_rat r" .. huffman@28010: then show thesis .. huffman@28010: qed huffman@28010: huffman@28010: lemma Rats_induct [case_names of_rat, induct set: Rats]: huffman@28010: "q \ \ \ (\r. P (of_rat r)) \ P q" huffman@28010: by (rule Rats_cases) auto huffman@28010: nipkow@28001: berghofe@24533: subsection {* Implementation of rational numbers as pairs of integers *} berghofe@24533: haftmann@27652: lemma Fract_norm: "Fract (a div zgcd a b) (b div zgcd a b) = Fract a b" haftmann@27652: proof (cases "a = 0 \ b = 0") haftmann@27652: case True then show ?thesis by (auto simp add: eq_rat) haftmann@27652: next haftmann@27652: let ?c = "zgcd a b" haftmann@27652: case False then have "a \ 0" and "b \ 0" by auto haftmann@27652: then have "?c \ 0" by simp haftmann@27652: then have "Fract ?c ?c = Fract 1 1" by (simp add: eq_rat) haftmann@27652: moreover have "Fract (a div ?c * ?c + a mod ?c) (b div ?c * ?c + b mod ?c) = Fract a b" nipkow@29925: by (simp add: semiring_div_class.mod_div_equality) haftmann@27652: moreover have "a mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric]) haftmann@27652: moreover have "b mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric]) haftmann@27652: ultimately show ?thesis haftmann@27652: by (simp add: mult_rat [symmetric]) haftmann@27652: qed berghofe@24533: haftmann@27652: definition Fract_norm :: "int \ int \ rat" where haftmann@28562: [simp, code del]: "Fract_norm a b = Fract a b" haftmann@27652: haftmann@29332: lemma Fract_norm_code [code]: "Fract_norm a b = (if a = 0 \ b = 0 then 0 else let c = zgcd a b in haftmann@27652: if b > 0 then Fract (a div c) (b div c) else Fract (- (a div c)) (- (b div c)))" haftmann@27652: by (simp add: eq_rat Zero_rat_def Let_def Fract_norm) berghofe@24533: berghofe@24533: lemma [code]: haftmann@27652: "of_rat (Fract a b) = (if b \ 0 then of_int a / of_int b else 0)" haftmann@27652: by (cases "b = 0") (simp_all add: rat_number_collapse of_rat_rat) berghofe@24533: haftmann@26513: instantiation rat :: eq haftmann@26513: begin haftmann@26513: haftmann@28562: definition [code del]: "eq_class.eq (a\rat) b \ a - b = 0" berghofe@24533: haftmann@26513: instance by default (simp add: eq_rat_def) haftmann@26513: haftmann@27652: lemma rat_eq_code [code]: haftmann@27652: "eq_class.eq (Fract a b) (Fract c d) \ (if b = 0 haftmann@27652: then c = 0 \ d = 0 haftmann@27652: else if d = 0 haftmann@27652: then a = 0 \ b = 0 haftmann@29332: else a * d = b * c)" haftmann@27652: by (auto simp add: eq eq_rat) haftmann@26513: haftmann@28351: lemma rat_eq_refl [code nbe]: haftmann@28351: "eq_class.eq (r::rat) r \ True" haftmann@28351: by (rule HOL.eq_refl) haftmann@28351: haftmann@26513: end berghofe@24533: haftmann@27652: lemma le_rat': haftmann@27652: assumes "b \ 0" haftmann@27652: and "d \ 0" haftmann@27652: shows "Fract a b \ Fract c d \ a * \d\ * sgn b \ c * \b\ * sgn d" berghofe@24533: proof - haftmann@27652: have abs_sgn: "\k::int. \k\ = k * sgn k" unfolding abs_if sgn_if by simp haftmann@27652: have "a * d * (b * d) \ c * b * (b * d) \ a * d * (sgn b * sgn d) \ c * b * (sgn b * sgn d)" haftmann@27652: proof (cases "b * d > 0") haftmann@27652: case True haftmann@27652: moreover from True have "sgn b * sgn d = 1" haftmann@27652: by (simp add: sgn_times [symmetric] sgn_1_pos) haftmann@27652: ultimately show ?thesis by (simp add: mult_le_cancel_right) haftmann@27652: next haftmann@27652: case False with assms have "b * d < 0" by (simp add: less_le) haftmann@27652: moreover from this have "sgn b * sgn d = - 1" haftmann@27652: by (simp only: sgn_times [symmetric] sgn_1_neg) haftmann@27652: ultimately show ?thesis by (simp add: mult_le_cancel_right) haftmann@27652: qed haftmann@27652: also have "\ \ a * \d\ * sgn b \ c * \b\ * sgn d" haftmann@27652: by (simp add: abs_sgn mult_ac) haftmann@27652: finally show ?thesis using assms by simp berghofe@24533: qed berghofe@24533: haftmann@27652: lemma less_rat': haftmann@27652: assumes "b \ 0" haftmann@27652: and "d \ 0" haftmann@27652: shows "Fract a b < Fract c d \ a * \d\ * sgn b < c * \b\ * sgn d" berghofe@24533: proof - haftmann@27652: have abs_sgn: "\k::int. \k\ = k * sgn k" unfolding abs_if sgn_if by simp haftmann@27652: have "a * d * (b * d) < c * b * (b * d) \ a * d * (sgn b * sgn d) < c * b * (sgn b * sgn d)" haftmann@27652: proof (cases "b * d > 0") haftmann@27652: case True haftmann@27652: moreover from True have "sgn b * sgn d = 1" haftmann@27652: by (simp add: sgn_times [symmetric] sgn_1_pos) haftmann@27652: ultimately show ?thesis by (simp add: mult_less_cancel_right) haftmann@27652: next haftmann@27652: case False with assms have "b * d < 0" by (simp add: less_le) haftmann@27652: moreover from this have "sgn b * sgn d = - 1" haftmann@27652: by (simp only: sgn_times [symmetric] sgn_1_neg) haftmann@27652: ultimately show ?thesis by (simp add: mult_less_cancel_right) haftmann@27652: qed haftmann@27652: also have "\ \ a * \d\ * sgn b < c * \b\ * sgn d" haftmann@27652: by (simp add: abs_sgn mult_ac) haftmann@27652: finally show ?thesis using assms by simp berghofe@24533: qed berghofe@24533: haftmann@29940: lemma (in ordered_idom) sgn_greater [simp]: haftmann@29940: "0 < sgn a \ 0 < a" haftmann@29940: unfolding sgn_if by auto haftmann@29940: haftmann@29940: lemma (in ordered_idom) sgn_less [simp]: haftmann@29940: "sgn a < 0 \ a < 0" haftmann@29940: unfolding sgn_if by auto berghofe@24533: haftmann@27652: lemma rat_le_eq_code [code]: haftmann@27652: "Fract a b < Fract c d \ (if b = 0 haftmann@27652: then sgn c * sgn d > 0 haftmann@27652: else if d = 0 haftmann@27652: then sgn a * sgn b < 0 haftmann@27652: else a * \d\ * sgn b < c * \b\ * sgn d)" haftmann@29940: by (auto simp add: sgn_times mult_less_0_iff zero_less_mult_iff less_rat' eq_rat simp del: less_rat) haftmann@29940: haftmann@29940: lemma rat_less_eq_code [code]: haftmann@29940: "Fract a b \ Fract c d \ (if b = 0 haftmann@29940: then sgn c * sgn d \ 0 haftmann@29940: else if d = 0 haftmann@29940: then sgn a * sgn b \ 0 haftmann@29940: else a * \d\ * sgn b \ c * \b\ * sgn d)" haftmann@29940: by (auto simp add: sgn_times mult_le_0_iff zero_le_mult_iff le_rat' eq_rat simp del: le_rat) haftmann@29940: (auto simp add: le_less not_less sgn_0_0) haftmann@29940: berghofe@24533: haftmann@27652: lemma rat_plus_code [code]: haftmann@27652: "Fract a b + Fract c d = (if b = 0 haftmann@27652: then Fract c d haftmann@27652: else if d = 0 haftmann@27652: then Fract a b haftmann@27652: else Fract_norm (a * d + c * b) (b * d))" haftmann@27652: by (simp add: eq_rat, simp add: Zero_rat_def) haftmann@27652: haftmann@27652: lemma rat_times_code [code]: haftmann@27652: "Fract a b * Fract c d = Fract_norm (a * c) (b * d)" haftmann@27652: by simp berghofe@24533: haftmann@27652: lemma rat_minus_code [code]: haftmann@27652: "Fract a b - Fract c d = (if b = 0 haftmann@27652: then Fract (- c) d haftmann@27652: else if d = 0 haftmann@27652: then Fract a b haftmann@27652: else Fract_norm (a * d - c * b) (b * d))" haftmann@27652: by (simp add: eq_rat, simp add: Zero_rat_def) berghofe@24533: haftmann@27652: lemma rat_inverse_code [code]: haftmann@27652: "inverse (Fract a b) = (if b = 0 then Fract 1 0 haftmann@27652: else if a < 0 then Fract (- b) (- a) haftmann@27652: else Fract b a)" haftmann@27652: by (simp add: eq_rat) haftmann@27652: haftmann@27652: lemma rat_divide_code [code]: haftmann@27652: "Fract a b / Fract c d = Fract_norm (a * d) (b * c)" haftmann@27652: by simp haftmann@27652: haftmann@27652: hide (open) const Fract_norm berghofe@24533: haftmann@24622: text {* Setup for SML code generator *} berghofe@24533: berghofe@24533: types_code berghofe@24533: rat ("(int */ int)") berghofe@24533: attach (term_of) {* berghofe@24533: fun term_of_rat (p, q) = haftmann@24622: let haftmann@24661: val rT = Type ("Rational.rat", []) berghofe@24533: in berghofe@24533: if q = 1 orelse p = 0 then HOLogic.mk_number rT p berghofe@25885: else @{term "op / \ rat \ rat \ rat"} $ berghofe@24533: HOLogic.mk_number rT p $ HOLogic.mk_number rT q berghofe@24533: end; berghofe@24533: *} berghofe@24533: attach (test) {* berghofe@24533: fun gen_rat i = berghofe@24533: let berghofe@24533: val p = random_range 0 i; berghofe@24533: val q = random_range 1 (i + 1); berghofe@24533: val g = Integer.gcd p q; wenzelm@24630: val p' = p div g; wenzelm@24630: val q' = q div g; berghofe@25885: val r = (if one_of [true, false] then p' else ~ p', berghofe@25885: if p' = 0 then 0 else q') berghofe@24533: in berghofe@25885: (r, fn () => term_of_rat r) berghofe@24533: end; berghofe@24533: *} berghofe@24533: berghofe@24533: consts_code haftmann@27551: Fract ("(_,/ _)") berghofe@24533: berghofe@24533: consts_code berghofe@24533: "of_int :: int \ rat" ("\rat'_of'_int") berghofe@24533: attach {* berghofe@24533: fun rat_of_int 0 = (0, 0) berghofe@24533: | rat_of_int i = (i, 1); berghofe@24533: *} berghofe@24533: huffman@29880: end