haftmann@35372: (* Title: HOL/Library/Fraction_Field.thy chaieb@31761: Author: Amine Chaieb, University of Cambridge chaieb@31761: *) chaieb@31761: chaieb@31761: header{* A formalization of the fraction field of any integral domain haftmann@35372: A generalization of Rat.thy from int to any integral domain *} chaieb@31761: chaieb@31761: theory Fraction_Field haftmann@35372: imports Main chaieb@31761: begin chaieb@31761: chaieb@31761: subsection {* General fractions construction *} chaieb@31761: chaieb@31761: subsubsection {* Construction of the type of fractions *} chaieb@31761: chaieb@31761: definition fractrel :: "(('a::idom * 'a ) * ('a * 'a)) set" where chaieb@31761: "fractrel == {(x, y). snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x}" chaieb@31761: chaieb@31761: lemma fractrel_iff [simp]: chaieb@31761: "(x, y) \ fractrel \ snd x \ 0 \ snd y \ 0 \ fst x * snd y = fst y * snd x" chaieb@31761: by (simp add: fractrel_def) chaieb@31761: chaieb@31761: lemma refl_fractrel: "refl_on {x. snd x \ 0} fractrel" chaieb@31761: by (auto simp add: refl_on_def fractrel_def) chaieb@31761: chaieb@31761: lemma sym_fractrel: "sym fractrel" chaieb@31761: by (simp add: fractrel_def sym_def) chaieb@31761: chaieb@31761: lemma trans_fractrel: "trans fractrel" chaieb@31761: proof (rule transI, unfold split_paired_all) chaieb@31761: fix a b a' b' a'' b'' :: 'a chaieb@31761: assume A: "((a, b), (a', b')) \ fractrel" chaieb@31761: assume B: "((a', b'), (a'', b'')) \ fractrel" chaieb@31761: have "b' * (a * b'') = b'' * (a * b')" by (simp add: mult_ac) chaieb@31761: also from A have "a * b' = a' * b" by auto chaieb@31761: also have "b'' * (a' * b) = b * (a' * b'')" by (simp add: mult_ac) chaieb@31761: also from B have "a' * b'' = a'' * b'" by auto chaieb@31761: also have "b * (a'' * b') = b' * (a'' * b)" by (simp add: mult_ac) chaieb@31761: finally have "b' * (a * b'') = b' * (a'' * b)" . chaieb@31761: moreover from B have "b' \ 0" by auto chaieb@31761: ultimately have "a * b'' = a'' * b" by simp chaieb@31761: with A B show "((a, b), (a'', b'')) \ fractrel" by auto chaieb@31761: qed chaieb@31761: chaieb@31761: lemma equiv_fractrel: "equiv {x. snd x \ 0} fractrel" haftmann@40815: by (rule equivI [OF refl_fractrel sym_fractrel trans_fractrel]) chaieb@31761: chaieb@31761: lemmas UN_fractrel = UN_equiv_class [OF equiv_fractrel] chaieb@31761: lemmas UN_fractrel2 = UN_equiv_class2 [OF equiv_fractrel equiv_fractrel] chaieb@31761: chaieb@31761: lemma equiv_fractrel_iff [iff]: chaieb@31761: assumes "snd x \ 0" and "snd y \ 0" chaieb@31761: shows "fractrel `` {x} = fractrel `` {y} \ (x, y) \ fractrel" chaieb@31761: by (rule eq_equiv_class_iff, rule equiv_fractrel) (auto simp add: assms) chaieb@31761: chaieb@31761: typedef 'a fract = "{(x::'a\'a). snd x \ (0::'a::idom)} // fractrel" chaieb@31761: proof chaieb@31761: have "(0::'a, 1::'a) \ {x. snd x \ 0}" by simp chaieb@31761: then show "fractrel `` {(0::'a, 1)} \ {x. snd x \ 0} // fractrel" by (rule quotientI) chaieb@31761: qed chaieb@31761: chaieb@31761: lemma fractrel_in_fract [simp]: "snd x \ 0 \ fractrel `` {x} \ fract" chaieb@31761: by (simp add: fract_def quotientI) chaieb@31761: chaieb@31761: declare Abs_fract_inject [simp] Abs_fract_inverse [simp] chaieb@31761: chaieb@31761: chaieb@31761: subsubsection {* Representation and basic operations *} chaieb@31761: chaieb@31761: definition chaieb@31761: Fract :: "'a::idom \ 'a \ 'a fract" where haftmann@37765: "Fract a b = Abs_fract (fractrel `` {if b = 0 then (0, 1) else (a, b)})" chaieb@31761: chaieb@31761: code_datatype Fract chaieb@31761: chaieb@31761: lemma Fract_cases [case_names Fract, cases type: fract]: chaieb@31761: assumes "\a b. q = Fract a b \ b \ 0 \ C" chaieb@31761: shows C chaieb@31761: using assms by (cases q) (clarsimp simp add: Fract_def fract_def quotient_def) chaieb@31761: chaieb@31761: lemma Fract_induct [case_names Fract, induct type: fract]: chaieb@31761: assumes "\a b. b \ 0 \ P (Fract a b)" chaieb@31761: shows "P q" chaieb@31761: using assms by (cases q) simp chaieb@31761: chaieb@31761: lemma eq_fract: chaieb@31761: shows "\a b c d. b \ 0 \ d \ 0 \ Fract a b = Fract c d \ a * d = c * b" chaieb@31761: and "\a. Fract a 0 = Fract 0 1" chaieb@31761: and "\a c. Fract 0 a = Fract 0 c" chaieb@31761: by (simp_all add: Fract_def) chaieb@31761: chaieb@31761: instantiation fract :: (idom) "{comm_ring_1, power}" chaieb@31761: begin chaieb@31761: chaieb@31761: definition haftmann@37765: Zero_fract_def [code_unfold]: "0 = Fract 0 1" chaieb@31761: chaieb@31761: definition haftmann@37765: One_fract_def [code_unfold]: "1 = Fract 1 1" chaieb@31761: chaieb@31761: definition haftmann@37765: add_fract_def: chaieb@31761: "q + r = Abs_fract (\x \ Rep_fract q. \y \ Rep_fract r. chaieb@31761: fractrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})" chaieb@31761: chaieb@31761: lemma add_fract [simp]: chaieb@31761: assumes "b \ (0::'a::idom)" and "d \ 0" chaieb@31761: shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" chaieb@31761: proof - chaieb@31761: have "(\x y. fractrel``{(fst x * snd y + fst y * snd x, snd x * snd y :: 'a)}) chaieb@31761: respects2 fractrel" chaieb@31761: apply (rule equiv_fractrel [THEN congruent2_commuteI]) apply (auto simp add: algebra_simps) chaieb@31761: unfolding mult_assoc[symmetric] . chaieb@31761: with assms show ?thesis by (simp add: Fract_def add_fract_def UN_fractrel2) chaieb@31761: qed chaieb@31761: chaieb@31761: definition haftmann@37765: minus_fract_def: chaieb@31761: "- q = Abs_fract (\x \ Rep_fract q. fractrel `` {(- fst x, snd x)})" chaieb@31761: chaieb@31761: lemma minus_fract [simp, code]: "- Fract a b = Fract (- a) (b::'a::idom)" chaieb@31761: proof - chaieb@31761: have "(\x. fractrel `` {(- fst x, snd x :: 'a)}) respects fractrel" haftmann@40822: by (simp add: congruent_def split_paired_all) chaieb@31761: then show ?thesis by (simp add: Fract_def minus_fract_def UN_fractrel) chaieb@31761: qed chaieb@31761: chaieb@31761: lemma minus_fract_cancel [simp]: "Fract (- a) (- b) = Fract a b" chaieb@31761: by (cases "b = 0") (simp_all add: eq_fract) chaieb@31761: chaieb@31761: definition haftmann@37765: diff_fract_def: "q - r = q + - (r::'a fract)" chaieb@31761: chaieb@31761: lemma diff_fract [simp]: chaieb@31761: assumes "b \ 0" and "d \ 0" chaieb@31761: shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" chaieb@31761: using assms by (simp add: diff_fract_def diff_minus) chaieb@31761: chaieb@31761: definition haftmann@37765: mult_fract_def: chaieb@31761: "q * r = Abs_fract (\x \ Rep_fract q. \y \ Rep_fract r. chaieb@31761: fractrel``{(fst x * fst y, snd x * snd y)})" chaieb@31761: chaieb@31761: lemma mult_fract [simp]: "Fract (a::'a::idom) b * Fract c d = Fract (a * c) (b * d)" chaieb@31761: proof - chaieb@31761: have "(\x y. fractrel `` {(fst x * fst y, snd x * snd y :: 'a)}) respects2 fractrel" chaieb@31761: apply (rule equiv_fractrel [THEN congruent2_commuteI]) apply (auto simp add: algebra_simps) chaieb@31761: unfolding mult_assoc[symmetric] . chaieb@31761: then show ?thesis by (simp add: Fract_def mult_fract_def UN_fractrel2) chaieb@31761: qed chaieb@31761: chaieb@31761: lemma mult_fract_cancel: chaieb@31761: assumes "c \ 0" chaieb@31761: shows "Fract (c * a) (c * b) = Fract a b" chaieb@31761: proof - chaieb@31761: from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def) chaieb@31761: then show ?thesis by (simp add: mult_fract [symmetric]) chaieb@31761: qed chaieb@31761: chaieb@31761: instance proof chaieb@31761: fix q r s :: "'a fract" show "(q * r) * s = q * (r * s)" chaieb@31761: by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps) chaieb@31761: next chaieb@31761: fix q r :: "'a fract" show "q * r = r * q" chaieb@31761: by (cases q, cases r) (simp add: eq_fract algebra_simps) chaieb@31761: next chaieb@31761: fix q :: "'a fract" show "1 * q = q" chaieb@31761: by (cases q) (simp add: One_fract_def eq_fract) chaieb@31761: next chaieb@31761: fix q r s :: "'a fract" show "(q + r) + s = q + (r + s)" chaieb@31761: by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps) chaieb@31761: next chaieb@31761: fix q r :: "'a fract" show "q + r = r + q" chaieb@31761: by (cases q, cases r) (simp add: eq_fract algebra_simps) chaieb@31761: next chaieb@31761: fix q :: "'a fract" show "0 + q = q" chaieb@31761: by (cases q) (simp add: Zero_fract_def eq_fract) chaieb@31761: next chaieb@31761: fix q :: "'a fract" show "- q + q = 0" chaieb@31761: by (cases q) (simp add: Zero_fract_def eq_fract) chaieb@31761: next chaieb@31761: fix q r :: "'a fract" show "q - r = q + - r" chaieb@31761: by (cases q, cases r) (simp add: eq_fract) chaieb@31761: next chaieb@31761: fix q r s :: "'a fract" show "(q + r) * s = q * s + r * s" chaieb@31761: by (cases q, cases r, cases s) (simp add: eq_fract algebra_simps) chaieb@31761: next chaieb@31761: show "(0::'a fract) \ 1" by (simp add: Zero_fract_def One_fract_def eq_fract) chaieb@31761: qed chaieb@31761: chaieb@31761: end chaieb@31761: chaieb@31761: lemma of_nat_fract: "of_nat k = Fract (of_nat k) 1" chaieb@31761: by (induct k) (simp_all add: Zero_fract_def One_fract_def) chaieb@31761: chaieb@31761: lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" chaieb@31761: by (rule of_nat_fract [symmetric]) chaieb@31761: haftmann@31998: lemma fract_collapse [code_post]: chaieb@31761: "Fract 0 k = 0" chaieb@31761: "Fract 1 1 = 1" chaieb@31761: "Fract k 0 = 0" chaieb@31761: by (cases "k = 0") chaieb@31761: (simp_all add: Zero_fract_def One_fract_def eq_fract Fract_def) chaieb@31761: haftmann@31998: lemma fract_expand [code_unfold]: chaieb@31761: "0 = Fract 0 1" chaieb@31761: "1 = Fract 1 1" chaieb@31761: by (simp_all add: fract_collapse) chaieb@31761: chaieb@31761: lemma Fract_cases_nonzero [case_names Fract 0]: chaieb@31761: assumes Fract: "\a b. q = Fract a b \ b \ 0 \ a \ 0 \ C" chaieb@31761: assumes 0: "q = 0 \ C" chaieb@31761: shows C chaieb@31761: proof (cases "q = 0") chaieb@31761: case True then show C using 0 by auto chaieb@31761: next chaieb@31761: case False chaieb@31761: then obtain a b where "q = Fract a b" and "b \ 0" by (cases q) auto chaieb@31761: moreover with False have "0 \ Fract a b" by simp chaieb@31761: with `b \ 0` have "a \ 0" by (simp add: Zero_fract_def eq_fract) chaieb@31761: with Fract `q = Fract a b` `b \ 0` show C by auto chaieb@31761: qed chaieb@31761: chaieb@31761: chaieb@31761: chaieb@31761: subsubsection {* The field of rational numbers *} chaieb@31761: chaieb@31761: context idom chaieb@31761: begin chaieb@31761: subclass ring_no_zero_divisors .. chaieb@31761: thm mult_eq_0_iff chaieb@31761: end chaieb@31761: haftmann@36409: instantiation fract :: (idom) field_inverse_zero chaieb@31761: begin chaieb@31761: chaieb@31761: definition haftmann@37765: inverse_fract_def: chaieb@31761: "inverse q = Abs_fract (\x \ Rep_fract q. chaieb@31761: fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})" chaieb@31761: chaieb@31761: chaieb@31761: lemma inverse_fract [simp]: "inverse (Fract a b) = Fract (b::'a::idom) a" chaieb@31761: proof - chaieb@31761: have stupid: "\x. (0::'a) = x \ x = 0" by auto chaieb@31761: have "(\x. fractrel `` {if fst x = 0 then (0, 1) else (snd x, fst x :: 'a)}) respects fractrel" chaieb@31761: by (auto simp add: congruent_def stupid algebra_simps) chaieb@31761: then show ?thesis by (simp add: Fract_def inverse_fract_def UN_fractrel) chaieb@31761: qed chaieb@31761: chaieb@31761: definition haftmann@37765: divide_fract_def: "q / r = q * inverse (r:: 'a fract)" chaieb@31761: chaieb@31761: lemma divide_fract [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)" chaieb@31761: by (simp add: divide_fract_def) chaieb@31761: chaieb@31761: instance proof chaieb@31761: fix q :: "'a fract" chaieb@31761: assume "q \ 0" chaieb@31761: then show "inverse q * q = 1" apply (cases q rule: Fract_cases_nonzero) chaieb@31761: by (simp_all add: mult_fract inverse_fract fract_expand eq_fract mult_commute) chaieb@31761: next chaieb@31761: fix q r :: "'a fract" chaieb@31761: show "q / r = q * inverse r" by (simp add: divide_fract_def) haftmann@36409: next haftmann@36409: show "inverse 0 = (0:: 'a fract)" by (simp add: fract_expand) haftmann@36409: (simp add: fract_collapse) chaieb@31761: qed chaieb@31761: chaieb@31761: end chaieb@31761: chaieb@31761: huffman@36331: subsubsection {* The ordered field of fractions over an ordered idom *} huffman@36331: huffman@36331: lemma le_congruent2: huffman@36331: "(\x y::'a \ 'a::linordered_idom. huffman@36331: {(fst x * snd y)*(snd x * snd y) \ (fst y * snd x)*(snd x * snd y)}) huffman@36331: respects2 fractrel" huffman@36331: proof (clarsimp simp add: congruent2_def) huffman@36331: fix a b a' b' c d c' d' :: 'a huffman@36331: assume neq: "b \ 0" "b' \ 0" "d \ 0" "d' \ 0" huffman@36331: assume eq1: "a * b' = a' * b" huffman@36331: assume eq2: "c * d' = c' * d" huffman@36331: huffman@36331: let ?le = "\a b c d. ((a * d) * (b * d) \ (c * b) * (b * d))" huffman@36331: { huffman@36331: fix a b c d x :: 'a assume x: "x \ 0" huffman@36331: have "?le a b c d = ?le (a * x) (b * x) c d" huffman@36331: proof - huffman@36331: from x have "0 < x * x" by (auto simp add: zero_less_mult_iff) huffman@36331: hence "?le a b c d = huffman@36331: ((a * d) * (b * d) * (x * x) \ (c * b) * (b * d) * (x * x))" huffman@36331: by (simp add: mult_le_cancel_right) huffman@36331: also have "... = ?le (a * x) (b * x) c d" huffman@36331: by (simp add: mult_ac) huffman@36331: finally show ?thesis . huffman@36331: qed huffman@36331: } note le_factor = this huffman@36331: huffman@36331: let ?D = "b * d" and ?D' = "b' * d'" huffman@36331: from neq have D: "?D \ 0" by simp huffman@36331: from neq have "?D' \ 0" by simp huffman@36331: hence "?le a b c d = ?le (a * ?D') (b * ?D') c d" huffman@36331: by (rule le_factor) huffman@36331: also have "... = ((a * b') * ?D * ?D' * d * d' \ (c * d') * ?D * ?D' * b * b')" huffman@36331: by (simp add: mult_ac) huffman@36331: also have "... = ((a' * b) * ?D * ?D' * d * d' \ (c' * d) * ?D * ?D' * b * b')" huffman@36331: by (simp only: eq1 eq2) huffman@36331: also have "... = ?le (a' * ?D) (b' * ?D) c' d'" huffman@36331: by (simp add: mult_ac) huffman@36331: also from D have "... = ?le a' b' c' d'" huffman@36331: by (rule le_factor [symmetric]) huffman@36331: finally show "?le a b c d = ?le a' b' c' d'" . huffman@36331: qed huffman@36331: huffman@36331: instantiation fract :: (linordered_idom) linorder huffman@36331: begin huffman@36331: huffman@36331: definition haftmann@37765: le_fract_def: haftmann@39910: "q \ r \ the_elem (\x \ Rep_fract q. \y \ Rep_fract r. huffman@36331: {(fst x * snd y)*(snd x * snd y) \ (fst y * snd x)*(snd x * snd y)})" huffman@36331: huffman@36331: definition haftmann@37765: less_fract_def: "z < (w::'a fract) \ z \ w \ \ w \ z" huffman@36331: huffman@36331: lemma le_fract [simp]: huffman@36331: assumes "b \ 0" and "d \ 0" huffman@36331: shows "Fract a b \ Fract c d \ (a * d) * (b * d) \ (c * b) * (b * d)" huffman@36331: by (simp add: Fract_def le_fract_def le_congruent2 UN_fractrel2 assms) huffman@36331: huffman@36331: lemma less_fract [simp]: huffman@36331: assumes "b \ 0" and "d \ 0" huffman@36331: shows "Fract a b < Fract c d \ (a * d) * (b * d) < (c * b) * (b * d)" huffman@36331: by (simp add: less_fract_def less_le_not_le mult_ac assms) huffman@36331: huffman@36331: instance proof huffman@36331: fix q r s :: "'a fract" huffman@36331: assume "q \ r" and "r \ s" thus "q \ s" huffman@36331: proof (induct q, induct r, induct s) huffman@36331: fix a b c d e f :: 'a huffman@36331: assume neq: "b \ 0" "d \ 0" "f \ 0" huffman@36331: assume 1: "Fract a b \ Fract c d" and 2: "Fract c d \ Fract e f" huffman@36331: show "Fract a b \ Fract e f" huffman@36331: proof - huffman@36331: from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f" huffman@36331: by (auto simp add: zero_less_mult_iff linorder_neq_iff) huffman@36331: have "(a * d) * (b * d) * (f * f) \ (c * b) * (b * d) * (f * f)" huffman@36331: proof - huffman@36331: from neq 1 have "(a * d) * (b * d) \ (c * b) * (b * d)" huffman@36331: by simp huffman@36331: with ff show ?thesis by (simp add: mult_le_cancel_right) huffman@36331: qed huffman@36331: also have "... = (c * f) * (d * f) * (b * b)" huffman@36331: by (simp only: mult_ac) huffman@36331: also have "... \ (e * d) * (d * f) * (b * b)" huffman@36331: proof - huffman@36331: from neq 2 have "(c * f) * (d * f) \ (e * d) * (d * f)" huffman@36331: by simp huffman@36331: with bb show ?thesis by (simp add: mult_le_cancel_right) huffman@36331: qed huffman@36331: finally have "(a * f) * (b * f) * (d * d) \ e * b * (b * f) * (d * d)" huffman@36331: by (simp only: mult_ac) huffman@36331: with dd have "(a * f) * (b * f) \ (e * b) * (b * f)" huffman@36331: by (simp add: mult_le_cancel_right) huffman@36331: with neq show ?thesis by simp huffman@36331: qed huffman@36331: qed huffman@36331: next huffman@36331: fix q r :: "'a fract" huffman@36331: assume "q \ r" and "r \ q" thus "q = r" huffman@36331: proof (induct q, induct r) huffman@36331: fix a b c d :: 'a huffman@36331: assume neq: "b \ 0" "d \ 0" huffman@36331: assume 1: "Fract a b \ Fract c d" and 2: "Fract c d \ Fract a b" huffman@36331: show "Fract a b = Fract c d" huffman@36331: proof - huffman@36331: from neq 1 have "(a * d) * (b * d) \ (c * b) * (b * d)" huffman@36331: by simp huffman@36331: also have "... \ (a * d) * (b * d)" huffman@36331: proof - huffman@36331: from neq 2 have "(c * b) * (d * b) \ (a * d) * (d * b)" huffman@36331: by simp huffman@36331: thus ?thesis by (simp only: mult_ac) huffman@36331: qed huffman@36331: finally have "(a * d) * (b * d) = (c * b) * (b * d)" . huffman@36331: moreover from neq have "b * d \ 0" by simp huffman@36331: ultimately have "a * d = c * b" by simp huffman@36331: with neq show ?thesis by (simp add: eq_fract) huffman@36331: qed huffman@36331: qed huffman@36331: next huffman@36331: fix q r :: "'a fract" huffman@36331: show "q \ q" huffman@36331: by (induct q) simp huffman@36331: show "(q < r) = (q \ r \ \ r \ q)" huffman@36331: by (simp only: less_fract_def) huffman@36331: show "q \ r \ r \ q" huffman@36331: by (induct q, induct r) huffman@36331: (simp add: mult_commute, rule linorder_linear) huffman@36331: qed huffman@36331: huffman@36331: end huffman@36331: huffman@36331: instantiation fract :: (linordered_idom) "{distrib_lattice, abs_if, sgn_if}" huffman@36331: begin huffman@36331: huffman@36331: definition huffman@36331: abs_fract_def: "\q\ = (if q < 0 then -q else (q::'a fract))" huffman@36331: huffman@36331: definition huffman@36331: sgn_fract_def: huffman@36331: "sgn (q::'a fract) = (if q=0 then 0 else if 0Fract a b\ = Fract \a\ \b\" huffman@36331: by (auto simp add: abs_fract_def Zero_fract_def le_less huffman@36331: eq_fract zero_less_mult_iff mult_less_0_iff split: abs_split) huffman@36331: huffman@36331: definition huffman@36331: inf_fract_def: huffman@36331: "(inf \ 'a fract \ 'a fract \ 'a fract) = min" huffman@36331: huffman@36331: definition huffman@36331: sup_fract_def: huffman@36331: "(sup \ 'a fract \ 'a fract \ 'a fract) = max" huffman@36331: huffman@36331: instance by intro_classes huffman@36331: (auto simp add: abs_fract_def sgn_fract_def huffman@36331: min_max.sup_inf_distrib1 inf_fract_def sup_fract_def) huffman@36331: huffman@36331: end huffman@36331: haftmann@36414: instance fract :: (linordered_idom) linordered_field_inverse_zero huffman@36331: proof huffman@36331: fix q r s :: "'a fract" huffman@36331: show "q \ r ==> s + q \ s + r" huffman@36331: proof (induct q, induct r, induct s) huffman@36331: fix a b c d e f :: 'a huffman@36331: assume neq: "b \ 0" "d \ 0" "f \ 0" huffman@36331: assume le: "Fract a b \ Fract c d" huffman@36331: show "Fract e f + Fract a b \ Fract e f + Fract c d" huffman@36331: proof - huffman@36331: let ?F = "f * f" from neq have F: "0 < ?F" huffman@36331: by (auto simp add: zero_less_mult_iff) huffman@36331: from neq le have "(a * d) * (b * d) \ (c * b) * (b * d)" huffman@36331: by simp huffman@36331: with F have "(a * d) * (b * d) * ?F * ?F \ (c * b) * (b * d) * ?F * ?F" huffman@36331: by (simp add: mult_le_cancel_right) haftmann@36348: with neq show ?thesis by (simp add: field_simps) huffman@36331: qed huffman@36331: qed huffman@36331: show "q < r ==> 0 < s ==> s * q < s * r" huffman@36331: proof (induct q, induct r, induct s) huffman@36331: fix a b c d e f :: 'a huffman@36331: assume neq: "b \ 0" "d \ 0" "f \ 0" huffman@36331: assume le: "Fract a b < Fract c d" huffman@36331: assume gt: "0 < Fract e f" huffman@36331: show "Fract e f * Fract a b < Fract e f * Fract c d" huffman@36331: proof - huffman@36331: let ?E = "e * f" and ?F = "f * f" huffman@36331: from neq gt have "0 < ?E" huffman@36331: by (auto simp add: Zero_fract_def order_less_le eq_fract) huffman@36331: moreover from neq have "0 < ?F" huffman@36331: by (auto simp add: zero_less_mult_iff) huffman@36331: moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)" huffman@36331: by simp huffman@36331: ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F" huffman@36331: by (simp add: mult_less_cancel_right) huffman@36331: with neq show ?thesis huffman@36331: by (simp add: mult_ac) huffman@36331: qed huffman@36331: qed huffman@36331: qed huffman@36331: huffman@36331: lemma fract_induct_pos [case_names Fract]: huffman@36331: fixes P :: "'a::linordered_idom fract \ bool" huffman@36331: assumes step: "\a b. 0 < b \ P (Fract a b)" huffman@36331: shows "P q" huffman@36331: proof (cases q) huffman@36331: have step': "\a b. b < 0 \ P (Fract a b)" huffman@36331: proof - huffman@36331: fix a::'a and b::'a huffman@36331: assume b: "b < 0" huffman@36331: hence "0 < -b" by simp huffman@36331: hence "P (Fract (-a) (-b))" by (rule step) huffman@36331: thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b]) huffman@36331: qed huffman@36331: case (Fract a b) huffman@36331: thus "P q" by (force simp add: linorder_neq_iff step step') huffman@36331: qed huffman@36331: huffman@36331: lemma zero_less_Fract_iff: huffman@36331: "0 < b \ 0 < Fract a b \ 0 < a" huffman@36331: by (auto simp add: Zero_fract_def zero_less_mult_iff) huffman@36331: huffman@36331: lemma Fract_less_zero_iff: huffman@36331: "0 < b \ Fract a b < 0 \ a < 0" huffman@36331: by (auto simp add: Zero_fract_def mult_less_0_iff) huffman@36331: huffman@36331: lemma zero_le_Fract_iff: huffman@36331: "0 < b \ 0 \ Fract a b \ 0 \ a" huffman@36331: by (auto simp add: Zero_fract_def zero_le_mult_iff) huffman@36331: huffman@36331: lemma Fract_le_zero_iff: huffman@36331: "0 < b \ Fract a b \ 0 \ a \ 0" huffman@36331: by (auto simp add: Zero_fract_def mult_le_0_iff) huffman@36331: huffman@36331: lemma one_less_Fract_iff: huffman@36331: "0 < b \ 1 < Fract a b \ b < a" huffman@36331: by (auto simp add: One_fract_def mult_less_cancel_right_disj) huffman@36331: huffman@36331: lemma Fract_less_one_iff: huffman@36331: "0 < b \ Fract a b < 1 \ a < b" huffman@36331: by (auto simp add: One_fract_def mult_less_cancel_right_disj) huffman@36331: huffman@36331: lemma one_le_Fract_iff: huffman@36331: "0 < b \ 1 \ Fract a b \ b \ a" huffman@36331: by (auto simp add: One_fract_def mult_le_cancel_right) huffman@36331: huffman@36331: lemma Fract_le_one_iff: huffman@36331: "0 < b \ Fract a b \ 1 \ a \ b" huffman@36331: by (auto simp add: One_fract_def mult_le_cancel_right) huffman@36331: huffman@36331: end