wenzelm@41959: (* Title: HOL/Library/Poly_Deriv.thy huffman@29985: Author: Amine Chaieb wenzelm@41959: Author: Brian Huffman huffman@29985: *) huffman@29985: huffman@29985: header{* Polynomials and Differentiation *} huffman@29985: huffman@29985: theory Poly_Deriv huffman@29985: imports Deriv Polynomial huffman@29985: begin huffman@29985: huffman@29985: subsection {* Derivatives of univariate polynomials *} huffman@29985: huffman@29985: definition huffman@29985: pderiv :: "'a::real_normed_field poly \ 'a poly" where huffman@29985: "pderiv = poly_rec 0 (\a p p'. p + pCons 0 p')" huffman@29985: huffman@29985: lemma pderiv_0 [simp]: "pderiv 0 = 0" huffman@29985: unfolding pderiv_def by (simp add: poly_rec_0) huffman@29985: huffman@29985: lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)" huffman@29985: unfolding pderiv_def by (simp add: poly_rec_pCons) huffman@29985: huffman@29985: lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)" huffman@29985: apply (induct p arbitrary: n, simp) huffman@29985: apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split) huffman@29985: done huffman@29985: huffman@29985: lemma pderiv_eq_0_iff: "pderiv p = 0 \ degree p = 0" huffman@29985: apply (rule iffI) huffman@29985: apply (cases p, simp) huffman@29985: apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc) huffman@29985: apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0) huffman@29985: done huffman@29985: huffman@29985: lemma degree_pderiv: "degree (pderiv p) = degree p - 1" huffman@29985: apply (rule order_antisym [OF degree_le]) huffman@29985: apply (simp add: coeff_pderiv coeff_eq_0) huffman@29985: apply (cases "degree p", simp) huffman@29985: apply (rule le_degree) huffman@29985: apply (simp add: coeff_pderiv del: of_nat_Suc) huffman@29985: apply (rule subst, assumption) huffman@29985: apply (rule leading_coeff_neq_0, clarsimp) huffman@29985: done huffman@29985: huffman@29985: lemma pderiv_singleton [simp]: "pderiv [:a:] = 0" huffman@29985: by (simp add: pderiv_pCons) huffman@29985: huffman@29985: lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q" huffman@29985: by (rule poly_ext, simp add: coeff_pderiv algebra_simps) huffman@29985: huffman@29985: lemma pderiv_minus: "pderiv (- p) = - pderiv p" huffman@29985: by (rule poly_ext, simp add: coeff_pderiv) huffman@29985: huffman@29985: lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q" huffman@29985: by (rule poly_ext, simp add: coeff_pderiv algebra_simps) huffman@29985: huffman@29985: lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)" huffman@29985: by (rule poly_ext, simp add: coeff_pderiv algebra_simps) huffman@29985: huffman@29985: lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p" huffman@29985: apply (induct p) huffman@29985: apply simp huffman@29985: apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps) huffman@29985: done huffman@29985: huffman@29985: lemma pderiv_power_Suc: huffman@29985: "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p" huffman@29985: apply (induct n) huffman@29985: apply simp huffman@29985: apply (subst power_Suc) huffman@29985: apply (subst pderiv_mult) huffman@29985: apply (erule ssubst) huffman@29985: apply (simp add: smult_add_left algebra_simps) huffman@29985: done huffman@29985: huffman@29985: lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c" huffman@29985: by (simp add: DERIV_cmult mult_commute [of _ c]) huffman@29985: huffman@29985: lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)" huffman@44317: by (rule DERIV_cong, rule DERIV_pow, simp) huffman@29985: declare DERIV_pow2 [simp] DERIV_pow [simp] huffman@29985: huffman@29985: lemma DERIV_add_const: "DERIV f x :> D ==> DERIV (%x. a + f x :: 'a::real_normed_field) x :> D" huffman@44317: by (rule DERIV_cong, rule DERIV_add, auto) huffman@29985: huffman@29985: lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x" hoelzl@31881: by (induct p, auto intro!: DERIV_intros simp add: pderiv_pCons) huffman@29985: huffman@29985: text{* Consequences of the derivative theorem above*} huffman@29985: huffman@29985: lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)" huffman@29985: apply (simp add: differentiable_def) huffman@29985: apply (blast intro: poly_DERIV) huffman@29985: done huffman@29985: huffman@29985: lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)" huffman@29985: by (rule poly_DERIV [THEN DERIV_isCont]) huffman@29985: huffman@29985: lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |] huffman@29985: ==> \x. a < x & x < b & (poly p x = 0)" huffman@29985: apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl) huffman@29985: apply (auto simp add: order_le_less) huffman@29985: done huffman@29985: huffman@29985: lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |] huffman@29985: ==> \x. a < x & x < b & (poly p x = 0)" huffman@29985: by (insert poly_IVT_pos [where p = "- p" ]) simp huffman@29985: huffman@29985: lemma poly_MVT: "(a::real) < b ==> huffman@29985: \x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)" huffman@29985: apply (drule_tac f = "poly p" in MVT, auto) huffman@29985: apply (rule_tac x = z in exI) huffman@29985: apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique]) huffman@29985: done huffman@29985: huffman@29985: text{*Lemmas for Derivatives*} huffman@29985: huffman@29985: lemma order_unique_lemma: huffman@29985: fixes p :: "'a::idom poly" huffman@29985: assumes "[:-a, 1:] ^ n dvd p \ \ [:-a, 1:] ^ Suc n dvd p" huffman@29985: shows "n = order a p" huffman@29985: unfolding Polynomial.order_def huffman@29985: apply (rule Least_equality [symmetric]) huffman@29985: apply (rule assms [THEN conjunct2]) huffman@29985: apply (erule contrapos_np) huffman@29985: apply (rule power_le_dvd) huffman@29985: apply (rule assms [THEN conjunct1]) huffman@29985: apply simp huffman@29985: done huffman@29985: huffman@29985: lemma lemma_order_pderiv1: huffman@29985: "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q + huffman@29985: smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)" huffman@29985: apply (simp only: pderiv_mult pderiv_power_Suc) huffman@30273: apply (simp del: power_Suc of_nat_Suc add: pderiv_pCons) huffman@29985: done huffman@29985: huffman@29985: lemma dvd_add_cancel1: huffman@29985: fixes a b c :: "'a::comm_ring_1" huffman@29985: shows "a dvd b + c \ a dvd b \ a dvd c" haftmann@35050: by (drule (1) Rings.dvd_diff, simp) huffman@29985: huffman@29985: lemma lemma_order_pderiv [rule_format]: huffman@29985: "\p q a. 0 < n & huffman@29985: pderiv p \ 0 & huffman@29985: p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q huffman@29985: --> n = Suc (order a (pderiv p))" huffman@29985: apply (cases "n", safe, rename_tac n p q a) huffman@29985: apply (rule order_unique_lemma) huffman@29985: apply (rule conjI) huffman@29985: apply (subst lemma_order_pderiv1) huffman@29985: apply (rule dvd_add) huffman@29985: apply (rule dvd_mult2) huffman@29985: apply (rule le_imp_power_dvd, simp) huffman@29985: apply (rule dvd_smult) huffman@29985: apply (rule dvd_mult) huffman@29985: apply (rule dvd_refl) huffman@29985: apply (subst lemma_order_pderiv1) huffman@29985: apply (erule contrapos_nn) back huffman@29985: apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n") huffman@29985: apply (simp del: mult_pCons_left) huffman@29985: apply (drule dvd_add_cancel1) huffman@29985: apply (simp del: mult_pCons_left) huffman@29985: apply (drule dvd_smult_cancel, simp del: of_nat_Suc) huffman@29985: apply assumption huffman@29985: done huffman@29985: huffman@29985: lemma order_decomp: huffman@29985: "p \ 0 huffman@29985: ==> \q. p = [:-a, 1:] ^ (order a p) * q & huffman@29985: ~([:-a, 1:] dvd q)" huffman@29985: apply (drule order [where a=a]) huffman@29985: apply (erule conjE) huffman@29985: apply (erule dvdE) huffman@29985: apply (rule exI) huffman@29985: apply (rule conjI, assumption) huffman@29985: apply (erule contrapos_nn) huffman@29985: apply (erule ssubst) back huffman@29985: apply (subst power_Suc2) huffman@29985: apply (erule mult_dvd_mono [OF dvd_refl]) huffman@29985: done huffman@29985: huffman@29985: lemma order_pderiv: "[| pderiv p \ 0; order a p \ 0 |] huffman@29985: ==> (order a p = Suc (order a (pderiv p)))" huffman@29985: apply (case_tac "p = 0", simp) huffman@29985: apply (drule_tac a = a and p = p in order_decomp) huffman@29985: using neq0_conv huffman@29985: apply (blast intro: lemma_order_pderiv) huffman@29985: done huffman@29985: huffman@29985: lemma order_mult: "p * q \ 0 \ order a (p * q) = order a p + order a q" huffman@29985: proof - huffman@29985: def i \ "order a p" huffman@29985: def j \ "order a q" huffman@29985: def t \ "[:-a, 1:]" huffman@29985: have t_dvd_iff: "\u. t dvd u \ poly u a = 0" huffman@29985: unfolding t_def by (simp add: dvd_iff_poly_eq_0) huffman@29985: assume "p * q \ 0" huffman@29985: then show "order a (p * q) = i + j" huffman@29985: apply clarsimp huffman@29985: apply (drule order [where a=a and p=p, folded i_def t_def]) huffman@29985: apply (drule order [where a=a and p=q, folded j_def t_def]) huffman@29985: apply clarify huffman@29985: apply (rule order_unique_lemma [symmetric], fold t_def) huffman@29985: apply (erule dvdE)+ huffman@29985: apply (simp add: power_add t_dvd_iff) huffman@29985: done huffman@29985: qed huffman@29985: huffman@29985: text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *} huffman@29985: huffman@29985: lemma order_divides: "[:-a, 1:] ^ n dvd p \ p = 0 \ n \ order a p" huffman@29985: apply (cases "p = 0", auto) huffman@29985: apply (drule order_2 [where a=a and p=p]) huffman@29985: apply (erule contrapos_np) huffman@29985: apply (erule power_le_dvd) huffman@29985: apply simp huffman@29985: apply (erule power_le_dvd [OF order_1]) huffman@29985: done huffman@29985: huffman@29985: lemma poly_squarefree_decomp_order: huffman@29985: assumes "pderiv p \ 0" huffman@29985: and p: "p = q * d" huffman@29985: and p': "pderiv p = e * d" huffman@29985: and d: "d = r * p + s * pderiv p" huffman@29985: shows "order a q = (if order a p = 0 then 0 else 1)" huffman@29985: proof (rule classical) huffman@29985: assume 1: "order a q \ (if order a p = 0 then 0 else 1)" huffman@29985: from `pderiv p \ 0` have "p \ 0" by auto huffman@29985: with p have "order a p = order a q + order a d" huffman@29985: by (simp add: order_mult) huffman@29985: with 1 have "order a p \ 0" by (auto split: if_splits) huffman@29985: have "order a (pderiv p) = order a e + order a d" huffman@29985: using `pderiv p \ 0` `pderiv p = e * d` by (simp add: order_mult) huffman@29985: have "order a p = Suc (order a (pderiv p))" huffman@29985: using `pderiv p \ 0` `order a p \ 0` by (rule order_pderiv) huffman@29985: have "d \ 0" using `p \ 0` `p = q * d` by simp huffman@29985: have "([:-a, 1:] ^ (order a (pderiv p))) dvd d" huffman@29985: apply (simp add: d) huffman@29985: apply (rule dvd_add) huffman@29985: apply (rule dvd_mult) huffman@29985: apply (simp add: order_divides `p \ 0` huffman@29985: `order a p = Suc (order a (pderiv p))`) huffman@29985: apply (rule dvd_mult) huffman@29985: apply (simp add: order_divides) huffman@29985: done huffman@29985: then have "order a (pderiv p) \ order a d" huffman@29985: using `d \ 0` by (simp add: order_divides) huffman@29985: show ?thesis huffman@29985: using `order a p = order a q + order a d` huffman@29985: using `order a (pderiv p) = order a e + order a d` huffman@29985: using `order a p = Suc (order a (pderiv p))` huffman@29985: using `order a (pderiv p) \ order a d` huffman@29985: by auto huffman@29985: qed huffman@29985: huffman@29985: lemma poly_squarefree_decomp_order2: "[| pderiv p \ 0; huffman@29985: p = q * d; huffman@29985: pderiv p = e * d; huffman@29985: d = r * p + s * pderiv p huffman@29985: |] ==> \a. order a q = (if order a p = 0 then 0 else 1)" huffman@29985: apply (blast intro: poly_squarefree_decomp_order) huffman@29985: done huffman@29985: huffman@29985: lemma order_pderiv2: "[| pderiv p \ 0; order a p \ 0 |] huffman@29985: ==> (order a (pderiv p) = n) = (order a p = Suc n)" huffman@29985: apply (auto dest: order_pderiv) huffman@29985: done huffman@29985: huffman@29985: definition huffman@29985: rsquarefree :: "'a::idom poly => bool" where huffman@29985: "rsquarefree p = (p \ 0 & (\a. (order a p = 0) | (order a p = 1)))" huffman@29985: huffman@29985: lemma pderiv_iszero: "pderiv p = 0 \ \h. p = [:h:]" huffman@29985: apply (simp add: pderiv_eq_0_iff) huffman@29985: apply (case_tac p, auto split: if_splits) huffman@29985: done huffman@29985: huffman@29985: lemma rsquarefree_roots: huffman@29985: "rsquarefree p = (\a. ~(poly p a = 0 & poly (pderiv p) a = 0))" huffman@29985: apply (simp add: rsquarefree_def) huffman@29985: apply (case_tac "p = 0", simp, simp) huffman@29985: apply (case_tac "pderiv p = 0") huffman@29985: apply simp huffman@29985: apply (drule pderiv_iszero, clarify) huffman@29985: apply simp huffman@29985: apply (rule allI) huffman@29985: apply (cut_tac p = "[:h:]" and a = a in order_root) huffman@29985: apply simp huffman@29985: apply (auto simp add: order_root order_pderiv2) huffman@29985: apply (erule_tac x="a" in allE, simp) huffman@29985: done huffman@29985: huffman@29985: lemma poly_squarefree_decomp: huffman@29985: assumes "pderiv p \ 0" huffman@29985: and "p = q * d" huffman@29985: and "pderiv p = e * d" huffman@29985: and "d = r * p + s * pderiv p" huffman@29985: shows "rsquarefree q & (\a. (poly q a = 0) = (poly p a = 0))" huffman@29985: proof - huffman@29985: from `pderiv p \ 0` have "p \ 0" by auto huffman@29985: with `p = q * d` have "q \ 0" by simp huffman@29985: have "\a. order a q = (if order a p = 0 then 0 else 1)" huffman@29985: using assms by (rule poly_squarefree_decomp_order2) huffman@29985: with `p \ 0` `q \ 0` show ?thesis huffman@29985: by (simp add: rsquarefree_def order_root) huffman@29985: qed huffman@29985: huffman@29985: end