paulson@3366: (* Title: HOL/Divides.thy paulson@3366: Author: Lawrence C Paulson, Cambridge University Computer Laboratory paulson@6865: Copyright 1999 University of Cambridge huffman@18154: *) paulson@3366: haftmann@27651: header {* The division operators div and mod *} paulson@3366: nipkow@15131: theory Divides huffman@47255: imports Nat_Transfer nipkow@15131: begin paulson@3366: haftmann@25942: subsection {* Syntactic division operations *} haftmann@25942: haftmann@27651: class div = dvd + haftmann@27540: fixes div :: "'a \ 'a \ 'a" (infixl "div" 70) haftmann@27651: and mod :: "'a \ 'a \ 'a" (infixl "mod" 70) haftmann@27540: haftmann@27540: haftmann@27651: subsection {* Abstract division in commutative semirings. *} haftmann@25942: haftmann@30930: class semiring_div = comm_semiring_1_cancel + no_zero_divisors + div + haftmann@25942: assumes mod_div_equality: "a div b * b + a mod b = a" haftmann@27651: and div_by_0 [simp]: "a div 0 = 0" haftmann@27651: and div_0 [simp]: "0 div a = 0" haftmann@27651: and div_mult_self1 [simp]: "b \ 0 \ (a + c * b) div b = c + a div b" haftmann@30930: and div_mult_mult1 [simp]: "c \ 0 \ (c * a) div (c * b) = a div b" haftmann@25942: begin haftmann@25942: haftmann@26100: text {* @{const div} and @{const mod} *} haftmann@26100: haftmann@26062: lemma mod_div_equality2: "b * (a div b) + a mod b = a" haftmann@57512: unfolding mult.commute [of b] haftmann@26062: by (rule mod_div_equality) haftmann@26062: huffman@29403: lemma mod_div_equality': "a mod b + a div b * b = a" huffman@29403: using mod_div_equality [of a b] haftmann@57514: by (simp only: ac_simps) huffman@29403: haftmann@26062: lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c" haftmann@30934: by (simp add: mod_div_equality) haftmann@26062: haftmann@26062: lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c" haftmann@30934: by (simp add: mod_div_equality2) haftmann@26062: haftmann@27651: lemma mod_by_0 [simp]: "a mod 0 = a" haftmann@30934: using mod_div_equality [of a zero] by simp haftmann@27651: haftmann@27651: lemma mod_0 [simp]: "0 mod a = 0" haftmann@30934: using mod_div_equality [of zero a] div_0 by simp haftmann@27651: haftmann@27651: lemma div_mult_self2 [simp]: haftmann@27651: assumes "b \ 0" haftmann@27651: shows "(a + b * c) div b = c + a div b" haftmann@57512: using assms div_mult_self1 [of b a c] by (simp add: mult.commute) haftmann@26100: haftmann@54221: lemma div_mult_self3 [simp]: haftmann@54221: assumes "b \ 0" haftmann@54221: shows "(c * b + a) div b = c + a div b" haftmann@54221: using assms by (simp add: add.commute) haftmann@54221: haftmann@54221: lemma div_mult_self4 [simp]: haftmann@54221: assumes "b \ 0" haftmann@54221: shows "(b * c + a) div b = c + a div b" haftmann@54221: using assms by (simp add: add.commute) haftmann@54221: haftmann@27651: lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b" haftmann@27651: proof (cases "b = 0") haftmann@27651: case True then show ?thesis by simp haftmann@27651: next haftmann@27651: case False haftmann@27651: have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b" haftmann@27651: by (simp add: mod_div_equality) haftmann@27651: also from False div_mult_self1 [of b a c] have haftmann@27651: "\ = (c + a div b) * b + (a + c * b) mod b" nipkow@29667: by (simp add: algebra_simps) haftmann@27651: finally have "a = a div b * b + (a + c * b) mod b" haftmann@57512: by (simp add: add.commute [of a] add.assoc distrib_right) haftmann@27651: then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b" haftmann@27651: by (simp add: mod_div_equality) haftmann@27651: then show ?thesis by simp haftmann@27651: qed haftmann@27651: haftmann@54221: lemma mod_mult_self2 [simp]: haftmann@54221: "(a + b * c) mod b = a mod b" haftmann@57512: by (simp add: mult.commute [of b]) haftmann@27651: haftmann@54221: lemma mod_mult_self3 [simp]: haftmann@54221: "(c * b + a) mod b = a mod b" haftmann@54221: by (simp add: add.commute) haftmann@54221: haftmann@54221: lemma mod_mult_self4 [simp]: haftmann@54221: "(b * c + a) mod b = a mod b" haftmann@54221: by (simp add: add.commute) haftmann@54221: haftmann@27651: lemma div_mult_self1_is_id [simp]: "b \ 0 \ b * a div b = a" haftmann@27651: using div_mult_self2 [of b 0 a] by simp haftmann@27651: haftmann@27651: lemma div_mult_self2_is_id [simp]: "b \ 0 \ a * b div b = a" haftmann@27651: using div_mult_self1 [of b 0 a] by simp haftmann@27651: haftmann@27651: lemma mod_mult_self1_is_0 [simp]: "b * a mod b = 0" haftmann@27651: using mod_mult_self2 [of 0 b a] by simp haftmann@27651: haftmann@27651: lemma mod_mult_self2_is_0 [simp]: "a * b mod b = 0" haftmann@27651: using mod_mult_self1 [of 0 a b] by simp haftmann@26062: haftmann@27651: lemma div_by_1 [simp]: "a div 1 = a" haftmann@27651: using div_mult_self2_is_id [of 1 a] zero_neq_one by simp haftmann@27651: haftmann@27651: lemma mod_by_1 [simp]: "a mod 1 = 0" haftmann@27651: proof - haftmann@27651: from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp haftmann@27651: then have "a + a mod 1 = a + 0" by simp haftmann@27651: then show ?thesis by (rule add_left_imp_eq) haftmann@27651: qed haftmann@27651: haftmann@27651: lemma mod_self [simp]: "a mod a = 0" haftmann@27651: using mod_mult_self2_is_0 [of 1] by simp haftmann@27651: haftmann@27651: lemma div_self [simp]: "a \ 0 \ a div a = 1" haftmann@27651: using div_mult_self2_is_id [of _ 1] by simp haftmann@27651: haftmann@27676: lemma div_add_self1 [simp]: haftmann@27651: assumes "b \ 0" haftmann@27651: shows "(b + a) div b = a div b + 1" haftmann@57512: using assms div_mult_self1 [of b a 1] by (simp add: add.commute) haftmann@26062: haftmann@27676: lemma div_add_self2 [simp]: haftmann@27651: assumes "b \ 0" haftmann@27651: shows "(a + b) div b = a div b + 1" haftmann@57512: using assms div_add_self1 [of b a] by (simp add: add.commute) haftmann@27651: haftmann@27676: lemma mod_add_self1 [simp]: haftmann@27651: "(b + a) mod b = a mod b" haftmann@57512: using mod_mult_self1 [of a 1 b] by (simp add: add.commute) haftmann@27651: haftmann@27676: lemma mod_add_self2 [simp]: haftmann@27651: "(a + b) mod b = a mod b" haftmann@27651: using mod_mult_self1 [of a 1 b] by simp haftmann@27651: haftmann@27651: lemma mod_div_decomp: haftmann@27651: fixes a b haftmann@27651: obtains q r where "q = a div b" and "r = a mod b" haftmann@27651: and "a = q * b + r" haftmann@27651: proof - haftmann@27651: from mod_div_equality have "a = a div b * b + a mod b" by simp haftmann@27651: moreover have "a div b = a div b" .. haftmann@27651: moreover have "a mod b = a mod b" .. haftmann@27651: note that ultimately show thesis by blast haftmann@27651: qed haftmann@27651: bulwahn@45231: lemma dvd_eq_mod_eq_0 [code]: "a dvd b \ b mod a = 0" haftmann@25942: proof haftmann@25942: assume "b mod a = 0" haftmann@25942: with mod_div_equality [of b a] have "b div a * a = b" by simp haftmann@57512: then have "b = a * (b div a)" unfolding mult.commute .. haftmann@25942: then have "\c. b = a * c" .. haftmann@25942: then show "a dvd b" unfolding dvd_def . haftmann@25942: next haftmann@25942: assume "a dvd b" haftmann@25942: then have "\c. b = a * c" unfolding dvd_def . haftmann@25942: then obtain c where "b = a * c" .. haftmann@25942: then have "b mod a = a * c mod a" by simp haftmann@57512: then have "b mod a = c * a mod a" by (simp add: mult.commute) haftmann@27651: then show "b mod a = 0" by simp haftmann@25942: qed haftmann@25942: huffman@29403: lemma mod_div_trivial [simp]: "a mod b div b = 0" huffman@29403: proof (cases "b = 0") huffman@29403: assume "b = 0" huffman@29403: thus ?thesis by simp huffman@29403: next huffman@29403: assume "b \ 0" huffman@29403: hence "a div b + a mod b div b = (a mod b + a div b * b) div b" huffman@29403: by (rule div_mult_self1 [symmetric]) huffman@29403: also have "\ = a div b" huffman@29403: by (simp only: mod_div_equality') huffman@29403: also have "\ = a div b + 0" huffman@29403: by simp huffman@29403: finally show ?thesis huffman@29403: by (rule add_left_imp_eq) huffman@29403: qed huffman@29403: huffman@29403: lemma mod_mod_trivial [simp]: "a mod b mod b = a mod b" huffman@29403: proof - huffman@29403: have "a mod b mod b = (a mod b + a div b * b) mod b" huffman@29403: by (simp only: mod_mult_self1) huffman@29403: also have "\ = a mod b" huffman@29403: by (simp only: mod_div_equality') huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: nipkow@29925: lemma dvd_imp_mod_0: "a dvd b \ b mod a = 0" nipkow@29948: by (rule dvd_eq_mod_eq_0[THEN iffD1]) nipkow@29925: nipkow@29925: lemma dvd_div_mult_self: "a dvd b \ (b div a) * a = b" nipkow@29925: by (subst (2) mod_div_equality [of b a, symmetric]) (simp add:dvd_imp_mod_0) nipkow@29925: haftmann@33274: lemma dvd_mult_div_cancel: "a dvd b \ a * (b div a) = b" haftmann@57512: by (drule dvd_div_mult_self) (simp add: mult.commute) haftmann@33274: nipkow@30052: lemma dvd_div_mult: "a dvd b \ (b div a) * c = b * c div a" nipkow@30052: apply (cases "a = 0") nipkow@30052: apply simp haftmann@57512: apply (auto simp: dvd_def mult.assoc) nipkow@30052: done nipkow@30052: nipkow@29925: lemma div_dvd_div[simp]: nipkow@29925: "a dvd b \ a dvd c \ (b div a dvd c div a) = (b dvd c)" nipkow@29925: apply (cases "a = 0") nipkow@29925: apply simp nipkow@29925: apply (unfold dvd_def) nipkow@29925: apply auto haftmann@57512: apply(blast intro:mult.assoc[symmetric]) haftmann@57512: apply(fastforce simp add: mult.assoc) nipkow@29925: done nipkow@29925: huffman@30078: lemma dvd_mod_imp_dvd: "[| k dvd m mod n; k dvd n |] ==> k dvd m" huffman@30078: apply (subgoal_tac "k dvd (m div n) *n + m mod n") huffman@30078: apply (simp add: mod_div_equality) huffman@30078: apply (simp only: dvd_add dvd_mult) huffman@30078: done huffman@30078: huffman@29403: text {* Addition respects modular equivalence. *} huffman@29403: huffman@29403: lemma mod_add_left_eq: "(a + b) mod c = (a mod c + b) mod c" huffman@29403: proof - huffman@29403: have "(a + b) mod c = (a div c * c + a mod c + b) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a mod c + b + a div c * c) mod c" haftmann@57514: by (simp only: ac_simps) huffman@29403: also have "\ = (a mod c + b) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: huffman@29403: lemma mod_add_right_eq: "(a + b) mod c = (a + b mod c) mod c" huffman@29403: proof - huffman@29403: have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a + b mod c + b div c * c) mod c" haftmann@57514: by (simp only: ac_simps) huffman@29403: also have "\ = (a + b mod c) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: huffman@29403: lemma mod_add_eq: "(a + b) mod c = (a mod c + b mod c) mod c" huffman@29403: by (rule trans [OF mod_add_left_eq mod_add_right_eq]) huffman@29403: huffman@29403: lemma mod_add_cong: huffman@29403: assumes "a mod c = a' mod c" huffman@29403: assumes "b mod c = b' mod c" huffman@29403: shows "(a + b) mod c = (a' + b') mod c" huffman@29403: proof - huffman@29403: have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c" huffman@29403: unfolding assms .. huffman@29403: thus ?thesis huffman@29403: by (simp only: mod_add_eq [symmetric]) huffman@29403: qed huffman@29403: haftmann@30923: lemma div_add [simp]: "z dvd x \ z dvd y nipkow@30837: \ (x + y) div z = x div z + y div z" haftmann@30923: by (cases "z = 0", simp, unfold dvd_def, auto simp add: algebra_simps) nipkow@30837: huffman@29403: text {* Multiplication respects modular equivalence. *} huffman@29403: huffman@29403: lemma mod_mult_left_eq: "(a * b) mod c = ((a mod c) * b) mod c" huffman@29403: proof - huffman@29403: have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a mod c * b + a div c * b * c) mod c" nipkow@29667: by (simp only: algebra_simps) huffman@29403: also have "\ = (a mod c * b) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: huffman@29403: lemma mod_mult_right_eq: "(a * b) mod c = (a * (b mod c)) mod c" huffman@29403: proof - huffman@29403: have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c" huffman@29403: by (simp only: mod_div_equality) huffman@29403: also have "\ = (a * (b mod c) + a * (b div c) * c) mod c" nipkow@29667: by (simp only: algebra_simps) huffman@29403: also have "\ = (a * (b mod c)) mod c" huffman@29403: by (rule mod_mult_self1) huffman@29403: finally show ?thesis . huffman@29403: qed huffman@29403: huffman@29403: lemma mod_mult_eq: "(a * b) mod c = ((a mod c) * (b mod c)) mod c" huffman@29403: by (rule trans [OF mod_mult_left_eq mod_mult_right_eq]) huffman@29403: huffman@29403: lemma mod_mult_cong: huffman@29403: assumes "a mod c = a' mod c" huffman@29403: assumes "b mod c = b' mod c" huffman@29403: shows "(a * b) mod c = (a' * b') mod c" huffman@29403: proof - huffman@29403: have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c" huffman@29403: unfolding assms .. huffman@29403: thus ?thesis huffman@29403: by (simp only: mod_mult_eq [symmetric]) huffman@29403: qed huffman@29403: huffman@47164: text {* Exponentiation respects modular equivalence. *} huffman@47164: huffman@47164: lemma power_mod: "(a mod b)^n mod b = a^n mod b" huffman@47164: apply (induct n, simp_all) huffman@47164: apply (rule mod_mult_right_eq [THEN trans]) huffman@47164: apply (simp (no_asm_simp)) huffman@47164: apply (rule mod_mult_eq [symmetric]) huffman@47164: done huffman@47164: huffman@29404: lemma mod_mod_cancel: huffman@29404: assumes "c dvd b" huffman@29404: shows "a mod b mod c = a mod c" huffman@29404: proof - huffman@29404: from `c dvd b` obtain k where "b = c * k" huffman@29404: by (rule dvdE) huffman@29404: have "a mod b mod c = a mod (c * k) mod c" huffman@29404: by (simp only: `b = c * k`) huffman@29404: also have "\ = (a mod (c * k) + a div (c * k) * k * c) mod c" huffman@29404: by (simp only: mod_mult_self1) huffman@29404: also have "\ = (a div (c * k) * (c * k) + a mod (c * k)) mod c" haftmann@57514: by (simp only: ac_simps ac_simps) huffman@29404: also have "\ = a mod c" huffman@29404: by (simp only: mod_div_equality) huffman@29404: finally show ?thesis . huffman@29404: qed huffman@29404: haftmann@30930: lemma div_mult_div_if_dvd: haftmann@30930: "y dvd x \ z dvd w \ (x div y) * (w div z) = (x * w) div (y * z)" haftmann@30930: apply (cases "y = 0", simp) haftmann@30930: apply (cases "z = 0", simp) haftmann@30930: apply (auto elim!: dvdE simp add: algebra_simps) haftmann@57512: apply (subst mult.assoc [symmetric]) nipkow@30476: apply (simp add: no_zero_divisors) haftmann@30930: done haftmann@30930: haftmann@35367: lemma div_mult_swap: haftmann@35367: assumes "c dvd b" haftmann@35367: shows "a * (b div c) = (a * b) div c" haftmann@35367: proof - haftmann@35367: from assms have "b div c * (a div 1) = b * a div (c * 1)" haftmann@35367: by (simp only: div_mult_div_if_dvd one_dvd) haftmann@57512: then show ?thesis by (simp add: mult.commute) haftmann@35367: qed haftmann@35367: haftmann@30930: lemma div_mult_mult2 [simp]: haftmann@30930: "c \ 0 \ (a * c) div (b * c) = a div b" haftmann@57512: by (drule div_mult_mult1) (simp add: mult.commute) haftmann@30930: haftmann@30930: lemma div_mult_mult1_if [simp]: haftmann@30930: "(c * a) div (c * b) = (if c = 0 then 0 else a div b)" haftmann@30930: by simp_all nipkow@30476: haftmann@30930: lemma mod_mult_mult1: haftmann@30930: "(c * a) mod (c * b) = c * (a mod b)" haftmann@30930: proof (cases "c = 0") haftmann@30930: case True then show ?thesis by simp haftmann@30930: next haftmann@30930: case False haftmann@30930: from mod_div_equality haftmann@30930: have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" . haftmann@30930: with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b) haftmann@30930: = c * a + c * (a mod b)" by (simp add: algebra_simps) haftmann@30930: with mod_div_equality show ?thesis by simp haftmann@30930: qed haftmann@30930: haftmann@30930: lemma mod_mult_mult2: haftmann@30930: "(a * c) mod (b * c) = (a mod b) * c" haftmann@57512: using mod_mult_mult1 [of c a b] by (simp add: mult.commute) haftmann@30930: huffman@47159: lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)" huffman@47159: by (fact mod_mult_mult2 [symmetric]) huffman@47159: huffman@47159: lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)" huffman@47159: by (fact mod_mult_mult1 [symmetric]) huffman@47159: huffman@31662: lemma dvd_mod: "k dvd m \ k dvd n \ k dvd (m mod n)" huffman@31662: unfolding dvd_def by (auto simp add: mod_mult_mult1) huffman@31662: huffman@31662: lemma dvd_mod_iff: "k dvd n \ k dvd (m mod n) \ k dvd m" huffman@31662: by (blast intro: dvd_mod_imp_dvd dvd_mod) huffman@31662: haftmann@31009: lemma div_power: huffman@31661: "y dvd x \ (x div y) ^ n = x ^ n div y ^ n" nipkow@30476: apply (induct n) nipkow@30476: apply simp nipkow@30476: apply(simp add: div_mult_div_if_dvd dvd_power_same) nipkow@30476: done nipkow@30476: haftmann@35367: lemma dvd_div_eq_mult: haftmann@35367: assumes "a \ 0" and "a dvd b" haftmann@35367: shows "b div a = c \ b = c * a" haftmann@35367: proof haftmann@35367: assume "b = c * a" haftmann@35367: then show "b div a = c" by (simp add: assms) haftmann@35367: next haftmann@35367: assume "b div a = c" haftmann@35367: then have "b div a * a = c * a" by simp haftmann@35367: moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self) haftmann@35367: ultimately show "b = c * a" by simp haftmann@35367: qed haftmann@35367: haftmann@35367: lemma dvd_div_div_eq_mult: haftmann@35367: assumes "a \ 0" "c \ 0" and "a dvd b" "c dvd d" haftmann@35367: shows "b div a = d div c \ b * c = a * d" haftmann@57512: using assms by (auto simp add: mult.commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym) haftmann@35367: huffman@31661: end huffman@31661: haftmann@35673: class ring_div = semiring_div + comm_ring_1 huffman@29405: begin huffman@29405: haftmann@36634: subclass ring_1_no_zero_divisors .. haftmann@36634: huffman@29405: text {* Negation respects modular equivalence. *} huffman@29405: huffman@29405: lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b" huffman@29405: proof - huffman@29405: have "(- a) mod b = (- (a div b * b + a mod b)) mod b" huffman@29405: by (simp only: mod_div_equality) huffman@29405: also have "\ = (- (a mod b) + - (a div b) * b) mod b" haftmann@57514: by (simp add: ac_simps) huffman@29405: also have "\ = (- (a mod b)) mod b" huffman@29405: by (rule mod_mult_self1) huffman@29405: finally show ?thesis . huffman@29405: qed huffman@29405: huffman@29405: lemma mod_minus_cong: huffman@29405: assumes "a mod b = a' mod b" huffman@29405: shows "(- a) mod b = (- a') mod b" huffman@29405: proof - huffman@29405: have "(- (a mod b)) mod b = (- (a' mod b)) mod b" huffman@29405: unfolding assms .. huffman@29405: thus ?thesis huffman@29405: by (simp only: mod_minus_eq [symmetric]) huffman@29405: qed huffman@29405: huffman@29405: text {* Subtraction respects modular equivalence. *} huffman@29405: haftmann@54230: lemma mod_diff_left_eq: haftmann@54230: "(a - b) mod c = (a mod c - b) mod c" haftmann@54230: using mod_add_cong [of a c "a mod c" "- b" "- b"] by simp haftmann@54230: haftmann@54230: lemma mod_diff_right_eq: haftmann@54230: "(a - b) mod c = (a - b mod c) mod c" haftmann@54230: using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp haftmann@54230: haftmann@54230: lemma mod_diff_eq: haftmann@54230: "(a - b) mod c = (a mod c - b mod c) mod c" haftmann@54230: using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp huffman@29405: huffman@29405: lemma mod_diff_cong: huffman@29405: assumes "a mod c = a' mod c" huffman@29405: assumes "b mod c = b' mod c" huffman@29405: shows "(a - b) mod c = (a' - b') mod c" haftmann@54230: using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] by simp huffman@29405: nipkow@30180: lemma dvd_neg_div: "y dvd x \ -x div y = - (x div y)" nipkow@30180: apply (case_tac "y = 0") apply simp nipkow@30180: apply (auto simp add: dvd_def) nipkow@30180: apply (subgoal_tac "-(y * k) = y * - k") thomas@57492: apply (simp only:) nipkow@30180: apply (erule div_mult_self1_is_id) nipkow@30180: apply simp nipkow@30180: done nipkow@30180: nipkow@30180: lemma dvd_div_neg: "y dvd x \ x div -y = - (x div y)" nipkow@30180: apply (case_tac "y = 0") apply simp nipkow@30180: apply (auto simp add: dvd_def) nipkow@30180: apply (subgoal_tac "y * k = -y * -k") thomas@57492: apply (erule ssubst, rule div_mult_self1_is_id) nipkow@30180: apply simp nipkow@30180: apply simp nipkow@30180: done nipkow@30180: huffman@47159: lemma div_minus_minus [simp]: "(-a) div (-b) = a div b" huffman@47159: using div_mult_mult1 [of "- 1" a b] huffman@47159: unfolding neg_equal_0_iff_equal by simp huffman@47159: huffman@47159: lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)" huffman@47159: using mod_mult_mult1 [of "- 1" a b] by simp huffman@47159: huffman@47159: lemma div_minus_right: "a div (-b) = (-a) div b" huffman@47159: using div_minus_minus [of "-a" b] by simp huffman@47159: huffman@47159: lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)" huffman@47159: using mod_minus_minus [of "-a" b] by simp huffman@47159: huffman@47160: lemma div_minus1_right [simp]: "a div (-1) = -a" huffman@47160: using div_minus_right [of a 1] by simp huffman@47160: huffman@47160: lemma mod_minus1_right [simp]: "a mod (-1) = 0" huffman@47160: using mod_minus_right [of a 1] by simp huffman@47160: haftmann@54221: lemma minus_mod_self2 [simp]: haftmann@54221: "(a - b) mod b = a mod b" haftmann@54221: by (simp add: mod_diff_right_eq) haftmann@54221: haftmann@54221: lemma minus_mod_self1 [simp]: haftmann@54221: "(b - a) mod b = - a mod b" haftmann@54230: using mod_add_self2 [of "- a" b] by simp haftmann@54221: huffman@29405: end huffman@29405: haftmann@54226: class semiring_div_parity = semiring_div + semiring_numeral + haftmann@54226: assumes parity: "a mod 2 = 0 \ a mod 2 = 1" haftmann@54226: begin haftmann@54226: haftmann@54226: lemma parity_cases [case_names even odd]: haftmann@54226: assumes "a mod 2 = 0 \ P" haftmann@54226: assumes "a mod 2 = 1 \ P" haftmann@54226: shows P haftmann@54226: using assms parity by blast haftmann@54226: haftmann@54226: lemma not_mod_2_eq_0_eq_1 [simp]: haftmann@54226: "a mod 2 \ 0 \ a mod 2 = 1" haftmann@54226: by (cases a rule: parity_cases) simp_all haftmann@54226: haftmann@54226: lemma not_mod_2_eq_1_eq_0 [simp]: haftmann@54226: "a mod 2 \ 1 \ a mod 2 = 0" haftmann@54226: by (cases a rule: parity_cases) simp_all haftmann@54226: haftmann@54226: end haftmann@54226: haftmann@25942: haftmann@53067: subsection {* Generic numeral division with a pragmatic type class *} haftmann@53067: haftmann@53067: text {* haftmann@53067: The following type class contains everything necessary to formulate haftmann@53067: a division algorithm in ring structures with numerals, restricted haftmann@53067: to its positive segments. This is its primary motiviation, and it haftmann@53067: could surely be formulated using a more fine-grained, more algebraic haftmann@53067: and less technical class hierarchy. haftmann@53067: *} haftmann@53067: haftmann@53067: class semiring_numeral_div = linordered_semidom + minus + semiring_div + haftmann@53067: assumes diff_invert_add1: "a + b = c \ a = c - b" haftmann@53067: and le_add_diff_inverse2: "b \ a \ a - b + b = a" haftmann@53067: assumes mult_div_cancel: "b * (a div b) = a - a mod b" haftmann@53067: and div_less: "0 \ a \ a < b \ a div b = 0" haftmann@53067: and mod_less: " 0 \ a \ a < b \ a mod b = a" haftmann@53067: and div_positive: "0 < b \ b \ a \ a div b > 0" haftmann@53067: and mod_less_eq_dividend: "0 \ a \ a mod b \ a" haftmann@53067: and pos_mod_bound: "0 < b \ a mod b < b" haftmann@53067: and pos_mod_sign: "0 < b \ 0 \ a mod b" haftmann@53067: and mod_mult2_eq: "0 \ c \ a mod (b * c) = b * (a div b mod c) + a mod b" haftmann@53067: and div_mult2_eq: "0 \ c \ a div (b * c) = a div b div c" haftmann@53067: assumes discrete: "a < b \ a + 1 \ b" haftmann@53067: begin haftmann@53067: haftmann@53067: lemma diff_zero [simp]: haftmann@53067: "a - 0 = a" haftmann@53067: by (rule diff_invert_add1 [symmetric]) simp haftmann@53067: haftmann@54226: subclass semiring_div_parity haftmann@54226: proof haftmann@54226: fix a haftmann@54226: show "a mod 2 = 0 \ a mod 2 = 1" haftmann@54226: proof (rule ccontr) haftmann@54226: assume "\ (a mod 2 = 0 \ a mod 2 = 1)" haftmann@54226: then have "a mod 2 \ 0" and "a mod 2 \ 1" by simp_all haftmann@54226: have "0 < 2" by simp haftmann@54226: with pos_mod_bound pos_mod_sign have "0 \ a mod 2" "a mod 2 < 2" by simp_all haftmann@54226: with `a mod 2 \ 0` have "0 < a mod 2" by simp haftmann@54226: with discrete have "1 \ a mod 2" by simp haftmann@54226: with `a mod 2 \ 1` have "1 < a mod 2" by simp haftmann@54226: with discrete have "2 \ a mod 2" by simp haftmann@54226: with `a mod 2 < 2` show False by simp haftmann@54226: qed haftmann@53067: qed haftmann@53067: haftmann@53067: lemma divmod_digit_1: haftmann@53067: assumes "0 \ a" "0 < b" and "b \ a mod (2 * b)" haftmann@53067: shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P") haftmann@53067: and "a mod (2 * b) - b = a mod b" (is "?Q") haftmann@53067: proof - haftmann@53067: from assms mod_less_eq_dividend [of a "2 * b"] have "b \ a" haftmann@53067: by (auto intro: trans) haftmann@53067: with `0 < b` have "0 < a div b" by (auto intro: div_positive) haftmann@53067: then have [simp]: "1 \ a div b" by (simp add: discrete) haftmann@53067: with `0 < b` have mod_less: "a mod b < b" by (simp add: pos_mod_bound) haftmann@53067: def w \ "a div b mod 2" with parity have w_exhaust: "w = 0 \ w = 1" by auto haftmann@53067: have mod_w: "a mod (2 * b) = a mod b + b * w" haftmann@53067: by (simp add: w_def mod_mult2_eq ac_simps) haftmann@53067: from assms w_exhaust have "w = 1" haftmann@53067: by (auto simp add: mod_w) (insert mod_less, auto) haftmann@53067: with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp haftmann@53067: have "2 * (a div (2 * b)) = a div b - w" haftmann@53067: by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps) haftmann@53067: with `w = 1` have div: "2 * (a div (2 * b)) = a div b - 1" by simp haftmann@53067: then show ?P and ?Q haftmann@53067: by (simp_all add: div mod diff_invert_add1 [symmetric] le_add_diff_inverse2) haftmann@53067: qed haftmann@53067: haftmann@53067: lemma divmod_digit_0: haftmann@53067: assumes "0 < b" and "a mod (2 * b) < b" haftmann@53067: shows "2 * (a div (2 * b)) = a div b" (is "?P") haftmann@53067: and "a mod (2 * b) = a mod b" (is "?Q") haftmann@53067: proof - haftmann@53067: def w \ "a div b mod 2" with parity have w_exhaust: "w = 0 \ w = 1" by auto haftmann@53067: have mod_w: "a mod (2 * b) = a mod b + b * w" haftmann@53067: by (simp add: w_def mod_mult2_eq ac_simps) haftmann@53067: moreover have "b \ a mod b + b" haftmann@53067: proof - haftmann@53067: from `0 < b` pos_mod_sign have "0 \ a mod b" by blast haftmann@53067: then have "0 + b \ a mod b + b" by (rule add_right_mono) haftmann@53067: then show ?thesis by simp haftmann@53067: qed haftmann@53067: moreover note assms w_exhaust haftmann@53067: ultimately have "w = 0" by auto haftmann@53067: with mod_w have mod: "a mod (2 * b) = a mod b" by simp haftmann@53067: have "2 * (a div (2 * b)) = a div b - w" haftmann@53067: by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps) haftmann@53067: with `w = 0` have div: "2 * (a div (2 * b)) = a div b" by simp haftmann@53067: then show ?P and ?Q haftmann@53067: by (simp_all add: div mod) haftmann@53067: qed haftmann@53067: haftmann@53067: definition divmod :: "num \ num \ 'a \ 'a" haftmann@53067: where haftmann@53067: "divmod m n = (numeral m div numeral n, numeral m mod numeral n)" haftmann@53067: haftmann@53067: lemma fst_divmod [simp]: haftmann@53067: "fst (divmod m n) = numeral m div numeral n" haftmann@53067: by (simp add: divmod_def) haftmann@53067: haftmann@53067: lemma snd_divmod [simp]: haftmann@53067: "snd (divmod m n) = numeral m mod numeral n" haftmann@53067: by (simp add: divmod_def) haftmann@53067: haftmann@53067: definition divmod_step :: "num \ 'a \ 'a \ 'a \ 'a" haftmann@53067: where haftmann@53067: "divmod_step l qr = (let (q, r) = qr haftmann@53067: in if r \ numeral l then (2 * q + 1, r - numeral l) haftmann@53067: else (2 * q, r))" haftmann@53067: haftmann@53067: text {* haftmann@53067: This is a formulation of one step (referring to one digit position) haftmann@53067: in school-method division: compare the dividend at the current haftmann@53070: digit position with the remainder from previous division steps haftmann@53067: and evaluate accordingly. haftmann@53067: *} haftmann@53067: haftmann@53067: lemma divmod_step_eq [code]: haftmann@53067: "divmod_step l (q, r) = (if numeral l \ r haftmann@53067: then (2 * q + 1, r - numeral l) else (2 * q, r))" haftmann@53067: by (simp add: divmod_step_def) haftmann@53067: haftmann@53067: lemma divmod_step_simps [simp]: haftmann@53067: "r < numeral l \ divmod_step l (q, r) = (2 * q, r)" haftmann@53067: "numeral l \ r \ divmod_step l (q, r) = (2 * q + 1, r - numeral l)" haftmann@53067: by (auto simp add: divmod_step_eq not_le) haftmann@53067: haftmann@53067: text {* haftmann@53067: This is a formulation of school-method division. haftmann@53067: If the divisor is smaller than the dividend, terminate. haftmann@53067: If not, shift the dividend to the right until termination haftmann@53067: occurs and then reiterate single division steps in the haftmann@53067: opposite direction. haftmann@53067: *} haftmann@53067: haftmann@53067: lemma divmod_divmod_step [code]: haftmann@53067: "divmod m n = (if m < n then (0, numeral m) haftmann@53067: else divmod_step n (divmod m (Num.Bit0 n)))" haftmann@53067: proof (cases "m < n") haftmann@53067: case True then have "numeral m < numeral n" by simp haftmann@53067: then show ?thesis haftmann@53067: by (simp add: prod_eq_iff div_less mod_less) haftmann@53067: next haftmann@53067: case False haftmann@53067: have "divmod m n = haftmann@53067: divmod_step n (numeral m div (2 * numeral n), haftmann@53067: numeral m mod (2 * numeral n))" haftmann@53067: proof (cases "numeral n \ numeral m mod (2 * numeral n)") haftmann@53067: case True haftmann@53067: with divmod_step_simps haftmann@53067: have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = haftmann@53067: (2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)" haftmann@53067: by blast haftmann@53067: moreover from True divmod_digit_1 [of "numeral m" "numeral n"] haftmann@53067: have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n" haftmann@53067: and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n" haftmann@53067: by simp_all haftmann@53067: ultimately show ?thesis by (simp only: divmod_def) haftmann@53067: next haftmann@53067: case False then have *: "numeral m mod (2 * numeral n) < numeral n" haftmann@53067: by (simp add: not_le) haftmann@53067: with divmod_step_simps haftmann@53067: have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = haftmann@53067: (2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))" haftmann@53067: by blast haftmann@53067: moreover from * divmod_digit_0 [of "numeral n" "numeral m"] haftmann@53067: have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n" haftmann@53067: and "numeral m mod (2 * numeral n) = numeral m mod numeral n" haftmann@53067: by (simp_all only: zero_less_numeral) haftmann@53067: ultimately show ?thesis by (simp only: divmod_def) haftmann@53067: qed haftmann@53067: then have "divmod m n = haftmann@53067: divmod_step n (numeral m div numeral (Num.Bit0 n), haftmann@53067: numeral m mod numeral (Num.Bit0 n))" haftmann@53067: by (simp only: numeral.simps distrib mult_1) haftmann@53067: then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))" haftmann@53067: by (simp add: divmod_def) haftmann@53067: with False show ?thesis by simp haftmann@53067: qed haftmann@53067: haftmann@53069: lemma divmod_cancel [code]: haftmann@53069: "divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \ (q, 2 * r))" (is ?P) haftmann@53069: "divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \ (q, 2 * r + 1))" (is ?Q) haftmann@53069: proof - haftmann@53069: have *: "\q. numeral (Num.Bit0 q) = 2 * numeral q" haftmann@53069: "\q. numeral (Num.Bit1 q) = 2 * numeral q + 1" haftmann@53069: by (simp_all only: numeral_mult numeral.simps distrib) simp_all haftmann@53069: have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less) haftmann@53069: then show ?P and ?Q haftmann@53069: by (simp_all add: prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1 haftmann@53069: div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2] add.commute del: numeral_times_numeral) haftmann@53069: qed haftmann@53069: haftmann@53067: end haftmann@53067: haftmann@53067: hide_fact (open) diff_invert_add1 le_add_diff_inverse2 diff_zero haftmann@53067: -- {* restore simple accesses for more general variants of theorems *} haftmann@53067: haftmann@53067: haftmann@26100: subsection {* Division on @{typ nat} *} haftmann@26100: haftmann@26100: text {* haftmann@26100: We define @{const div} and @{const mod} on @{typ nat} by means haftmann@26100: of a characteristic relation with two input arguments haftmann@26100: @{term "m\nat"}, @{term "n\nat"} and two output arguments haftmann@26100: @{term "q\nat"}(uotient) and @{term "r\nat"}(emainder). haftmann@26100: *} haftmann@26100: haftmann@33340: definition divmod_nat_rel :: "nat \ nat \ nat \ nat \ bool" where haftmann@33340: "divmod_nat_rel m n qr \ haftmann@30923: m = fst qr * n + snd qr \ haftmann@30923: (if n = 0 then fst qr = 0 else if n > 0 then 0 \ snd qr \ snd qr < n else n < snd qr \ snd qr \ 0)" haftmann@26100: haftmann@33340: text {* @{const divmod_nat_rel} is total: *} haftmann@26100: haftmann@33340: lemma divmod_nat_rel_ex: haftmann@33340: obtains q r where "divmod_nat_rel m n (q, r)" haftmann@26100: proof (cases "n = 0") haftmann@30923: case True with that show thesis haftmann@33340: by (auto simp add: divmod_nat_rel_def) haftmann@26100: next haftmann@26100: case False haftmann@26100: have "\q r. m = q * n + r \ r < n" haftmann@26100: proof (induct m) haftmann@26100: case 0 with `n \ 0` haftmann@26100: have "(0\nat) = 0 * n + 0 \ 0 < n" by simp haftmann@26100: then show ?case by blast haftmann@26100: next haftmann@26100: case (Suc m) then obtain q' r' haftmann@26100: where m: "m = q' * n + r'" and n: "r' < n" by auto haftmann@26100: then show ?case proof (cases "Suc r' < n") haftmann@26100: case True haftmann@26100: from m n have "Suc m = q' * n + Suc r'" by simp haftmann@26100: with True show ?thesis by blast haftmann@26100: next haftmann@26100: case False then have "n \ Suc r'" by auto haftmann@26100: moreover from n have "Suc r' \ n" by auto haftmann@26100: ultimately have "n = Suc r'" by auto haftmann@26100: with m have "Suc m = Suc q' * n + 0" by simp haftmann@26100: with `n \ 0` show ?thesis by blast haftmann@26100: qed haftmann@26100: qed haftmann@26100: with that show thesis haftmann@33340: using `n \ 0` by (auto simp add: divmod_nat_rel_def) haftmann@26100: qed haftmann@26100: haftmann@33340: text {* @{const divmod_nat_rel} is injective: *} haftmann@26100: haftmann@33340: lemma divmod_nat_rel_unique: haftmann@33340: assumes "divmod_nat_rel m n qr" haftmann@33340: and "divmod_nat_rel m n qr'" haftmann@30923: shows "qr = qr'" haftmann@26100: proof (cases "n = 0") haftmann@26100: case True with assms show ?thesis haftmann@30923: by (cases qr, cases qr') haftmann@33340: (simp add: divmod_nat_rel_def) haftmann@26100: next haftmann@26100: case False haftmann@26100: have aux: "\q r q' r'. q' * n + r' = q * n + r \ r < n \ q' \ (q\nat)" haftmann@26100: apply (rule leI) haftmann@26100: apply (subst less_iff_Suc_add) haftmann@26100: apply (auto simp add: add_mult_distrib) haftmann@26100: done wenzelm@53374: from `n \ 0` assms have *: "fst qr = fst qr'" haftmann@33340: by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym) wenzelm@53374: with assms have "snd qr = snd qr'" haftmann@33340: by (simp add: divmod_nat_rel_def) wenzelm@53374: with * show ?thesis by (cases qr, cases qr') simp haftmann@26100: qed haftmann@26100: haftmann@26100: text {* haftmann@26100: We instantiate divisibility on the natural numbers by haftmann@33340: means of @{const divmod_nat_rel}: haftmann@26100: *} haftmann@25942: haftmann@33340: definition divmod_nat :: "nat \ nat \ nat \ nat" where haftmann@37767: "divmod_nat m n = (THE qr. divmod_nat_rel m n qr)" haftmann@30923: haftmann@33340: lemma divmod_nat_rel_divmod_nat: haftmann@33340: "divmod_nat_rel m n (divmod_nat m n)" haftmann@30923: proof - haftmann@33340: from divmod_nat_rel_ex haftmann@33340: obtain qr where rel: "divmod_nat_rel m n qr" . haftmann@30923: then show ?thesis haftmann@33340: by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique) haftmann@30923: qed haftmann@30923: huffman@47135: lemma divmod_nat_unique: haftmann@33340: assumes "divmod_nat_rel m n qr" haftmann@33340: shows "divmod_nat m n = qr" haftmann@33340: using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat) haftmann@26100: huffman@46551: instantiation nat :: semiring_div huffman@46551: begin huffman@46551: haftmann@26100: definition div_nat where haftmann@33340: "m div n = fst (divmod_nat m n)" haftmann@26100: huffman@46551: lemma fst_divmod_nat [simp]: huffman@46551: "fst (divmod_nat m n) = m div n" huffman@46551: by (simp add: div_nat_def) huffman@46551: haftmann@26100: definition mod_nat where haftmann@33340: "m mod n = snd (divmod_nat m n)" haftmann@25571: huffman@46551: lemma snd_divmod_nat [simp]: huffman@46551: "snd (divmod_nat m n) = m mod n" huffman@46551: by (simp add: mod_nat_def) huffman@46551: haftmann@33340: lemma divmod_nat_div_mod: haftmann@33340: "divmod_nat m n = (m div n, m mod n)" huffman@46551: by (simp add: prod_eq_iff) haftmann@26100: huffman@47135: lemma div_nat_unique: haftmann@33340: assumes "divmod_nat_rel m n (q, r)" haftmann@26100: shows "m div n = q" huffman@47135: using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff) huffman@47135: huffman@47135: lemma mod_nat_unique: haftmann@33340: assumes "divmod_nat_rel m n (q, r)" haftmann@26100: shows "m mod n = r" huffman@47135: using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff) haftmann@25571: haftmann@33340: lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)" huffman@46551: using divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod) paulson@14267: huffman@47136: lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)" huffman@47136: by (simp add: divmod_nat_unique divmod_nat_rel_def) huffman@47136: huffman@47136: lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)" huffman@47136: by (simp add: divmod_nat_unique divmod_nat_rel_def) haftmann@25942: huffman@47137: lemma divmod_nat_base: "m < n \ divmod_nat m n = (0, m)" huffman@47137: by (simp add: divmod_nat_unique divmod_nat_rel_def) haftmann@25942: haftmann@33340: lemma divmod_nat_step: haftmann@26100: assumes "0 < n" and "n \ m" haftmann@33340: shows "divmod_nat m n = (Suc ((m - n) div n), (m - n) mod n)" huffman@47135: proof (rule divmod_nat_unique) huffman@47134: have "divmod_nat_rel (m - n) n ((m - n) div n, (m - n) mod n)" huffman@47134: by (rule divmod_nat_rel) huffman@47134: thus "divmod_nat_rel m n (Suc ((m - n) div n), (m - n) mod n)" huffman@47134: unfolding divmod_nat_rel_def using assms by auto haftmann@26100: qed haftmann@25942: wenzelm@26300: text {* The ''recursion'' equations for @{const div} and @{const mod} *} haftmann@26100: haftmann@26100: lemma div_less [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "m < n" haftmann@26100: shows "m div n = 0" huffman@46551: using assms divmod_nat_base by (simp add: prod_eq_iff) haftmann@25942: haftmann@26100: lemma le_div_geq: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "0 < n" and "n \ m" haftmann@26100: shows "m div n = Suc ((m - n) div n)" huffman@46551: using assms divmod_nat_step by (simp add: prod_eq_iff) paulson@14267: haftmann@26100: lemma mod_less [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "m < n" haftmann@26100: shows "m mod n = m" huffman@46551: using assms divmod_nat_base by (simp add: prod_eq_iff) haftmann@26100: haftmann@26100: lemma le_mod_geq: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "n \ m" haftmann@26100: shows "m mod n = (m - n) mod n" huffman@46551: using assms divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff) paulson@14267: huffman@47136: instance proof huffman@47136: fix m n :: nat huffman@47136: show "m div n * n + m mod n = m" huffman@47136: using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def) huffman@47136: next huffman@47136: fix m n q :: nat huffman@47136: assume "n \ 0" huffman@47136: then show "(q + m * n) div n = m + q div n" huffman@47136: by (induct m) (simp_all add: le_div_geq) huffman@47136: next huffman@47136: fix m n q :: nat huffman@47136: assume "m \ 0" huffman@47136: hence "\a b. divmod_nat_rel n q (a, b) \ divmod_nat_rel (m * n) (m * q) (a, m * b)" huffman@47136: unfolding divmod_nat_rel_def huffman@47136: by (auto split: split_if_asm, simp_all add: algebra_simps) huffman@47136: moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" . huffman@47136: ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" . huffman@47136: thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique) huffman@47136: next huffman@47136: fix n :: nat show "n div 0 = 0" haftmann@33340: by (simp add: div_nat_def divmod_nat_zero) huffman@47136: next huffman@47136: fix n :: nat show "0 div n = 0" huffman@47136: by (simp add: div_nat_def divmod_nat_zero_left) haftmann@25942: qed haftmann@26100: haftmann@25942: end paulson@14267: haftmann@33361: lemma divmod_nat_if [code]: "divmod_nat m n = (if n = 0 \ m < n then (0, m) else haftmann@33361: let (q, r) = divmod_nat (m - n) n in (Suc q, r))" blanchet@55414: by (simp add: prod_eq_iff case_prod_beta not_less le_div_geq le_mod_geq) haftmann@33361: haftmann@26100: text {* Simproc for cancelling @{const div} and @{const mod} *} haftmann@25942: wenzelm@51299: ML_file "~~/src/Provers/Arith/cancel_div_mod.ML" wenzelm@51299: haftmann@30934: ML {* wenzelm@43594: structure Cancel_Div_Mod_Nat = Cancel_Div_Mod wenzelm@41550: ( haftmann@30934: val div_name = @{const_name div}; haftmann@30934: val mod_name = @{const_name mod}; haftmann@30934: val mk_binop = HOLogic.mk_binop; huffman@48561: val mk_plus = HOLogic.mk_binop @{const_name Groups.plus}; huffman@48561: val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT; huffman@48561: fun mk_sum [] = HOLogic.zero huffman@48561: | mk_sum [t] = t huffman@48561: | mk_sum (t :: ts) = mk_plus (t, mk_sum ts); huffman@48561: fun dest_sum tm = huffman@48561: if HOLogic.is_zero tm then [] huffman@48561: else huffman@48561: (case try HOLogic.dest_Suc tm of huffman@48561: SOME t => HOLogic.Suc_zero :: dest_sum t huffman@48561: | NONE => huffman@48561: (case try dest_plus tm of huffman@48561: SOME (t, u) => dest_sum t @ dest_sum u huffman@48561: | NONE => [tm])); haftmann@25942: haftmann@30934: val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]; paulson@14267: haftmann@30934: val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac haftmann@57514: (@{thm add_0_left} :: @{thm add_0_right} :: @{thms ac_simps})) wenzelm@41550: ) haftmann@25942: *} haftmann@25942: wenzelm@43594: simproc_setup cancel_div_mod_nat ("(m::nat) + n") = {* K Cancel_Div_Mod_Nat.proc *} wenzelm@43594: haftmann@26100: haftmann@26100: subsubsection {* Quotient *} haftmann@26100: haftmann@26100: lemma div_geq: "0 < n \ \ m < n \ m div n = Suc ((m - n) div n)" nipkow@29667: by (simp add: le_div_geq linorder_not_less) haftmann@26100: haftmann@26100: lemma div_if: "0 < n \ m div n = (if m < n then 0 else Suc ((m - n) div n))" nipkow@29667: by (simp add: div_geq) haftmann@26100: haftmann@26100: lemma div_mult_self_is_m [simp]: "0 (m*n) div n = (m::nat)" nipkow@29667: by simp haftmann@26100: haftmann@26100: lemma div_mult_self1_is_m [simp]: "0 (n*m) div n = (m::nat)" nipkow@29667: by simp haftmann@26100: haftmann@53066: lemma div_positive: haftmann@53066: fixes m n :: nat haftmann@53066: assumes "n > 0" haftmann@53066: assumes "m \ n" haftmann@53066: shows "m div n > 0" haftmann@53066: proof - haftmann@53066: from `m \ n` obtain q where "m = n + q" haftmann@53066: by (auto simp add: le_iff_add) haftmann@53066: with `n > 0` show ?thesis by simp haftmann@53066: qed haftmann@53066: haftmann@25942: haftmann@25942: subsubsection {* Remainder *} haftmann@25942: haftmann@26100: lemma mod_less_divisor [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: assumes "n > 0" haftmann@26100: shows "m mod n < (n::nat)" haftmann@33340: using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto paulson@14267: haftmann@51173: lemma mod_Suc_le_divisor [simp]: haftmann@51173: "m mod Suc n \ n" haftmann@51173: using mod_less_divisor [of "Suc n" m] by arith haftmann@51173: haftmann@26100: lemma mod_less_eq_dividend [simp]: haftmann@26100: fixes m n :: nat haftmann@26100: shows "m mod n \ m" haftmann@26100: proof (rule add_leD2) haftmann@26100: from mod_div_equality have "m div n * n + m mod n = m" . haftmann@26100: then show "m div n * n + m mod n \ m" by auto haftmann@26100: qed haftmann@26100: haftmann@26100: lemma mod_geq: "\ m < (n\nat) \ m mod n = (m - n) mod n" nipkow@29667: by (simp add: le_mod_geq linorder_not_less) paulson@14267: haftmann@26100: lemma mod_if: "m mod (n\nat) = (if m < n then m else (m - n) mod n)" nipkow@29667: by (simp add: le_mod_geq) haftmann@26100: paulson@14267: lemma mod_1 [simp]: "m mod Suc 0 = 0" nipkow@29667: by (induct m) (simp_all add: mod_geq) paulson@14267: paulson@14267: (* a simple rearrangement of mod_div_equality: *) paulson@14267: lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)" huffman@47138: using mod_div_equality2 [of n m] by arith paulson@14267: nipkow@15439: lemma mod_le_divisor[simp]: "0 < n \ m mod n \ (n::nat)" wenzelm@22718: apply (drule mod_less_divisor [where m = m]) wenzelm@22718: apply simp wenzelm@22718: done paulson@14267: haftmann@26100: subsubsection {* Quotient and Remainder *} paulson@14267: haftmann@33340: lemma divmod_nat_rel_mult1_eq: bulwahn@46552: "divmod_nat_rel b c (q, r) haftmann@33340: \ divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)" haftmann@33340: by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps) paulson@14267: haftmann@30923: lemma div_mult1_eq: haftmann@30923: "(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)" huffman@47135: by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel) paulson@14267: haftmann@33340: lemma divmod_nat_rel_add1_eq: bulwahn@46552: "divmod_nat_rel a c (aq, ar) \ divmod_nat_rel b c (bq, br) haftmann@33340: \ divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)" haftmann@33340: by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps) paulson@14267: paulson@14267: (*NOT suitable for rewriting: the RHS has an instance of the LHS*) paulson@14267: lemma div_add1_eq: nipkow@25134: "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)" huffman@47135: by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel) paulson@14267: paulson@14267: lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c" wenzelm@22718: apply (cut_tac m = q and n = c in mod_less_divisor) wenzelm@22718: apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto) wenzelm@22718: apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst) wenzelm@22718: apply (simp add: add_mult_distrib2) wenzelm@22718: done paulson@10559: haftmann@33340: lemma divmod_nat_rel_mult2_eq: bulwahn@46552: "divmod_nat_rel a b (q, r) haftmann@33340: \ divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)" haftmann@57514: by (auto simp add: mult.commute mult.left_commute divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma) paulson@14267: blanchet@55085: lemma div_mult2_eq: "a div (b * c) = (a div b) div (c::nat)" huffman@47135: by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique]) paulson@14267: blanchet@55085: lemma mod_mult2_eq: "a mod (b * c) = b * (a div b mod c) + a mod (b::nat)" haftmann@57512: by (auto simp add: mult.commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique]) paulson@14267: paulson@14267: huffman@46551: subsubsection {* Further Facts about Quotient and Remainder *} paulson@14267: paulson@14267: lemma div_1 [simp]: "m div Suc 0 = m" nipkow@29667: by (induct m) (simp_all add: div_geq) paulson@14267: paulson@14267: (* Monotonicity of div in first argument *) haftmann@30923: lemma div_le_mono [rule_format (no_asm)]: wenzelm@22718: "\m::nat. m \ n --> (m div k) \ (n div k)" paulson@14267: apply (case_tac "k=0", simp) paulson@15251: apply (induct "n" rule: nat_less_induct, clarify) paulson@14267: apply (case_tac "n= k *) paulson@14267: apply (case_tac "m=k *) nipkow@15439: apply (simp add: div_geq diff_le_mono) paulson@14267: done paulson@14267: paulson@14267: (* Antimonotonicity of div in second argument *) paulson@14267: lemma div_le_mono2: "!!m::nat. [| 0n |] ==> (k div n) \ (k div m)" paulson@14267: apply (subgoal_tac "0 (k-m) div n") paulson@14267: prefer 2 paulson@14267: apply (blast intro: div_le_mono diff_le_mono2) paulson@14267: apply (rule le_trans, simp) nipkow@15439: apply (simp) paulson@14267: done paulson@14267: paulson@14267: lemma div_le_dividend [simp]: "m div n \ (m::nat)" paulson@14267: apply (case_tac "n=0", simp) paulson@14267: apply (subgoal_tac "m div n \ m div 1", simp) paulson@14267: apply (rule div_le_mono2) paulson@14267: apply (simp_all (no_asm_simp)) paulson@14267: done paulson@14267: wenzelm@22718: (* Similar for "less than" *) huffman@47138: lemma div_less_dividend [simp]: huffman@47138: "\(1::nat) < n; 0 < m\ \ m div n < m" huffman@47138: apply (induct m rule: nat_less_induct) paulson@14267: apply (rename_tac "m") paulson@14267: apply (case_tac "m Suc(na) *) paulson@16796: apply (simp add: linorder_not_less le_Suc_eq mod_geq) nipkow@15439: apply (auto simp add: Suc_diff_le le_mod_geq) paulson@14267: done paulson@14267: paulson@14267: lemma mod_eq_0_iff: "(m mod d = 0) = (\q::nat. m = d*q)" nipkow@29667: by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def) paulson@17084: wenzelm@22718: lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1] paulson@14267: paulson@14267: (*Loses information, namely we also have rq. m = r + q * d" haftmann@57514: proof - haftmann@57514: from mod_div_equality obtain q where "q * d + m mod d = m" by blast haftmann@57514: with assms have "m = r + q * d" by simp haftmann@57514: then show ?thesis .. haftmann@57514: qed paulson@14267: nipkow@13152: lemma split_div: nipkow@13189: "P(n div k :: nat) = nipkow@13189: ((k = 0 \ P 0) \ (k \ 0 \ (!i. !j P i)))" nipkow@13189: (is "?P = ?Q" is "_ = (_ \ (_ \ ?R))") nipkow@13189: proof nipkow@13189: assume P: ?P nipkow@13189: show ?Q nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with P show ?Q by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: thus ?Q nipkow@13189: proof (simp, intro allI impI) nipkow@13189: fix i j nipkow@13189: assume n: "n = k*i + j" and j: "j < k" nipkow@13189: show "P i" nipkow@13189: proof (cases) wenzelm@22718: assume "i = 0" wenzelm@22718: with n j P show "P i" by simp nipkow@13189: next wenzelm@22718: assume "i \ 0" haftmann@57514: with not0 n j P show "P i" by(simp add:ac_simps) nipkow@13189: qed nipkow@13189: qed nipkow@13189: qed nipkow@13189: next nipkow@13189: assume Q: ?Q nipkow@13189: show ?P nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with Q show ?P by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: with Q have R: ?R by simp nipkow@13189: from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] nipkow@13517: show ?P by simp nipkow@13189: qed nipkow@13189: qed nipkow@13189: berghofe@13882: lemma split_div_lemma: haftmann@26100: assumes "0 < n" haftmann@26100: shows "n * q \ m \ m < n * Suc q \ q = ((m\nat) div n)" (is "?lhs \ ?rhs") haftmann@26100: proof haftmann@26100: assume ?rhs haftmann@26100: with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp haftmann@26100: then have A: "n * q \ m" by simp haftmann@26100: have "n - (m mod n) > 0" using mod_less_divisor assms by auto haftmann@26100: then have "m < m + (n - (m mod n))" by simp haftmann@26100: then have "m < n + (m - (m mod n))" by simp haftmann@26100: with nq have "m < n + n * q" by simp haftmann@26100: then have B: "m < n * Suc q" by simp haftmann@26100: from A B show ?lhs .. haftmann@26100: next haftmann@26100: assume P: ?lhs haftmann@33340: then have "divmod_nat_rel m n (q, m - n * q)" haftmann@57514: unfolding divmod_nat_rel_def by (auto simp add: ac_simps) haftmann@33340: with divmod_nat_rel_unique divmod_nat_rel [of m n] haftmann@30923: have "(q, m - n * q) = (m div n, m mod n)" by auto haftmann@30923: then show ?rhs by simp haftmann@26100: qed berghofe@13882: berghofe@13882: theorem split_div': berghofe@13882: "P ((m::nat) div n) = ((n = 0 \ P 0) \ paulson@14267: (\q. (n * q \ m \ m < n * (Suc q)) \ P q))" berghofe@13882: apply (case_tac "0 < n") berghofe@13882: apply (simp only: add: split_div_lemma) haftmann@27651: apply simp_all berghofe@13882: done berghofe@13882: nipkow@13189: lemma split_mod: nipkow@13189: "P(n mod k :: nat) = nipkow@13189: ((k = 0 \ P n) \ (k \ 0 \ (!i. !j P j)))" nipkow@13189: (is "?P = ?Q" is "_ = (_ \ (_ \ ?R))") nipkow@13189: proof nipkow@13189: assume P: ?P nipkow@13189: show ?Q nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with P show ?Q by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: thus ?Q nipkow@13189: proof (simp, intro allI impI) nipkow@13189: fix i j nipkow@13189: assume "n = k*i + j" "j < k" haftmann@57514: thus "P j" using not0 P by(simp add:ac_simps ac_simps) nipkow@13189: qed nipkow@13189: qed nipkow@13189: next nipkow@13189: assume Q: ?Q nipkow@13189: show ?P nipkow@13189: proof (cases) nipkow@13189: assume "k = 0" haftmann@27651: with Q show ?P by simp nipkow@13189: next nipkow@13189: assume not0: "k \ 0" nipkow@13189: with Q have R: ?R by simp nipkow@13189: from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] nipkow@13517: show ?P by simp nipkow@13189: qed nipkow@13189: qed nipkow@13189: berghofe@13882: theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n" huffman@47138: using mod_div_equality [of m n] by arith huffman@47138: huffman@47138: lemma div_mod_equality': "(m::nat) div n * n = m - m mod n" huffman@47138: using mod_div_equality [of m n] by arith huffman@47138: (* FIXME: very similar to mult_div_cancel *) haftmann@22800: noschinl@52398: lemma div_eq_dividend_iff: "a \ 0 \ (a :: nat) div b = a \ b = 1" noschinl@52398: apply rule noschinl@52398: apply (cases "b = 0") noschinl@52398: apply simp_all noschinl@52398: apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3) noschinl@52398: done noschinl@52398: haftmann@22800: huffman@46551: subsubsection {* An ``induction'' law for modulus arithmetic. *} paulson@14640: paulson@14640: lemma mod_induct_0: paulson@14640: assumes step: "\i P ((Suc i) mod p)" paulson@14640: and base: "P i" and i: "i(P 0)" paulson@14640: from i have p: "0k. 0 \ P (p-k)" (is "\k. ?A k") paulson@14640: proof paulson@14640: fix k paulson@14640: show "?A k" paulson@14640: proof (induct k) paulson@14640: show "?A 0" by simp -- "by contradiction" paulson@14640: next paulson@14640: fix n paulson@14640: assume ih: "?A n" paulson@14640: show "?A (Suc n)" paulson@14640: proof (clarsimp) wenzelm@22718: assume y: "P (p - Suc n)" wenzelm@22718: have n: "Suc n < p" wenzelm@22718: proof (rule ccontr) wenzelm@22718: assume "\(Suc n < p)" wenzelm@22718: hence "p - Suc n = 0" wenzelm@22718: by simp wenzelm@22718: with y contra show "False" wenzelm@22718: by simp wenzelm@22718: qed wenzelm@22718: hence n2: "Suc (p - Suc n) = p-n" by arith wenzelm@22718: from p have "p - Suc n < p" by arith wenzelm@22718: with y step have z: "P ((Suc (p - Suc n)) mod p)" wenzelm@22718: by blast wenzelm@22718: show "False" wenzelm@22718: proof (cases "n=0") wenzelm@22718: case True wenzelm@22718: with z n2 contra show ?thesis by simp wenzelm@22718: next wenzelm@22718: case False wenzelm@22718: with p have "p-n < p" by arith wenzelm@22718: with z n2 False ih show ?thesis by simp wenzelm@22718: qed paulson@14640: qed paulson@14640: qed paulson@14640: qed paulson@14640: moreover paulson@14640: from i obtain k where "0 i+k=p" paulson@14640: by (blast dest: less_imp_add_positive) paulson@14640: hence "0 i=p-k" by auto paulson@14640: moreover paulson@14640: note base paulson@14640: ultimately paulson@14640: show "False" by blast paulson@14640: qed paulson@14640: paulson@14640: lemma mod_induct: paulson@14640: assumes step: "\i P ((Suc i) mod p)" paulson@14640: and base: "P i" and i: "ij P j" (is "?A j") paulson@14640: proof (induct j) paulson@14640: from step base i show "?A 0" wenzelm@22718: by (auto elim: mod_induct_0) paulson@14640: next paulson@14640: fix k paulson@14640: assume ih: "?A k" paulson@14640: show "?A (Suc k)" paulson@14640: proof wenzelm@22718: assume suc: "Suc k < p" wenzelm@22718: hence k: "knat) mod 2 \ m mod 2 = 1" haftmann@33296: proof - boehmes@35815: { fix n :: nat have "(n::nat) < 2 \ n = 0 \ n = 1" by (cases n) simp_all } haftmann@33296: moreover have "m mod 2 < 2" by simp haftmann@33296: ultimately have "m mod 2 = 0 \ m mod 2 = 1" . haftmann@33296: then show ?thesis by auto haftmann@33296: qed haftmann@33296: haftmann@33296: text{*These lemmas collapse some needless occurrences of Suc: haftmann@33296: at least three Sucs, since two and fewer are rewritten back to Suc again! haftmann@33296: We already have some rules to simplify operands smaller than 3.*} haftmann@33296: haftmann@33296: lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: haftmann@33296: lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: haftmann@33296: lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: haftmann@33296: lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n" haftmann@33296: by (simp add: Suc3_eq_add_3) haftmann@33296: huffman@47108: lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v huffman@47108: lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v haftmann@33296: haftmann@33361: haftmann@33361: lemma Suc_times_mod_eq: "1 Suc (k * m) mod k = 1" haftmann@33361: apply (induct "m") haftmann@33361: apply (simp_all add: mod_Suc) haftmann@33361: done haftmann@33361: huffman@47108: declare Suc_times_mod_eq [of "numeral w", simp] for w haftmann@33361: huffman@47138: lemma Suc_div_le_mono [simp]: "n div k \ (Suc n) div k" huffman@47138: by (simp add: div_le_mono) haftmann@33361: haftmann@33361: lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2" haftmann@33361: by (cases n) simp_all haftmann@33361: boehmes@35815: lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2" boehmes@35815: proof - boehmes@35815: from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all boehmes@35815: from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp boehmes@35815: qed haftmann@33361: haftmann@33361: (* Potential use of algebra : Equality modulo n*) haftmann@33361: lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)" haftmann@57514: by (simp add: ac_simps ac_simps) haftmann@33361: haftmann@33361: lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n" haftmann@33361: proof - haftmann@33361: have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp haftmann@33361: also have "... = Suc m mod n" by (rule mod_mult_self3) haftmann@33361: finally show ?thesis . haftmann@33361: qed haftmann@33361: haftmann@33361: lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n" haftmann@33361: apply (subst mod_Suc [of m]) haftmann@33361: apply (subst mod_Suc [of "m mod n"], simp) haftmann@33361: done haftmann@33361: huffman@47108: lemma mod_2_not_eq_zero_eq_one_nat: huffman@47108: fixes n :: nat huffman@47108: shows "n mod 2 \ 0 \ n mod 2 = 1" huffman@47108: by simp huffman@47108: haftmann@53067: instance nat :: semiring_numeral_div haftmann@53067: by intro_classes (auto intro: div_positive simp add: mult_div_cancel mod_mult2_eq div_mult2_eq) haftmann@53067: haftmann@33361: haftmann@33361: subsection {* Division on @{typ int} *} haftmann@33361: haftmann@33361: definition divmod_int_rel :: "int \ int \ int \ int \ bool" where haftmann@33361: --{*definition of quotient and remainder*} huffman@47139: "divmod_int_rel a b = (\(q, r). a = b * q + r \ huffman@47139: (if 0 < b then 0 \ r \ r < b else if b < 0 then b < r \ r \ 0 else q = 0))" haftmann@33361: haftmann@53067: text {* haftmann@53067: The following algorithmic devlopment actually echos what has already haftmann@53067: been developed in class @{class semiring_numeral_div}. In the long haftmann@53067: run it seems better to derive division on @{typ int} just from haftmann@53067: division on @{typ nat} and instantiate @{class semiring_numeral_div} haftmann@53067: accordingly. haftmann@53067: *} haftmann@53067: haftmann@33361: definition adjust :: "int \ int \ int \ int \ int" where haftmann@33361: --{*for the division algorithm*} huffman@47108: "adjust b = (\(q, r). if 0 \ r - b then (2 * q + 1, r - b) haftmann@33361: else (2 * q, r))" haftmann@33361: haftmann@33361: text{*algorithm for the case @{text "a\0, b>0"}*} haftmann@33361: function posDivAlg :: "int \ int \ int \ int" where haftmann@33361: "posDivAlg a b = (if a < b \ b \ 0 then (0, a) haftmann@33361: else adjust b (posDivAlg a (2 * b)))" haftmann@33361: by auto haftmann@33361: termination by (relation "measure (\(a, b). nat (a - b + 1))") haftmann@33361: (auto simp add: mult_2) haftmann@33361: haftmann@33361: text{*algorithm for the case @{text "a<0, b>0"}*} haftmann@33361: function negDivAlg :: "int \ int \ int \ int" where haftmann@33361: "negDivAlg a b = (if 0 \a + b \ b \ 0 then (-1, a + b) haftmann@33361: else adjust b (negDivAlg a (2 * b)))" haftmann@33361: by auto haftmann@33361: termination by (relation "measure (\(a, b). nat (- a - b))") haftmann@33361: (auto simp add: mult_2) haftmann@33361: haftmann@33361: text{*algorithm for the general case @{term "b\0"}*} haftmann@33361: haftmann@33361: definition divmod_int :: "int \ int \ int \ int" where haftmann@33361: --{*The full division algorithm considers all possible signs for a, b haftmann@33361: including the special case @{text "a=0, b<0"} because haftmann@33361: @{term negDivAlg} requires @{term "a<0"}.*} haftmann@33361: "divmod_int a b = (if 0 \ a then if 0 \ b then posDivAlg a b haftmann@33361: else if a = 0 then (0, 0) huffman@46560: else apsnd uminus (negDivAlg (-a) (-b)) haftmann@33361: else haftmann@33361: if 0 < b then negDivAlg a b huffman@46560: else apsnd uminus (posDivAlg (-a) (-b)))" haftmann@33361: haftmann@33361: instantiation int :: Divides.div haftmann@33361: begin haftmann@33361: huffman@46551: definition div_int where haftmann@33361: "a div b = fst (divmod_int a b)" haftmann@33361: huffman@46551: lemma fst_divmod_int [simp]: huffman@46551: "fst (divmod_int a b) = a div b" huffman@46551: by (simp add: div_int_def) huffman@46551: huffman@46551: definition mod_int where huffman@46560: "a mod b = snd (divmod_int a b)" haftmann@33361: huffman@46551: lemma snd_divmod_int [simp]: huffman@46551: "snd (divmod_int a b) = a mod b" huffman@46551: by (simp add: mod_int_def) huffman@46551: haftmann@33361: instance .. haftmann@33361: paulson@3366: end haftmann@33361: haftmann@33361: lemma divmod_int_mod_div: haftmann@33361: "divmod_int p q = (p div q, p mod q)" huffman@46551: by (simp add: prod_eq_iff) haftmann@33361: haftmann@33361: text{* haftmann@33361: Here is the division algorithm in ML: haftmann@33361: haftmann@33361: \begin{verbatim} haftmann@33361: fun posDivAlg (a,b) = haftmann@33361: if ar-b then (2*q+1, r-b) else (2*q, r) haftmann@33361: end haftmann@33361: haftmann@33361: fun negDivAlg (a,b) = haftmann@33361: if 0\a+b then (~1,a+b) haftmann@33361: else let val (q,r) = negDivAlg(a, 2*b) haftmann@33361: in if 0\r-b then (2*q+1, r-b) else (2*q, r) haftmann@33361: end; haftmann@33361: haftmann@33361: fun negateSnd (q,r:int) = (q,~r); haftmann@33361: haftmann@33361: fun divmod (a,b) = if 0\a then haftmann@33361: if b>0 then posDivAlg (a,b) haftmann@33361: else if a=0 then (0,0) haftmann@33361: else negateSnd (negDivAlg (~a,~b)) haftmann@33361: else haftmann@33361: if 0 b*q + r; 0 \ r'; r' < b; r < b |] haftmann@33361: ==> q' \ (q::int)" haftmann@33361: apply (subgoal_tac "r' + b * (q'-q) \ r") haftmann@33361: prefer 2 apply (simp add: right_diff_distrib) haftmann@33361: apply (subgoal_tac "0 < b * (1 + q - q') ") haftmann@33361: apply (erule_tac [2] order_le_less_trans) webertj@49962: prefer 2 apply (simp add: right_diff_distrib distrib_left) haftmann@33361: apply (subgoal_tac "b * q' < b * (1 + q) ") webertj@49962: prefer 2 apply (simp add: right_diff_distrib distrib_left) haftmann@33361: apply (simp add: mult_less_cancel_left) haftmann@33361: done haftmann@33361: haftmann@33361: lemma unique_quotient_lemma_neg: haftmann@33361: "[| b*q' + r' \ b*q + r; r \ 0; b < r; b < r' |] haftmann@33361: ==> q \ (q'::int)" haftmann@33361: by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, haftmann@33361: auto) haftmann@33361: haftmann@33361: lemma unique_quotient: bulwahn@46552: "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |] haftmann@33361: ==> q = q'" haftmann@33361: apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm) haftmann@33361: apply (blast intro: order_antisym haftmann@33361: dest: order_eq_refl [THEN unique_quotient_lemma] haftmann@33361: order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ haftmann@33361: done haftmann@33361: haftmann@33361: haftmann@33361: lemma unique_remainder: bulwahn@46552: "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |] haftmann@33361: ==> r = r'" haftmann@33361: apply (subgoal_tac "q = q'") haftmann@33361: apply (simp add: divmod_int_rel_def) haftmann@33361: apply (blast intro: unique_quotient) haftmann@33361: done haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends *} haftmann@33361: haftmann@33361: text{*And positive divisors*} haftmann@33361: haftmann@33361: lemma adjust_eq [simp]: huffman@47108: "adjust b (q, r) = huffman@47108: (let diff = r - b in huffman@47108: if 0 \ diff then (2 * q + 1, diff) haftmann@33361: else (2*q, r))" huffman@47108: by (simp add: Let_def adjust_def) haftmann@33361: haftmann@33361: declare posDivAlg.simps [simp del] haftmann@33361: haftmann@33361: text{*use with a simproc to avoid repeatedly proving the premise*} haftmann@33361: lemma posDivAlg_eqn: haftmann@33361: "0 < b ==> haftmann@33361: posDivAlg a b = (if a a" and "0 < b" haftmann@33361: shows "divmod_int_rel a b (posDivAlg a b)" wenzelm@41550: using assms wenzelm@41550: apply (induct a b rule: posDivAlg.induct) wenzelm@41550: apply auto wenzelm@41550: apply (simp add: divmod_int_rel_def) webertj@49962: apply (subst posDivAlg_eqn, simp add: distrib_left) wenzelm@41550: apply (case_tac "a < b") wenzelm@41550: apply simp_all wenzelm@41550: apply (erule splitE) haftmann@57514: apply (auto simp add: distrib_left Let_def ac_simps mult_2_right) wenzelm@41550: done haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends *} haftmann@33361: haftmann@33361: text{*And positive divisors*} haftmann@33361: haftmann@33361: declare negDivAlg.simps [simp del] haftmann@33361: haftmann@33361: text{*use with a simproc to avoid repeatedly proving the premise*} haftmann@33361: lemma negDivAlg_eqn: haftmann@33361: "0 < b ==> haftmann@33361: negDivAlg a b = haftmann@33361: (if 0\a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))" haftmann@33361: by (rule negDivAlg.simps [THEN trans], simp) haftmann@33361: haftmann@33361: (*Correctness of negDivAlg: it computes quotients correctly haftmann@33361: It doesn't work if a=0 because the 0/b equals 0, not -1*) haftmann@33361: lemma negDivAlg_correct: haftmann@33361: assumes "a < 0" and "b > 0" haftmann@33361: shows "divmod_int_rel a b (negDivAlg a b)" wenzelm@41550: using assms wenzelm@41550: apply (induct a b rule: negDivAlg.induct) wenzelm@41550: apply (auto simp add: linorder_not_le) wenzelm@41550: apply (simp add: divmod_int_rel_def) wenzelm@41550: apply (subst negDivAlg_eqn, assumption) wenzelm@41550: apply (case_tac "a + b < (0\int)") wenzelm@41550: apply simp_all wenzelm@41550: apply (erule splitE) haftmann@57514: apply (auto simp add: distrib_left Let_def ac_simps mult_2_right) wenzelm@41550: done haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* Existence Shown by Proving the Division Algorithm to be Correct *} haftmann@33361: haftmann@33361: (*the case a=0*) huffman@47139: lemma divmod_int_rel_0: "divmod_int_rel 0 b (0, 0)" haftmann@33361: by (auto simp add: divmod_int_rel_def linorder_neq_iff) haftmann@33361: haftmann@33361: lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)" haftmann@33361: by (subst posDivAlg.simps, auto) haftmann@33361: huffman@47139: lemma posDivAlg_0_right [simp]: "posDivAlg a 0 = (0, a)" huffman@47139: by (subst posDivAlg.simps, auto) huffman@47139: haftmann@33361: lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)" haftmann@33361: by (subst negDivAlg.simps, auto) haftmann@33361: huffman@46560: lemma divmod_int_rel_neg: "divmod_int_rel (-a) (-b) qr ==> divmod_int_rel a b (apsnd uminus qr)" huffman@47139: by (auto simp add: divmod_int_rel_def) huffman@47139: huffman@47139: lemma divmod_int_correct: "divmod_int_rel a b (divmod_int a b)" huffman@47139: apply (cases "b = 0", simp add: divmod_int_def divmod_int_rel_def) haftmann@33361: by (force simp add: linorder_neq_iff divmod_int_rel_0 divmod_int_def divmod_int_rel_neg haftmann@33361: posDivAlg_correct negDivAlg_correct) haftmann@33361: huffman@47141: lemma divmod_int_unique: huffman@47141: assumes "divmod_int_rel a b qr" huffman@47141: shows "divmod_int a b = qr" huffman@47141: using assms divmod_int_correct [of a b] huffman@47141: using unique_quotient [of a b] unique_remainder [of a b] huffman@47141: by (metis pair_collapse) huffman@47141: huffman@47141: lemma divmod_int_rel_div_mod: "divmod_int_rel a b (a div b, a mod b)" huffman@47141: using divmod_int_correct by (simp add: divmod_int_mod_div) huffman@47141: huffman@47141: lemma div_int_unique: "divmod_int_rel a b (q, r) \ a div b = q" huffman@47141: by (simp add: divmod_int_rel_div_mod [THEN unique_quotient]) huffman@47141: huffman@47141: lemma mod_int_unique: "divmod_int_rel a b (q, r) \ a mod b = r" huffman@47141: by (simp add: divmod_int_rel_div_mod [THEN unique_remainder]) huffman@47141: huffman@47141: instance int :: ring_div huffman@47141: proof huffman@47141: fix a b :: int huffman@47141: show "a div b * b + a mod b = a" huffman@47141: using divmod_int_rel_div_mod [of a b] haftmann@57512: unfolding divmod_int_rel_def by (simp add: mult.commute) huffman@47141: next huffman@47141: fix a b c :: int huffman@47141: assume "b \ 0" huffman@47141: hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)" huffman@47141: using divmod_int_rel_div_mod [of a b] huffman@47141: unfolding divmod_int_rel_def by (auto simp: algebra_simps) huffman@47141: thus "(a + c * b) div b = c + a div b" huffman@47141: by (rule div_int_unique) huffman@47141: next huffman@47141: fix a b c :: int huffman@47141: assume "c \ 0" huffman@47141: hence "\q r. divmod_int_rel a b (q, r) huffman@47141: \ divmod_int_rel (c * a) (c * b) (q, c * r)" huffman@47141: unfolding divmod_int_rel_def huffman@47141: by - (rule linorder_cases [of 0 b], auto simp: algebra_simps huffman@47141: mult_less_0_iff zero_less_mult_iff mult_strict_right_mono huffman@47141: mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff) huffman@47141: hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))" huffman@47141: using divmod_int_rel_div_mod [of a b] . huffman@47141: thus "(c * a) div (c * b) = a div b" huffman@47141: by (rule div_int_unique) huffman@47141: next huffman@47141: fix a :: int show "a div 0 = 0" huffman@47141: by (rule div_int_unique, simp add: divmod_int_rel_def) huffman@47141: next huffman@47141: fix a :: int show "0 div a = 0" huffman@47141: by (rule div_int_unique, auto simp add: divmod_int_rel_def) huffman@47141: qed huffman@47141: haftmann@33361: text{*Basic laws about division and remainder*} haftmann@33361: haftmann@33361: lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)" huffman@47141: by (fact mod_div_equality2 [symmetric]) haftmann@33361: haftmann@33361: text {* Tool setup *} haftmann@33361: huffman@47108: (* FIXME: Theorem list add_0s doesn't exist, because Numeral0 has gone. *) huffman@47108: lemmas add_0s = add_0_left add_0_right huffman@47108: haftmann@33361: ML {* wenzelm@43594: structure Cancel_Div_Mod_Int = Cancel_Div_Mod wenzelm@41550: ( haftmann@33361: val div_name = @{const_name div}; haftmann@33361: val mod_name = @{const_name mod}; haftmann@33361: val mk_binop = HOLogic.mk_binop; haftmann@33361: val mk_sum = Arith_Data.mk_sum HOLogic.intT; haftmann@33361: val dest_sum = Arith_Data.dest_sum; haftmann@33361: huffman@47165: val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]; haftmann@33361: haftmann@33361: val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac haftmann@57514: (@{thm diff_conv_add_uminus} :: @{thms add_0s} @ @{thms ac_simps})) wenzelm@41550: ) haftmann@33361: *} haftmann@33361: wenzelm@43594: simproc_setup cancel_div_mod_int ("(k::int) + l") = {* K Cancel_Div_Mod_Int.proc *} wenzelm@43594: huffman@47141: lemma pos_mod_conj: "(0::int) < b \ 0 \ a mod b \ a mod b < b" huffman@47141: using divmod_int_correct [of a b] huffman@47141: by (auto simp add: divmod_int_rel_def prod_eq_iff) haftmann@33361: wenzelm@45607: lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1] wenzelm@45607: and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2] haftmann@33361: huffman@47141: lemma neg_mod_conj: "b < (0::int) \ a mod b \ 0 \ b < a mod b" huffman@47141: using divmod_int_correct [of a b] huffman@47141: by (auto simp add: divmod_int_rel_def prod_eq_iff) haftmann@33361: wenzelm@45607: lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1] wenzelm@45607: and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2] haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* General Properties of div and mod *} haftmann@33361: haftmann@33361: lemma div_pos_pos_trivial: "[| (0::int) \ a; a < b |] ==> a div b = 0" huffman@47140: apply (rule div_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma div_neg_neg_trivial: "[| a \ (0::int); b < a |] ==> a div b = 0" huffman@47140: apply (rule div_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \ 0 |] ==> a div b = -1" huffman@47140: apply (rule div_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: (*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*) haftmann@33361: haftmann@33361: lemma mod_pos_pos_trivial: "[| (0::int) \ a; a < b |] ==> a mod b = a" huffman@47140: apply (rule_tac q = 0 in mod_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma mod_neg_neg_trivial: "[| a \ (0::int); b < a |] ==> a mod b = a" huffman@47140: apply (rule_tac q = 0 in mod_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \ 0 |] ==> a mod b = a+b" huffman@47140: apply (rule_tac q = "-1" in mod_int_unique) haftmann@33361: apply (auto simp add: divmod_int_rel_def) haftmann@33361: done haftmann@33361: haftmann@33361: text{*There is no @{text mod_neg_pos_trivial}.*} haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* Laws for div and mod with Unary Minus *} haftmann@33361: haftmann@33361: lemma zminus1_lemma: huffman@47139: "divmod_int_rel a b (q, r) ==> b \ 0 haftmann@33361: ==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1, haftmann@33361: if r=0 then 0 else b-r)" haftmann@33361: by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib) haftmann@33361: haftmann@33361: haftmann@33361: lemma zdiv_zminus1_eq_if: haftmann@33361: "b \ (0::int) haftmann@33361: ==> (-a) div b = haftmann@33361: (if a mod b = 0 then - (a div b) else - (a div b) - 1)" huffman@47140: by (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN div_int_unique]) haftmann@33361: haftmann@33361: lemma zmod_zminus1_eq_if: haftmann@33361: "(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))" haftmann@33361: apply (case_tac "b = 0", simp) huffman@47140: apply (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN mod_int_unique]) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_zminus1_not_zero: haftmann@33361: fixes k l :: int haftmann@33361: shows "- k mod l \ 0 \ k mod l \ 0" haftmann@33361: unfolding zmod_zminus1_eq_if by auto haftmann@33361: haftmann@33361: lemma zdiv_zminus2_eq_if: haftmann@33361: "b \ (0::int) haftmann@33361: ==> a div (-b) = haftmann@33361: (if a mod b = 0 then - (a div b) else - (a div b) - 1)" huffman@47159: by (simp add: zdiv_zminus1_eq_if div_minus_right) haftmann@33361: haftmann@33361: lemma zmod_zminus2_eq_if: haftmann@33361: "a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)" huffman@47159: by (simp add: zmod_zminus1_eq_if mod_minus_right) haftmann@33361: haftmann@33361: lemma zmod_zminus2_not_zero: haftmann@33361: fixes k l :: int haftmann@33361: shows "k mod - l \ 0 \ k mod l \ 0" haftmann@33361: unfolding zmod_zminus2_eq_if by auto haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* Computation of Division and Remainder *} haftmann@33361: haftmann@33361: lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1" haftmann@33361: by (simp add: div_int_def divmod_int_def) haftmann@33361: haftmann@33361: lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1" haftmann@33361: by (simp add: mod_int_def divmod_int_def) haftmann@33361: haftmann@33361: text{*a positive, b positive *} haftmann@33361: haftmann@33361: lemma div_pos_pos: "[| 0 < a; 0 \ b |] ==> a div b = fst (posDivAlg a b)" haftmann@33361: by (simp add: div_int_def divmod_int_def) haftmann@33361: haftmann@33361: lemma mod_pos_pos: "[| 0 < a; 0 \ b |] ==> a mod b = snd (posDivAlg a b)" haftmann@33361: by (simp add: mod_int_def divmod_int_def) haftmann@33361: haftmann@33361: text{*a negative, b positive *} haftmann@33361: haftmann@33361: lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)" haftmann@33361: by (simp add: div_int_def divmod_int_def) haftmann@33361: haftmann@33361: lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)" haftmann@33361: by (simp add: mod_int_def divmod_int_def) haftmann@33361: haftmann@33361: text{*a positive, b negative *} haftmann@33361: haftmann@33361: lemma div_pos_neg: huffman@46560: "[| 0 < a; b < 0 |] ==> a div b = fst (apsnd uminus (negDivAlg (-a) (-b)))" haftmann@33361: by (simp add: div_int_def divmod_int_def) haftmann@33361: haftmann@33361: lemma mod_pos_neg: huffman@46560: "[| 0 < a; b < 0 |] ==> a mod b = snd (apsnd uminus (negDivAlg (-a) (-b)))" haftmann@33361: by (simp add: mod_int_def divmod_int_def) haftmann@33361: haftmann@33361: text{*a negative, b negative *} haftmann@33361: haftmann@33361: lemma div_neg_neg: huffman@46560: "[| a < 0; b \ 0 |] ==> a div b = fst (apsnd uminus (posDivAlg (-a) (-b)))" haftmann@33361: by (simp add: div_int_def divmod_int_def) haftmann@33361: haftmann@33361: lemma mod_neg_neg: huffman@46560: "[| a < 0; b \ 0 |] ==> a mod b = snd (apsnd uminus (posDivAlg (-a) (-b)))" haftmann@33361: by (simp add: mod_int_def divmod_int_def) haftmann@33361: haftmann@33361: text {*Simplify expresions in which div and mod combine numerical constants*} haftmann@33361: huffman@45530: lemma int_div_pos_eq: "\(a::int) = b * q + r; 0 \ r; r < b\ \ a div b = q" huffman@47140: by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def) huffman@45530: huffman@45530: lemma int_div_neg_eq: "\(a::int) = b * q + r; r \ 0; b < r\ \ a div b = q" huffman@47140: by (rule div_int_unique [of a b q r], bulwahn@46552: simp add: divmod_int_rel_def) huffman@45530: huffman@45530: lemma int_mod_pos_eq: "\(a::int) = b * q + r; 0 \ r; r < b\ \ a mod b = r" huffman@47140: by (rule mod_int_unique [of a b q r], bulwahn@46552: simp add: divmod_int_rel_def) huffman@45530: huffman@45530: lemma int_mod_neg_eq: "\(a::int) = b * q + r; r \ 0; b < r\ \ a mod b = r" huffman@47140: by (rule mod_int_unique [of a b q r], bulwahn@46552: simp add: divmod_int_rel_def) huffman@45530: haftmann@53069: text {* haftmann@53069: numeral simprocs -- high chance that these can be replaced haftmann@53069: by divmod algorithm from @{class semiring_numeral_div} haftmann@53069: *} haftmann@53069: haftmann@33361: ML {* haftmann@33361: local huffman@45530: val mk_number = HOLogic.mk_number HOLogic.intT huffman@45530: val plus = @{term "plus :: int \ int \ int"} huffman@45530: val times = @{term "times :: int \ int \ int"} huffman@45530: val zero = @{term "0 :: int"} huffman@45530: val less = @{term "op < :: int \ int \ bool"} huffman@45530: val le = @{term "op \ :: int \ int \ bool"} haftmann@54489: val simps = @{thms arith_simps} @ @{thms rel_simps} @ [@{thm numeral_1_eq_1 [symmetric]}] haftmann@54489: fun prove ctxt goal = (writeln "prove"; Goal.prove ctxt [] [] (HOLogic.mk_Trueprop goal) haftmann@54489: (K (ALLGOALS (full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps simps))))); wenzelm@51717: fun binary_proc proc ctxt ct = haftmann@33361: (case Thm.term_of ct of haftmann@33361: _ $ t $ u => haftmann@33361: (case try (pairself (`(snd o HOLogic.dest_number))) (t, u) of wenzelm@51717: SOME args => proc ctxt args haftmann@33361: | NONE => NONE) haftmann@33361: | _ => NONE); haftmann@33361: in huffman@45530: fun divmod_proc posrule negrule = huffman@45530: binary_proc (fn ctxt => fn ((a, t), (b, u)) => huffman@45530: if b = 0 then NONE else let huffman@45530: val (q, r) = pairself mk_number (Integer.div_mod a b) huffman@45530: val goal1 = HOLogic.mk_eq (t, plus $ (times $ u $ q) $ r) huffman@45530: val (goal2, goal3, rule) = if b > 0 huffman@45530: then (le $ zero $ r, less $ r $ u, posrule RS eq_reflection) huffman@45530: else (le $ r $ zero, less $ u $ r, negrule RS eq_reflection) huffman@45530: in SOME (rule OF map (prove ctxt) [goal1, goal2, goal3]) end) haftmann@33361: end haftmann@33361: *} haftmann@33361: huffman@47108: simproc_setup binary_int_div huffman@47108: ("numeral m div numeral n :: int" | haftmann@54489: "numeral m div - numeral n :: int" | haftmann@54489: "- numeral m div numeral n :: int" | haftmann@54489: "- numeral m div - numeral n :: int") = huffman@45530: {* K (divmod_proc @{thm int_div_pos_eq} @{thm int_div_neg_eq}) *} haftmann@33361: huffman@47108: simproc_setup binary_int_mod huffman@47108: ("numeral m mod numeral n :: int" | haftmann@54489: "numeral m mod - numeral n :: int" | haftmann@54489: "- numeral m mod numeral n :: int" | haftmann@54489: "- numeral m mod - numeral n :: int") = huffman@45530: {* K (divmod_proc @{thm int_mod_pos_eq} @{thm int_mod_neg_eq}) *} haftmann@33361: huffman@47108: lemmas posDivAlg_eqn_numeral [simp] = huffman@47108: posDivAlg_eqn [of "numeral v" "numeral w", OF zero_less_numeral] for v w huffman@47108: huffman@47108: lemmas negDivAlg_eqn_numeral [simp] = haftmann@54489: negDivAlg_eqn [of "numeral v" "- numeral w", OF zero_less_numeral] for v w haftmann@33361: haftmann@33361: haftmann@55172: text {* Special-case simplification: @{text "\1 div z"} and @{text "\1 mod z"} *} haftmann@55172: haftmann@55172: lemma [simp]: haftmann@55172: shows div_one_bit0: "1 div numeral (Num.Bit0 v) = (0 :: int)" haftmann@55172: and mod_one_bit0: "1 mod numeral (Num.Bit0 v) = (1 :: int)" wenzelm@55439: and div_one_bit1: "1 div numeral (Num.Bit1 v) = (0 :: int)" wenzelm@55439: and mod_one_bit1: "1 mod numeral (Num.Bit1 v) = (1 :: int)" wenzelm@55439: and div_one_neg_numeral: "1 div - numeral v = (- 1 :: int)" wenzelm@55439: and mod_one_neg_numeral: "1 mod - numeral v = (1 :: int) - numeral v" haftmann@55172: by (simp_all del: arith_special haftmann@55172: add: div_pos_pos mod_pos_pos div_pos_neg mod_pos_neg posDivAlg_eqn) wenzelm@55439: haftmann@55172: lemma [simp]: haftmann@55172: shows div_neg_one_numeral: "- 1 div numeral v = (- 1 :: int)" haftmann@55172: and mod_neg_one_numeral: "- 1 mod numeral v = numeral v - (1 :: int)" haftmann@55172: and div_neg_one_neg_bit0: "- 1 div - numeral (Num.Bit0 v) = (0 :: int)" haftmann@55172: and mod_neg_one_neb_bit0: "- 1 mod - numeral (Num.Bit0 v) = (- 1 :: int)" haftmann@55172: and div_neg_one_neg_bit1: "- 1 div - numeral (Num.Bit1 v) = (0 :: int)" haftmann@55172: and mod_neg_one_neb_bit1: "- 1 mod - numeral (Num.Bit1 v) = (- 1 :: int)" haftmann@55172: by (simp_all add: div_eq_minus1 zmod_minus1) haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* Monotonicity in the First Argument (Dividend) *} haftmann@33361: haftmann@33361: lemma zdiv_mono1: "[| a \ a'; 0 < (b::int) |] ==> a div b \ a' div b" haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a' and b = b in zmod_zdiv_equality) haftmann@33361: apply (rule unique_quotient_lemma) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono1_neg: "[| a \ a'; (b::int) < 0 |] ==> a' div b \ a div b" haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a' and b = b in zmod_zdiv_equality) haftmann@33361: apply (rule unique_quotient_lemma_neg) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* Monotonicity in the Second Argument (Divisor) *} haftmann@33361: haftmann@33361: lemma q_pos_lemma: haftmann@33361: "[| 0 \ b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \ (q'::int)" haftmann@33361: apply (subgoal_tac "0 < b'* (q' + 1) ") haftmann@33361: apply (simp add: zero_less_mult_iff) webertj@49962: apply (simp add: distrib_left) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2_lemma: haftmann@33361: "[| b*q + r = b'*q' + r'; 0 \ b'*q' + r'; haftmann@33361: r' < b'; 0 \ r; 0 < b'; b' \ b |] haftmann@33361: ==> q \ (q'::int)" haftmann@33361: apply (frule q_pos_lemma, assumption+) haftmann@33361: apply (subgoal_tac "b*q < b* (q' + 1) ") haftmann@33361: apply (simp add: mult_less_cancel_left) haftmann@33361: apply (subgoal_tac "b*q = r' - r + b'*q'") haftmann@33361: prefer 2 apply simp webertj@49962: apply (simp (no_asm_simp) add: distrib_left) haftmann@57512: apply (subst add.commute, rule add_less_le_mono, arith) haftmann@33361: apply (rule mult_right_mono, auto) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2: haftmann@33361: "[| (0::int) \ a; 0 < b'; b' \ b |] ==> a div b \ a div b'" haftmann@33361: apply (subgoal_tac "b \ 0") haftmann@33361: prefer 2 apply arith haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a and b = b' in zmod_zdiv_equality) haftmann@33361: apply (rule zdiv_mono2_lemma) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: lemma q_neg_lemma: haftmann@33361: "[| b'*q' + r' < 0; 0 \ r'; 0 < b' |] ==> q' \ (0::int)" haftmann@33361: apply (subgoal_tac "b'*q' < 0") haftmann@33361: apply (simp add: mult_less_0_iff, arith) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2_neg_lemma: haftmann@33361: "[| b*q + r = b'*q' + r'; b'*q' + r' < 0; haftmann@33361: r < b; 0 \ r'; 0 < b'; b' \ b |] haftmann@33361: ==> q' \ (q::int)" haftmann@33361: apply (frule q_neg_lemma, assumption+) haftmann@33361: apply (subgoal_tac "b*q' < b* (q + 1) ") haftmann@33361: apply (simp add: mult_less_cancel_left) webertj@49962: apply (simp add: distrib_left) haftmann@33361: apply (subgoal_tac "b*q' \ b'*q'") haftmann@33361: prefer 2 apply (simp add: mult_right_mono_neg, arith) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zdiv_mono2_neg: haftmann@33361: "[| a < (0::int); 0 < b'; b' \ b |] ==> a div b' \ a div b" haftmann@33361: apply (cut_tac a = a and b = b in zmod_zdiv_equality) haftmann@33361: apply (cut_tac a = a and b = b' in zmod_zdiv_equality) haftmann@33361: apply (rule zdiv_mono2_neg_lemma) haftmann@33361: apply (erule subst) haftmann@33361: apply (erule subst, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: huffman@46551: subsubsection {* More Algebraic Laws for div and mod *} haftmann@33361: haftmann@33361: text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *} haftmann@33361: haftmann@33361: lemma zmult1_lemma: bulwahn@46552: "[| divmod_int_rel b c (q, r) |] haftmann@33361: ==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)" haftmann@57514: by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left ac_simps) haftmann@33361: haftmann@33361: lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)" haftmann@33361: apply (case_tac "c = 0", simp) huffman@47140: apply (blast intro: divmod_int_rel_div_mod [THEN zmult1_lemma, THEN div_int_unique]) haftmann@33361: done haftmann@33361: haftmann@33361: text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *} haftmann@33361: haftmann@33361: lemma zadd1_lemma: bulwahn@46552: "[| divmod_int_rel a c (aq, ar); divmod_int_rel b c (bq, br) |] haftmann@33361: ==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)" webertj@49962: by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left) haftmann@33361: haftmann@33361: (*NOT suitable for rewriting: the RHS has an instance of the LHS*) haftmann@33361: lemma zdiv_zadd1_eq: haftmann@33361: "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)" haftmann@33361: apply (case_tac "c = 0", simp) huffman@47140: apply (blast intro: zadd1_lemma [OF divmod_int_rel_div_mod divmod_int_rel_div_mod] div_int_unique) haftmann@33361: done haftmann@33361: haftmann@33361: lemma posDivAlg_div_mod: haftmann@33361: assumes "k \ 0" haftmann@33361: and "l \ 0" haftmann@33361: shows "posDivAlg k l = (k div l, k mod l)" haftmann@33361: proof (cases "l = 0") haftmann@33361: case True then show ?thesis by (simp add: posDivAlg.simps) haftmann@33361: next haftmann@33361: case False with assms posDivAlg_correct haftmann@33361: have "divmod_int_rel k l (fst (posDivAlg k l), snd (posDivAlg k l))" haftmann@33361: by simp huffman@47140: from div_int_unique [OF this] mod_int_unique [OF this] haftmann@33361: show ?thesis by simp haftmann@33361: qed haftmann@33361: haftmann@33361: lemma negDivAlg_div_mod: haftmann@33361: assumes "k < 0" haftmann@33361: and "l > 0" haftmann@33361: shows "negDivAlg k l = (k div l, k mod l)" haftmann@33361: proof - haftmann@33361: from assms have "l \ 0" by simp haftmann@33361: from assms negDivAlg_correct haftmann@33361: have "divmod_int_rel k l (fst (negDivAlg k l), snd (negDivAlg k l))" haftmann@33361: by simp huffman@47140: from div_int_unique [OF this] mod_int_unique [OF this] haftmann@33361: show ?thesis by simp haftmann@33361: qed haftmann@33361: haftmann@33361: lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)" haftmann@33361: by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def) haftmann@33361: haftmann@33361: (* REVISIT: should this be generalized to all semiring_div types? *) haftmann@33361: lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1] haftmann@33361: huffman@47108: lemma zmod_zdiv_equality': huffman@47108: "(m\int) mod n = m - (m div n) * n" huffman@47141: using mod_div_equality [of m n] by arith huffman@47108: haftmann@33361: blanchet@55085: subsubsection {* Proving @{term "a div (b * c) = (a div b) div c"} *} haftmann@33361: haftmann@33361: (*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but haftmann@33361: 7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems haftmann@33361: to cause particular problems.*) haftmann@33361: haftmann@33361: text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *} haftmann@33361: blanchet@55085: lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \ 0 |] ==> b * c < b * (q mod c) + r" haftmann@33361: apply (subgoal_tac "b * (c - q mod c) < r * 1") haftmann@33361: apply (simp add: algebra_simps) haftmann@33361: apply (rule order_le_less_trans) haftmann@33361: apply (erule_tac [2] mult_strict_right_mono) haftmann@33361: apply (rule mult_left_mono_neg) huffman@35216: using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps) haftmann@33361: apply (simp) haftmann@33361: apply (simp) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmult2_lemma_aux2: haftmann@33361: "[| (0::int) < c; b < r; r \ 0 |] ==> b * (q mod c) + r \ 0" haftmann@33361: apply (subgoal_tac "b * (q mod c) \ 0") haftmann@33361: apply arith haftmann@33361: apply (simp add: mult_le_0_iff) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \ r; r < b |] ==> 0 \ b * (q mod c) + r" haftmann@33361: apply (subgoal_tac "0 \ b * (q mod c) ") haftmann@33361: apply arith haftmann@33361: apply (simp add: zero_le_mult_iff) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \ r; r < b |] ==> b * (q mod c) + r < b * c" haftmann@33361: apply (subgoal_tac "r * 1 < b * (c - q mod c) ") haftmann@33361: apply (simp add: right_diff_distrib) haftmann@33361: apply (rule order_less_le_trans) haftmann@33361: apply (erule mult_strict_right_mono) haftmann@33361: apply (rule_tac [2] mult_left_mono) haftmann@33361: apply simp huffman@35216: using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps) haftmann@33361: apply simp haftmann@33361: done haftmann@33361: bulwahn@46552: lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |] haftmann@33361: ==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)" haftmann@57514: by (auto simp add: mult.assoc divmod_int_rel_def linorder_neq_iff webertj@49962: zero_less_mult_iff distrib_left [symmetric] huffman@47139: zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm) haftmann@33361: haftmann@53068: lemma zdiv_zmult2_eq: haftmann@53068: fixes a b c :: int haftmann@53068: shows "0 \ c \ a div (b * c) = (a div b) div c" haftmann@33361: apply (case_tac "b = 0", simp) haftmann@53068: apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN div_int_unique]) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_zmult2_eq: haftmann@53068: fixes a b c :: int haftmann@53068: shows "0 \ c \ a mod (b * c) = b * (a div b mod c) + a mod b" haftmann@33361: apply (case_tac "b = 0", simp) haftmann@53068: apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN mod_int_unique]) haftmann@33361: done haftmann@33361: huffman@47108: lemma div_pos_geq: huffman@47108: fixes k l :: int huffman@47108: assumes "0 < l" and "l \ k" huffman@47108: shows "k div l = (k - l) div l + 1" huffman@47108: proof - huffman@47108: have "k = (k - l) + l" by simp huffman@47108: then obtain j where k: "k = j + l" .. huffman@47108: with assms show ?thesis by simp huffman@47108: qed huffman@47108: huffman@47108: lemma mod_pos_geq: huffman@47108: fixes k l :: int huffman@47108: assumes "0 < l" and "l \ k" huffman@47108: shows "k mod l = (k - l) mod l" huffman@47108: proof - huffman@47108: have "k = (k - l) + l" by simp huffman@47108: then obtain j where k: "k = j + l" .. huffman@47108: with assms show ?thesis by simp huffman@47108: qed huffman@47108: haftmann@33361: huffman@46551: subsubsection {* Splitting Rules for div and mod *} haftmann@33361: haftmann@33361: text{*The proofs of the two lemmas below are essentially identical*} haftmann@33361: haftmann@33361: lemma split_pos_lemma: haftmann@33361: "0 haftmann@33361: P(n div k :: int)(n mod k) = (\i j. 0\j & j P i j)" haftmann@33361: apply (rule iffI, clarify) haftmann@33361: apply (erule_tac P="P ?x ?y" in rev_mp) haftmann@33361: apply (subst mod_add_eq) haftmann@33361: apply (subst zdiv_zadd1_eq) haftmann@33361: apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial) haftmann@33361: txt{*converse direction*} haftmann@33361: apply (drule_tac x = "n div k" in spec) haftmann@33361: apply (drule_tac x = "n mod k" in spec, simp) haftmann@33361: done haftmann@33361: haftmann@33361: lemma split_neg_lemma: haftmann@33361: "k<0 ==> haftmann@33361: P(n div k :: int)(n mod k) = (\i j. k0 & n = k*i + j --> P i j)" haftmann@33361: apply (rule iffI, clarify) haftmann@33361: apply (erule_tac P="P ?x ?y" in rev_mp) haftmann@33361: apply (subst mod_add_eq) haftmann@33361: apply (subst zdiv_zadd1_eq) haftmann@33361: apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial) haftmann@33361: txt{*converse direction*} haftmann@33361: apply (drule_tac x = "n div k" in spec) haftmann@33361: apply (drule_tac x = "n mod k" in spec, simp) haftmann@33361: done haftmann@33361: haftmann@33361: lemma split_zdiv: haftmann@33361: "P(n div k :: int) = haftmann@33361: ((k = 0 --> P 0) & haftmann@33361: (0 (\i j. 0\j & j P i)) & haftmann@33361: (k<0 --> (\i j. k0 & n = k*i + j --> P i)))" haftmann@33361: apply (case_tac "k=0", simp) haftmann@33361: apply (simp only: linorder_neq_iff) haftmann@33361: apply (erule disjE) haftmann@33361: apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] haftmann@33361: split_neg_lemma [of concl: "%x y. P x"]) haftmann@33361: done haftmann@33361: haftmann@33361: lemma split_zmod: haftmann@33361: "P(n mod k :: int) = haftmann@33361: ((k = 0 --> P n) & haftmann@33361: (0 (\i j. 0\j & j P j)) & haftmann@33361: (k<0 --> (\i j. k0 & n = k*i + j --> P j)))" haftmann@33361: apply (case_tac "k=0", simp) haftmann@33361: apply (simp only: linorder_neq_iff) haftmann@33361: apply (erule disjE) haftmann@33361: apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] haftmann@33361: split_neg_lemma [of concl: "%x y. P y"]) haftmann@33361: done haftmann@33361: webertj@33730: text {* Enable (lin)arith to deal with @{const div} and @{const mod} webertj@33730: when these are applied to some constant that is of the form huffman@47108: @{term "numeral k"}: *} huffman@47108: declare split_zdiv [of _ _ "numeral k", arith_split] for k huffman@47108: declare split_zmod [of _ _ "numeral k", arith_split] for k haftmann@33361: haftmann@33361: huffman@47166: subsubsection {* Computing @{text "div"} and @{text "mod"} with shifting *} huffman@47166: huffman@47166: lemma pos_divmod_int_rel_mult_2: huffman@47166: assumes "0 \ b" huffman@47166: assumes "divmod_int_rel a b (q, r)" huffman@47166: shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)" huffman@47166: using assms unfolding divmod_int_rel_def by auto huffman@47166: haftmann@54489: declaration {* K (Lin_Arith.add_simps @{thms uminus_numeral_One}) *} haftmann@54489: huffman@47166: lemma neg_divmod_int_rel_mult_2: huffman@47166: assumes "b \ 0" huffman@47166: assumes "divmod_int_rel (a + 1) b (q, r)" huffman@47166: shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)" huffman@47166: using assms unfolding divmod_int_rel_def by auto haftmann@33361: haftmann@33361: text{*computing div by shifting *} haftmann@33361: haftmann@33361: lemma pos_zdiv_mult_2: "(0::int) \ a ==> (1 + 2*b) div (2*a) = b div a" huffman@47166: using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel_div_mod] huffman@47166: by (rule div_int_unique) haftmann@33361: boehmes@35815: lemma neg_zdiv_mult_2: boehmes@35815: assumes A: "a \ (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a" huffman@47166: using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel_div_mod] huffman@47166: by (rule div_int_unique) haftmann@33361: huffman@47108: (* FIXME: add rules for negative numerals *) huffman@47108: lemma zdiv_numeral_Bit0 [simp]: huffman@47108: "numeral (Num.Bit0 v) div numeral (Num.Bit0 w) = huffman@47108: numeral v div (numeral w :: int)" huffman@47108: unfolding numeral.simps unfolding mult_2 [symmetric] huffman@47108: by (rule div_mult_mult1, simp) huffman@47108: huffman@47108: lemma zdiv_numeral_Bit1 [simp]: huffman@47108: "numeral (Num.Bit1 v) div numeral (Num.Bit0 w) = huffman@47108: (numeral v div (numeral w :: int))" huffman@47108: unfolding numeral.simps haftmann@57512: unfolding mult_2 [symmetric] add.commute [of _ 1] huffman@47108: by (rule pos_zdiv_mult_2, simp) haftmann@33361: haftmann@33361: lemma pos_zmod_mult_2: haftmann@33361: fixes a b :: int haftmann@33361: assumes "0 \ a" haftmann@33361: shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)" huffman@47166: using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod] huffman@47166: by (rule mod_int_unique) haftmann@33361: haftmann@33361: lemma neg_zmod_mult_2: haftmann@33361: fixes a b :: int haftmann@33361: assumes "a \ 0" haftmann@33361: shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1" huffman@47166: using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod] huffman@47166: by (rule mod_int_unique) haftmann@33361: huffman@47108: (* FIXME: add rules for negative numerals *) huffman@47108: lemma zmod_numeral_Bit0 [simp]: huffman@47108: "numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) = huffman@47108: (2::int) * (numeral v mod numeral w)" huffman@47108: unfolding numeral_Bit0 [of v] numeral_Bit0 [of w] huffman@47108: unfolding mult_2 [symmetric] by (rule mod_mult_mult1) huffman@47108: huffman@47108: lemma zmod_numeral_Bit1 [simp]: huffman@47108: "numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) = huffman@47108: 2 * (numeral v mod numeral w) + (1::int)" huffman@47108: unfolding numeral_Bit1 [of v] numeral_Bit0 [of w] haftmann@57512: unfolding mult_2 [symmetric] add.commute [of _ 1] huffman@47108: by (rule pos_zmod_mult_2, simp) haftmann@33361: nipkow@39489: lemma zdiv_eq_0_iff: nipkow@39489: "(i::int) div k = 0 \ k=0 \ 0\i \ i i\0 \ k ?R" by (rule split_zdiv[THEN iffD2]) simp nipkow@39489: with `?L` show ?R by blast nipkow@39489: next nipkow@39489: assume ?R thus ?L nipkow@39489: by(auto simp: div_pos_pos_trivial div_neg_neg_trivial) nipkow@39489: qed nipkow@39489: nipkow@39489: huffman@46551: subsubsection {* Quotients of Signs *} haftmann@33361: haftmann@33361: lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0" haftmann@33361: apply (subgoal_tac "a div b \ -1", force) haftmann@33361: apply (rule order_trans) haftmann@33361: apply (rule_tac a' = "-1" in zdiv_mono1) haftmann@33361: apply (auto simp add: div_eq_minus1) haftmann@33361: done haftmann@33361: haftmann@33361: lemma div_nonneg_neg_le0: "[| (0::int) \ a; b < 0 |] ==> a div b \ 0" haftmann@33361: by (drule zdiv_mono1_neg, auto) haftmann@33361: haftmann@33361: lemma div_nonpos_pos_le0: "[| (a::int) \ 0; b > 0 |] ==> a div b \ 0" haftmann@33361: by (drule zdiv_mono1, auto) haftmann@33361: nipkow@33804: text{* Now for some equivalences of the form @{text"a div b >=< 0 \ \"} nipkow@33804: conditional upon the sign of @{text a} or @{text b}. There are many more. nipkow@33804: They should all be simp rules unless that causes too much search. *} nipkow@33804: haftmann@33361: lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \ a div b) = (0 \ a)" haftmann@33361: apply auto haftmann@33361: apply (drule_tac [2] zdiv_mono1) haftmann@33361: apply (auto simp add: linorder_neq_iff) haftmann@33361: apply (simp (no_asm_use) add: linorder_not_less [symmetric]) haftmann@33361: apply (blast intro: div_neg_pos_less0) haftmann@33361: done haftmann@33361: haftmann@33361: lemma neg_imp_zdiv_nonneg_iff: nipkow@33804: "b < (0::int) ==> (0 \ a div b) = (a \ (0::int))" huffman@47159: apply (subst div_minus_minus [symmetric]) haftmann@33361: apply (subst pos_imp_zdiv_nonneg_iff, auto) haftmann@33361: done haftmann@33361: haftmann@33361: (*But not (a div b \ 0 iff a\0); consider a=1, b=2 when a div b = 0.*) haftmann@33361: lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)" haftmann@33361: by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff) haftmann@33361: nipkow@39489: lemma pos_imp_zdiv_pos_iff: nipkow@39489: "0 0 < (i::int) div k \ k \ i" nipkow@39489: using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k] nipkow@39489: by arith nipkow@39489: haftmann@33361: (*Again the law fails for \: consider a = -1, b = -2 when a div b = 0*) haftmann@33361: lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)" haftmann@33361: by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff) haftmann@33361: nipkow@33804: lemma nonneg1_imp_zdiv_pos_iff: nipkow@33804: "(0::int) <= a \ (a div b > 0) = (a >= b & b>0)" nipkow@33804: apply rule nipkow@33804: apply rule nipkow@33804: using div_pos_pos_trivial[of a b]apply arith nipkow@33804: apply(cases "b=0")apply simp nipkow@33804: using div_nonneg_neg_le0[of a b]apply arith nipkow@33804: using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp nipkow@33804: done nipkow@33804: nipkow@39489: lemma zmod_le_nonneg_dividend: "(m::int) \ 0 ==> m mod k \ m" nipkow@39489: apply (rule split_zmod[THEN iffD2]) nipkow@44890: apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le) nipkow@39489: done nipkow@39489: nipkow@39489: haftmann@33361: subsubsection {* The Divides Relation *} haftmann@33361: huffman@47268: lemma dvd_neg_numeral_left [simp]: huffman@47268: fixes y :: "'a::comm_ring_1" haftmann@54489: shows "(- numeral k) dvd y \ (numeral k) dvd y" haftmann@54489: by (fact minus_dvd_iff) huffman@47268: huffman@47268: lemma dvd_neg_numeral_right [simp]: huffman@47268: fixes x :: "'a::comm_ring_1" haftmann@54489: shows "x dvd (- numeral k) \ x dvd (numeral k)" haftmann@54489: by (fact dvd_minus_iff) haftmann@33361: huffman@47108: lemmas dvd_eq_mod_eq_0_numeral [simp] = huffman@47108: dvd_eq_mod_eq_0 [of "numeral x" "numeral y"] for x y huffman@47108: huffman@47108: huffman@47108: subsubsection {* Further properties *} huffman@47108: haftmann@33361: lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)" haftmann@33361: using zmod_zdiv_equality[where a="m" and b="n"] huffman@47142: by (simp add: algebra_simps) (* FIXME: generalize *) haftmann@33361: haftmann@33361: lemma zdiv_int: "int (a div b) = (int a) div (int b)" haftmann@33361: apply (subst split_div, auto) haftmann@33361: apply (subst split_zdiv, auto) haftmann@33361: apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in unique_quotient) haftmann@33361: apply (auto simp add: divmod_int_rel_def of_nat_mult) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_int: "int (a mod b) = (int a) mod (int b)" haftmann@33361: apply (subst split_mod, auto) haftmann@33361: apply (subst split_zmod, auto) haftmann@33361: apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia haftmann@33361: in unique_remainder) haftmann@33361: apply (auto simp add: divmod_int_rel_def of_nat_mult) haftmann@33361: done haftmann@33361: haftmann@33361: lemma abs_div: "(y::int) dvd x \ abs (x div y) = abs x div abs y" haftmann@33361: by (unfold dvd_def, cases "y=0", auto simp add: abs_mult) haftmann@33361: haftmann@33361: text{*Suggested by Matthias Daum*} haftmann@33361: lemma int_power_div_base: haftmann@33361: "\0 < m; 0 < k\ \ k ^ m div k = (k::int) ^ (m - Suc 0)" haftmann@33361: apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)") haftmann@33361: apply (erule ssubst) haftmann@33361: apply (simp only: power_add) haftmann@33361: apply simp_all haftmann@33361: done haftmann@33361: haftmann@33361: text {* by Brian Huffman *} haftmann@33361: lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m" haftmann@33361: by (rule mod_minus_eq [symmetric]) haftmann@33361: haftmann@33361: lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)" haftmann@33361: by (rule mod_diff_left_eq [symmetric]) haftmann@33361: haftmann@33361: lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)" haftmann@33361: by (rule mod_diff_right_eq [symmetric]) haftmann@33361: haftmann@33361: lemmas zmod_simps = haftmann@33361: mod_add_left_eq [symmetric] haftmann@33361: mod_add_right_eq [symmetric] huffman@47142: mod_mult_right_eq[symmetric] haftmann@33361: mod_mult_left_eq [symmetric] huffman@47164: power_mod haftmann@33361: zminus_zmod zdiff_zmod_left zdiff_zmod_right haftmann@33361: haftmann@33361: text {* Distributive laws for function @{text nat}. *} haftmann@33361: haftmann@33361: lemma nat_div_distrib: "0 \ x \ nat (x div y) = nat x div nat y" haftmann@33361: apply (rule linorder_cases [of y 0]) haftmann@33361: apply (simp add: div_nonneg_neg_le0) haftmann@33361: apply simp haftmann@33361: apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int) haftmann@33361: done haftmann@33361: haftmann@33361: (*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*) haftmann@33361: lemma nat_mod_distrib: haftmann@33361: "\0 \ x; 0 \ y\ \ nat (x mod y) = nat x mod nat y" haftmann@33361: apply (case_tac "y = 0", simp) haftmann@33361: apply (simp add: nat_eq_iff zmod_int) haftmann@33361: done haftmann@33361: haftmann@33361: text {* transfer setup *} haftmann@33361: haftmann@33361: lemma transfer_nat_int_functions: haftmann@33361: "(x::int) >= 0 \ y >= 0 \ (nat x) div (nat y) = nat (x div y)" haftmann@33361: "(x::int) >= 0 \ y >= 0 \ (nat x) mod (nat y) = nat (x mod y)" haftmann@33361: by (auto simp add: nat_div_distrib nat_mod_distrib) haftmann@33361: haftmann@33361: lemma transfer_nat_int_function_closures: haftmann@33361: "(x::int) >= 0 \ y >= 0 \ x div y >= 0" haftmann@33361: "(x::int) >= 0 \ y >= 0 \ x mod y >= 0" haftmann@33361: apply (cases "y = 0") haftmann@33361: apply (auto simp add: pos_imp_zdiv_nonneg_iff) haftmann@33361: apply (cases "y = 0") haftmann@33361: apply auto haftmann@33361: done haftmann@33361: haftmann@35644: declare transfer_morphism_nat_int [transfer add return: haftmann@33361: transfer_nat_int_functions haftmann@33361: transfer_nat_int_function_closures haftmann@33361: ] haftmann@33361: haftmann@33361: lemma transfer_int_nat_functions: haftmann@33361: "(int x) div (int y) = int (x div y)" haftmann@33361: "(int x) mod (int y) = int (x mod y)" haftmann@33361: by (auto simp add: zdiv_int zmod_int) haftmann@33361: haftmann@33361: lemma transfer_int_nat_function_closures: haftmann@33361: "is_nat x \ is_nat y \ is_nat (x div y)" haftmann@33361: "is_nat x \ is_nat y \ is_nat (x mod y)" haftmann@33361: by (simp_all only: is_nat_def transfer_nat_int_function_closures) haftmann@33361: haftmann@35644: declare transfer_morphism_int_nat [transfer add return: haftmann@33361: transfer_int_nat_functions haftmann@33361: transfer_int_nat_function_closures haftmann@33361: ] haftmann@33361: haftmann@33361: text{*Suggested by Matthias Daum*} haftmann@33361: lemma int_div_less_self: "\0 < x; 1 < k\ \ x div k < (x::int)" haftmann@33361: apply (subgoal_tac "nat x div nat k < nat x") nipkow@34225: apply (simp add: nat_div_distrib [symmetric]) haftmann@33361: apply (rule Divides.div_less_dividend, simp_all) haftmann@33361: done haftmann@33361: haftmann@33361: lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \ n dvd x - y" haftmann@33361: proof haftmann@33361: assume H: "x mod n = y mod n" haftmann@33361: hence "x mod n - y mod n = 0" by simp haftmann@33361: hence "(x mod n - y mod n) mod n = 0" by simp haftmann@33361: hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric]) haftmann@33361: thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0) haftmann@33361: next haftmann@33361: assume H: "n dvd x - y" haftmann@33361: then obtain k where k: "x-y = n*k" unfolding dvd_def by blast haftmann@33361: hence "x = n*k + y" by simp haftmann@33361: hence "x mod n = (n*k + y) mod n" by simp haftmann@33361: thus "x mod n = y mod n" by (simp add: mod_add_left_eq) haftmann@33361: qed haftmann@33361: haftmann@33361: lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \ x" haftmann@33361: shows "\q. x = y + n * q" haftmann@33361: proof- haftmann@33361: from xy have th: "int x - int y = int (x - y)" by simp haftmann@33361: from xyn have "int x mod int n = int y mod int n" huffman@46551: by (simp add: zmod_int [symmetric]) haftmann@33361: hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric]) haftmann@33361: hence "n dvd x - y" by (simp add: th zdvd_int) haftmann@33361: then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith haftmann@33361: qed haftmann@33361: haftmann@33361: lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \ (\q1 q2. x + n * q1 = y + n * q2)" haftmann@33361: (is "?lhs = ?rhs") haftmann@33361: proof haftmann@33361: assume H: "x mod n = y mod n" haftmann@33361: {assume xy: "x \ y" haftmann@33361: from H have th: "y mod n = x mod n" by simp haftmann@33361: from nat_mod_eq_lemma[OF th xy] have ?rhs haftmann@33361: apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)} haftmann@33361: moreover haftmann@33361: {assume xy: "y \ x" haftmann@33361: from nat_mod_eq_lemma[OF H xy] have ?rhs haftmann@33361: apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)} haftmann@33361: ultimately show ?rhs using linear[of x y] by blast haftmann@33361: next haftmann@33361: assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast haftmann@33361: hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp haftmann@33361: thus ?lhs by simp haftmann@33361: qed haftmann@33361: haftmann@53067: text {* haftmann@53067: This re-embedding of natural division on integers goes back to the haftmann@53067: time when numerals had been signed numerals. It should haftmann@53070: now be replaced by the algorithm developed in @{class semiring_numeral_div}. haftmann@53067: *} haftmann@53067: huffman@47108: lemma div_nat_numeral [simp]: huffman@47108: "(numeral v :: nat) div numeral v' = nat (numeral v div numeral v')" haftmann@33361: by (simp add: nat_div_distrib) haftmann@33361: huffman@47108: lemma one_div_nat_numeral [simp]: huffman@47108: "Suc 0 div numeral v' = nat (1 div numeral v')" huffman@47108: by (subst nat_div_distrib, simp_all) huffman@47108: huffman@47108: lemma mod_nat_numeral [simp]: huffman@47108: "(numeral v :: nat) mod numeral v' = nat (numeral v mod numeral v')" haftmann@33361: by (simp add: nat_mod_distrib) haftmann@33361: huffman@47108: lemma one_mod_nat_numeral [simp]: huffman@47108: "Suc 0 mod numeral v' = nat (1 mod numeral v')" huffman@47108: by (subst nat_mod_distrib) simp_all huffman@47108: haftmann@53067: instance int :: semiring_numeral_div haftmann@53068: by intro_classes (auto intro: zmod_le_nonneg_dividend haftmann@53068: simp add: zmult_div_cancel haftmann@53068: pos_imp_zdiv_pos_iff div_pos_pos_trivial mod_pos_pos_trivial haftmann@53068: zmod_zmult2_eq zdiv_zmult2_eq) haftmann@53067: huffman@47108: huffman@47108: subsubsection {* Tools setup *} huffman@47108: huffman@47108: text {* Nitpick *} blanchet@34126: blanchet@41792: lemmas [nitpick_unfold] = dvd_eq_mod_eq_0 mod_div_equality' zmod_zdiv_equality' blanchet@34126: haftmann@35673: haftmann@33361: subsubsection {* Code generation *} haftmann@33361: haftmann@53069: definition divmod_abs :: "int \ int \ int \ int" haftmann@53069: where haftmann@53069: "divmod_abs k l = (\k\ div \l\, \k\ mod \l\)" haftmann@53069: haftmann@53069: lemma fst_divmod_abs [simp]: haftmann@53069: "fst (divmod_abs k l) = \k\ div \l\" haftmann@53069: by (simp add: divmod_abs_def) haftmann@53069: haftmann@53069: lemma snd_divmod_abs [simp]: haftmann@53069: "snd (divmod_abs k l) = \k\ mod \l\" haftmann@53069: by (simp add: divmod_abs_def) haftmann@53069: haftmann@53069: lemma divmod_abs_code [code]: haftmann@53069: "divmod_abs (Int.Pos k) (Int.Pos l) = divmod k l" haftmann@53069: "divmod_abs (Int.Neg k) (Int.Neg l) = divmod k l" haftmann@53069: "divmod_abs (Int.Neg k) (Int.Pos l) = divmod k l" haftmann@53069: "divmod_abs (Int.Pos k) (Int.Neg l) = divmod k l" haftmann@53069: "divmod_abs j 0 = (0, \j\)" haftmann@53069: "divmod_abs 0 j = (0, 0)" haftmann@53069: by (simp_all add: prod_eq_iff) haftmann@53069: haftmann@53069: lemma divmod_int_divmod_abs: haftmann@53069: "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else haftmann@33361: apsnd ((op *) (sgn l)) (if 0 < l \ 0 \ k \ l < 0 \ k < 0 haftmann@53069: then divmod_abs k l haftmann@53069: else (let (r, s) = divmod_abs k l in huffman@47108: if s = 0 then (- r, 0) else (- r - 1, \l\ - s))))" haftmann@33361: proof - haftmann@33361: have aux: "\q::int. - k = l * q \ k = l * - q" by auto haftmann@33361: show ?thesis haftmann@53069: by (simp add: prod_eq_iff split_def Let_def) haftmann@33361: (auto simp add: aux not_less not_le zdiv_zminus1_eq_if haftmann@33361: zmod_zminus1_eq_if zdiv_zminus2_eq_if zmod_zminus2_eq_if) haftmann@33361: qed haftmann@33361: haftmann@53069: lemma divmod_int_code [code]: haftmann@53069: "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else haftmann@33361: apsnd ((op *) (sgn l)) (if sgn k = sgn l haftmann@53069: then divmod_abs k l haftmann@53069: else (let (r, s) = divmod_abs k l in haftmann@33361: if s = 0 then (- r, 0) else (- r - 1, \l\ - s))))" haftmann@33361: proof - haftmann@33361: have "k \ 0 \ l \ 0 \ 0 < l \ 0 \ k \ l < 0 \ k < 0 \ sgn k = sgn l" haftmann@33361: by (auto simp add: not_less sgn_if) haftmann@53069: then show ?thesis by (simp add: divmod_int_divmod_abs) haftmann@33361: qed haftmann@33361: haftmann@53069: hide_const (open) divmod_abs haftmann@53069: haftmann@52435: code_identifier haftmann@52435: code_module Divides \ (SML) Arith and (OCaml) Arith and (Haskell) Arith haftmann@33364: haftmann@33361: end haftmann@52435: