immler@50091: (* Title: HOL/Probability/Fin_Map.thy immler@50088: Author: Fabian Immler, TU München immler@50088: *) immler@50088: immler@50091: header {* Finite Maps *} immler@50091: immler@50088: theory Fin_Map immler@50088: imports Finite_Product_Measure immler@50088: begin immler@50088: immler@50088: text {* Auxiliary type that is instantiated to @{class polish_space}, needed for the proof of immler@50088: projective limit. @{const extensional} functions are used for the representation in order to wenzelm@53015: stay close to the developments of (finite) products @{const Pi\<^sub>E} and their sigma-algebra wenzelm@53015: @{const Pi\<^sub>M}. *} immler@50088: wenzelm@53015: typedef ('i, 'a) finmap ("(_ \\<^sub>F /_)" [22, 21] 21) = immler@50088: "{(I::'i set, f::'i \ 'a). finite I \ f \ extensional I}" by auto immler@50088: immler@50088: subsection {* Domain and Application *} immler@50088: immler@50088: definition domain where "domain P = fst (Rep_finmap P)" immler@50088: immler@50088: lemma finite_domain[simp, intro]: "finite (domain P)" immler@50088: by (cases P) (auto simp: domain_def Abs_finmap_inverse) immler@50088: wenzelm@53015: definition proj ("'((_)')\<^sub>F" [0] 1000) where "proj P i = snd (Rep_finmap P) i" immler@50088: immler@50088: declare [[coercion proj]] immler@50088: wenzelm@53015: lemma extensional_proj[simp, intro]: "(P)\<^sub>F \ extensional (domain P)" immler@50088: by (cases P) (auto simp: domain_def Abs_finmap_inverse proj_def[abs_def]) immler@50088: immler@50088: lemma proj_undefined[simp, intro]: "i \ domain P \ P i = undefined" immler@50088: using extensional_proj[of P] unfolding extensional_def by auto immler@50088: immler@50088: lemma finmap_eq_iff: "P = Q \ (domain P = domain Q \ (\i\domain P. P i = Q i))" immler@50088: by (cases P, cases Q) immler@50088: (auto simp add: Abs_finmap_inject extensional_def domain_def proj_def Abs_finmap_inverse immler@50088: intro: extensionalityI) immler@50088: immler@50088: subsection {* Countable Finite Maps *} immler@50088: immler@50088: instance finmap :: (countable, countable) countable immler@50088: proof wenzelm@53015: obtain mapper where mapper: "\fm :: 'a \\<^sub>F 'b. set (mapper fm) = domain fm" immler@50088: by (metis finite_list[OF finite_domain]) wenzelm@53015: have "inj (\fm. map (\i. (i, (fm)\<^sub>F i)) (mapper fm))" (is "inj ?F") immler@50088: proof (rule inj_onI) immler@50088: fix f1 f2 assume "?F f1 = ?F f2" immler@50088: then have "map fst (?F f1) = map fst (?F f2)" by simp immler@50088: then have "mapper f1 = mapper f2" by (simp add: comp_def) immler@50088: then have "domain f1 = domain f2" by (simp add: mapper[symmetric]) immler@50088: with `?F f1 = ?F f2` show "f1 = f2" immler@50088: unfolding `mapper f1 = mapper f2` map_eq_conv mapper immler@50088: by (simp add: finmap_eq_iff) immler@50088: qed wenzelm@53015: then show "\to_nat :: 'a \\<^sub>F 'b \ nat. inj to_nat" immler@50088: by (intro exI[of _ "to_nat \ ?F"] inj_comp) auto immler@50088: qed immler@50088: immler@50088: subsection {* Constructor of Finite Maps *} immler@50088: immler@50088: definition "finmap_of inds f = Abs_finmap (inds, restrict f inds)" immler@50088: immler@50088: lemma proj_finmap_of[simp]: immler@50088: assumes "finite inds" wenzelm@53015: shows "(finmap_of inds f)\<^sub>F = restrict f inds" immler@50088: using assms immler@50088: by (auto simp: Abs_finmap_inverse finmap_of_def proj_def) immler@50088: immler@50088: lemma domain_finmap_of[simp]: immler@50088: assumes "finite inds" immler@50088: shows "domain (finmap_of inds f) = inds" immler@50088: using assms immler@50088: by (auto simp: Abs_finmap_inverse finmap_of_def domain_def) immler@50088: immler@50088: lemma finmap_of_eq_iff[simp]: immler@50088: assumes "finite i" "finite j" immler@51104: shows "finmap_of i m = finmap_of j n \ i = j \ (\k\i. m k= n k)" immler@51104: using assms by (auto simp: finmap_eq_iff) immler@50088: hoelzl@50124: lemma finmap_of_inj_on_extensional_finite: immler@50088: assumes "finite K" immler@50088: assumes "S \ extensional K" immler@50088: shows "inj_on (finmap_of K) S" immler@50088: proof (rule inj_onI) immler@50088: fix x y::"'a \ 'b" immler@50088: assume "finmap_of K x = finmap_of K y" wenzelm@53015: hence "(finmap_of K x)\<^sub>F = (finmap_of K y)\<^sub>F" by simp immler@50088: moreover immler@50088: assume "x \ S" "y \ S" hence "x \ extensional K" "y \ extensional K" using assms by auto immler@50088: ultimately immler@50088: show "x = y" using assms by (simp add: extensional_restrict) immler@50088: qed immler@50088: immler@50088: subsection {* Product set of Finite Maps *} immler@50088: immler@50088: text {* This is @{term Pi} for Finite Maps, most of this is copied *} immler@50088: wenzelm@53015: definition Pi' :: "'i set \ ('i \ 'a set) \ ('i \\<^sub>F 'a) set" where wenzelm@53015: "Pi' I A = { P. domain P = I \ (\i. i \ I \ (P)\<^sub>F i \ A i) } " immler@50088: immler@50088: syntax immler@50088: "_Pi'" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI' _:_./ _)" 10) immler@50088: immler@50088: syntax (xsymbols) immler@50088: "_Pi'" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\' _\_./ _)" 10) immler@50088: immler@50088: syntax (HTML output) immler@50088: "_Pi'" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\' _\_./ _)" 10) immler@50088: immler@50088: translations immler@50088: "PI' x:A. B" == "CONST Pi' A (%x. B)" immler@50088: immler@50088: subsubsection{*Basic Properties of @{term Pi'}*} immler@50088: immler@50088: lemma Pi'_I[intro!]: "domain f = A \ (\x. x \ A \ f x \ B x) \ f \ Pi' A B" immler@50088: by (simp add: Pi'_def) immler@50088: immler@50088: lemma Pi'_I'[simp]: "domain f = A \ (\x. x \ A \ f x \ B x) \ f \ Pi' A B" immler@50088: by (simp add:Pi'_def) immler@50088: immler@50088: lemma Pi'_mem: "f\ Pi' A B \ x \ A \ f x \ B x" immler@50088: by (simp add: Pi'_def) immler@50088: immler@50088: lemma Pi'_iff: "f \ Pi' I X \ domain f = I \ (\i\I. f i \ X i)" immler@50088: unfolding Pi'_def by auto immler@50088: immler@50088: lemma Pi'E [elim]: immler@50088: "f \ Pi' A B \ (f x \ B x \ domain f = A \ Q) \ (x \ A \ Q) \ Q" immler@50088: by(auto simp: Pi'_def) immler@50088: immler@50088: lemma in_Pi'_cong: immler@50088: "domain f = domain g \ (\ w. w \ A \ f w = g w) \ f \ Pi' A B \ g \ Pi' A B" immler@50088: by (auto simp: Pi'_def) immler@50088: immler@50088: lemma Pi'_eq_empty[simp]: immler@50088: assumes "finite A" shows "(Pi' A B) = {} \ (\x\A. B x = {})" immler@50088: using assms immler@50088: apply (simp add: Pi'_def, auto) immler@50088: apply (drule_tac x = "finmap_of A (\u. SOME y. y \ B u)" in spec, auto) immler@50088: apply (cut_tac P= "%y. y \ B i" in some_eq_ex, auto) immler@50088: done immler@50088: immler@50088: lemma Pi'_mono: "(\x. x \ A \ B x \ C x) \ Pi' A B \ Pi' A C" immler@50088: by (auto simp: Pi'_def) immler@50088: wenzelm@53015: lemma Pi_Pi': "finite A \ (Pi\<^sub>E A B) = proj ` Pi' A B" immler@50088: apply (auto simp: Pi'_def Pi_def extensional_def) immler@50088: apply (rule_tac x = "finmap_of A (restrict x A)" in image_eqI) immler@50088: apply auto immler@50088: done immler@50088: immler@51105: subsection {* Topological Space of Finite Maps *} immler@51105: immler@51105: instantiation finmap :: (type, topological_space) topological_space immler@51105: begin immler@51105: wenzelm@53015: definition open_finmap :: "('a \\<^sub>F 'b) set \ bool" where immler@51105: "open_finmap = generate_topology {Pi' a b|a b. \i\a. open (b i)}" immler@51105: immler@51105: lemma open_Pi'I: "(\i. i \ I \ open (A i)) \ open (Pi' I A)" immler@51105: by (auto intro: generate_topology.Basis simp: open_finmap_def) immler@51105: immler@51105: instance using topological_space_generate_topology immler@51105: by intro_classes (auto simp: open_finmap_def class.topological_space_def) immler@51105: immler@51105: end immler@51105: immler@51105: lemma open_restricted_space: immler@51105: shows "open {m. P (domain m)}" immler@51105: proof - immler@51105: have "{m. P (domain m)} = (\i \ Collect P. {m. domain m = i})" by auto immler@51105: also have "open \" immler@51105: proof (rule, safe, cases) immler@51105: fix i::"'a set" immler@51105: assume "finite i" immler@51105: hence "{m. domain m = i} = Pi' i (\_. UNIV)" by (auto simp: Pi'_def) immler@51105: also have "open \" by (auto intro: open_Pi'I simp: `finite i`) immler@51105: finally show "open {m. domain m = i}" . immler@51105: next immler@51105: fix i::"'a set" immler@51105: assume "\ finite i" hence "{m. domain m = i} = {}" by auto immler@51105: also have "open \" by simp immler@51105: finally show "open {m. domain m = i}" . immler@51105: qed immler@51105: finally show ?thesis . immler@51105: qed immler@51105: immler@51105: lemma closed_restricted_space: immler@51105: shows "closed {m. P (domain m)}" immler@51105: using open_restricted_space[of "\x. \ P x"] immler@51105: unfolding closed_def by (rule back_subst) auto immler@51105: wenzelm@53015: lemma tendsto_proj: "((\x. x) ---> a) F \ ((\x. (x)\<^sub>F i) ---> (a)\<^sub>F i) F" immler@51105: unfolding tendsto_def immler@51105: proof safe immler@51105: fix S::"'b set" immler@51105: let ?S = "Pi' (domain a) (\x. if x = i then S else UNIV)" immler@51105: assume "open S" hence "open ?S" by (auto intro!: open_Pi'I) immler@51105: moreover assume "\S. open S \ a \ S \ eventually (\x. x \ S) F" "a i \ S" immler@51105: ultimately have "eventually (\x. x \ ?S) F" by auto wenzelm@53015: thus "eventually (\x. (x)\<^sub>F i \ S) F" immler@51105: by eventually_elim (insert `a i \ S`, force simp: Pi'_iff split: split_if_asm) immler@51105: qed immler@51105: immler@51105: lemma continuous_proj: wenzelm@53015: shows "continuous_on s (\x. (x)\<^sub>F i)" hoelzl@51641: unfolding continuous_on_def by (safe intro!: tendsto_proj tendsto_ident_at) immler@51105: immler@51105: instance finmap :: (type, first_countable_topology) first_countable_topology immler@51105: proof wenzelm@53015: fix x::"'a\\<^sub>F'b" immler@51105: have "\i. \A. countable A \ (\a\A. x i \ a) \ (\a\A. open a) \ immler@51105: (\S. open S \ x i \ S \ (\a\A. a \ S)) \ (\a b. a \ A \ b \ A \ a \ b \ A)" (is "\i. ?th i") immler@51105: proof immler@51105: fix i from first_countable_basis_Int_stableE[of "x i"] guess A . immler@51105: thus "?th i" by (intro exI[where x=A]) simp immler@51105: qed immler@51105: then guess A unfolding choice_iff .. note A = this immler@51105: hence open_sub: "\i S. i\domain x \ open (S i) \ x i\(S i) \ (\a\A i. a\(S i))" by auto immler@51105: have A_notempty: "\i. i \ domain x \ A i \ {}" using open_sub[of _ "\_. UNIV"] by auto wenzelm@53015: let ?A = "(\f. Pi' (domain x) f) ` (Pi\<^sub>E (domain x) A)" wenzelm@53015: show "\A::nat \ ('a\\<^sub>F'b) set. (\i. x \ (A i) \ open (A i)) \ (\S. open S \ x \ S \ (\i. A i \ S))" hoelzl@51473: proof (rule first_countableI[where A="?A"], safe) immler@51105: show "countable ?A" using A by (simp add: countable_PiE) immler@51105: next wenzelm@53015: fix S::"('a \\<^sub>F 'b) set" assume "open S" "x \ S" immler@51105: thus "\a\?A. a \ S" unfolding open_finmap_def immler@51105: proof (induct rule: generate_topology.induct) immler@51105: case UNIV thus ?case by (auto simp add: ex_in_conv PiE_eq_empty_iff A_notempty) immler@51105: next immler@51105: case (Int a b) immler@51105: then obtain f g where wenzelm@53015: "f \ Pi\<^sub>E (domain x) A" "Pi' (domain x) f \ a" "g \ Pi\<^sub>E (domain x) A" "Pi' (domain x) g \ b" immler@51105: by auto immler@51105: thus ?case using A immler@51105: by (auto simp: Pi'_iff PiE_iff extensional_def Int_stable_def immler@51105: intro!: bexI[where x="\i. f i \ g i"]) immler@51105: next immler@51105: case (UN B) immler@51105: then obtain b where "x \ b" "b \ B" by auto immler@51105: hence "\a\?A. a \ b" using UN by simp immler@51105: thus ?case using `b \ B` by blast immler@51105: next immler@51105: case (Basis s) immler@51105: then obtain a b where xs: "x\ Pi' a b" "s = Pi' a b" "\i. i\a \ open (b i)" by auto wenzelm@53015: have "\i. \a. (i \ domain x \ open (b i) \ (x)\<^sub>F i \ b i) \ (a\A i \ a \ b i)" immler@51105: using open_sub[of _ b] by auto immler@51105: then obtain b' wenzelm@53015: where "\i. i \ domain x \ open (b i) \ (x)\<^sub>F i \ b i \ (b' i \A i \ b' i \ b i)" immler@51105: unfolding choice_iff by auto immler@51105: with xs have "\i. i \ a \ (b' i \A i \ b' i \ b i)" "Pi' a b' \ Pi' a b" immler@51105: by (auto simp: Pi'_iff intro!: Pi'_mono) immler@51105: thus ?case using xs immler@51105: by (intro bexI[where x="Pi' a b'"]) immler@51105: (auto simp: Pi'_iff intro!: image_eqI[where x="restrict b' (domain x)"]) immler@51105: qed immler@51105: qed (insert A,auto simp: PiE_iff intro!: open_Pi'I) immler@51105: qed immler@51105: immler@50088: subsection {* Metric Space of Finite Maps *} immler@50088: immler@50088: instantiation finmap :: (type, metric_space) metric_space immler@50088: begin immler@50088: immler@50088: definition dist_finmap where wenzelm@53015: "dist P Q = Max (range (\i. dist ((P)\<^sub>F i) ((Q)\<^sub>F i))) + (if domain P = domain Q then 0 else 1)" immler@50088: wenzelm@53015: lemma finite_proj_image': "x \ domain P \ finite ((P)\<^sub>F ` S)" immler@51104: by (rule finite_subset[of _ "proj P ` (domain P \ S \ {x})"]) auto immler@51104: wenzelm@53015: lemma finite_proj_image: "finite ((P)\<^sub>F ` S)" immler@51104: by (cases "\x. x \ domain P") (auto intro: finite_proj_image' finite_subset[where B="domain P"]) immler@51104: wenzelm@53015: lemma finite_proj_diag: "finite ((\i. d ((P)\<^sub>F i) ((Q)\<^sub>F i)) ` S)" immler@50088: proof - wenzelm@53015: have "(\i. d ((P)\<^sub>F i) ((Q)\<^sub>F i)) ` S = (\(i, j). d i j) ` ((\i. ((P)\<^sub>F i, (Q)\<^sub>F i)) ` S)" by auto wenzelm@53015: moreover have "((\i. ((P)\<^sub>F i, (Q)\<^sub>F i)) ` S) \ (\i. (P)\<^sub>F i) ` S \ (\i. (Q)\<^sub>F i) ` S" by auto immler@51104: moreover have "finite \" using finite_proj_image[of P S] finite_proj_image[of Q S] immler@51104: by (intro finite_cartesian_product) simp_all immler@51104: ultimately show ?thesis by (simp add: finite_subset) immler@50088: qed immler@50088: immler@51104: lemma dist_le_1_imp_domain_eq: immler@51104: shows "dist P Q < 1 \ domain P = domain Q" immler@51104: by (simp add: dist_finmap_def finite_proj_diag split: split_if_asm) immler@51104: immler@50088: lemma dist_proj: wenzelm@53015: shows "dist ((x)\<^sub>F i) ((y)\<^sub>F i) \ dist x y" immler@50088: proof - immler@51104: have "dist (x i) (y i) \ Max (range (\i. dist (x i) (y i)))" immler@51104: by (simp add: Max_ge_iff finite_proj_diag) immler@51104: also have "\ \ dist x y" by (simp add: dist_finmap_def) immler@51104: finally show ?thesis . immler@51104: qed immler@51104: immler@51104: lemma dist_finmap_lessI: immler@51105: assumes "domain P = domain Q" immler@51105: assumes "0 < e" immler@51105: assumes "\i. i \ domain P \ dist (P i) (Q i) < e" immler@51104: shows "dist P Q < e" immler@51104: proof - immler@51104: have "dist P Q = Max (range (\i. dist (P i) (Q i)))" immler@51104: using assms by (simp add: dist_finmap_def finite_proj_diag) immler@51104: also have "\ < e" immler@51104: proof (subst Max_less_iff, safe) immler@51105: fix i wenzelm@53015: show "dist ((P)\<^sub>F i) ((Q)\<^sub>F i) < e" using assms immler@51105: by (cases "i \ domain P") simp_all immler@51104: qed (simp add: finite_proj_diag) immler@51104: finally show ?thesis . immler@50088: qed immler@50088: immler@50088: instance immler@50088: proof wenzelm@53015: fix S::"('a \\<^sub>F 'b) set" immler@51105: show "open S = (\x\S. \e>0. \y. dist y x < e \ y \ S)" (is "_ = ?od") immler@51105: proof immler@51105: assume "open S" immler@51105: thus ?od immler@51105: unfolding open_finmap_def immler@51105: proof (induct rule: generate_topology.induct) immler@51105: case UNIV thus ?case by (auto intro: zero_less_one) immler@51105: next immler@51105: case (Int a b) immler@51105: show ?case immler@51105: proof safe immler@51105: fix x assume x: "x \ a" "x \ b" immler@51105: with Int x obtain e1 e2 where immler@51105: "e1>0" "\y. dist y x < e1 \ y \ a" "e2>0" "\y. dist y x < e2 \ y \ b" by force immler@51105: thus "\e>0. \y. dist y x < e \ y \ a \ b" immler@51105: by (auto intro!: exI[where x="min e1 e2"]) immler@51105: qed immler@51105: next immler@51105: case (UN K) immler@51105: show ?case immler@51105: proof safe wenzelm@53374: fix x X assume "x \ X" and X: "X \ K" wenzelm@53374: with UN obtain e where "e>0" "\y. dist y x < e \ y \ X" by force wenzelm@53374: with X show "\e>0. \y. dist y x < e \ y \ \K" by auto immler@51105: qed immler@51105: next immler@51105: case (Basis s) then obtain a b where s: "s = Pi' a b" and b: "\i. i\a \ open (b i)" by auto immler@51105: show ?case immler@51105: proof safe immler@51105: fix x assume "x \ s" immler@51105: hence [simp]: "finite a" and a_dom: "a = domain x" using s by (auto simp: Pi'_iff) immler@51105: obtain es where es: "\i \ a. es i > 0 \ (\y. dist y (proj x i) < es i \ y \ b i)" immler@51105: using b `x \ s` by atomize_elim (intro bchoice, auto simp: open_dist s) immler@51105: hence in_b: "\i y. i \ a \ dist y (proj x i) < es i \ y \ b i" by auto immler@51105: show "\e>0. \y. dist y x < e \ y \ s" immler@51105: proof (cases, rule, safe) immler@51105: assume "a \ {}" immler@51105: show "0 < min 1 (Min (es ` a))" using es by (auto simp: `a \ {}`) immler@51105: fix y assume d: "dist y x < min 1 (Min (es ` a))" immler@51105: show "y \ s" unfolding s immler@51105: proof immler@51105: show "domain y = a" using d s `a \ {}` by (auto simp: dist_le_1_imp_domain_eq a_dom) wenzelm@53374: fix i assume i: "i \ a" wenzelm@53015: hence "dist ((y)\<^sub>F i) ((x)\<^sub>F i) < es i" using d immler@51105: by (auto simp: dist_finmap_def `a \ {}` intro!: le_less_trans[OF dist_proj]) wenzelm@53374: with i show "y i \ b i" by (rule in_b) immler@51105: qed immler@51105: next immler@51105: assume "\a \ {}" immler@51105: thus "\e>0. \y. dist y x < e \ y \ s" immler@51105: using s `x \ s` by (auto simp: Pi'_def dist_le_1_imp_domain_eq intro!: exI[where x=1]) immler@51105: qed immler@51105: qed immler@51105: qed immler@51105: next immler@51105: assume "\x\S. \e>0. \y. dist y x < e \ y \ S" immler@51105: then obtain e where e_pos: "\x. x \ S \ e x > 0" and immler@51105: e_in: "\x y . x \ S \ dist y x < e x \ y \ S" immler@51105: unfolding bchoice_iff immler@51105: by auto immler@51105: have S_eq: "S = \{Pi' a b| a b. \x\S. domain x = a \ b = (\i. ball (x i) (e x))}" immler@51105: proof safe immler@51105: fix x assume "x \ S" immler@51105: thus "x \ \{Pi' a b| a b. \x\S. domain x = a \ b = (\i. ball (x i) (e x))}" immler@51105: using e_pos by (auto intro!: exI[where x="Pi' (domain x) (\i. ball (x i) (e x))"]) immler@51105: next immler@51105: fix x y immler@51105: assume "y \ S" immler@51105: moreover immler@51105: assume "x \ (\' i\domain y. ball (y i) (e y))" immler@51105: hence "dist x y < e y" using e_pos `y \ S` immler@51105: by (auto simp: dist_finmap_def Pi'_iff finite_proj_diag dist_commute) immler@51105: ultimately show "x \ S" by (rule e_in) immler@51105: qed immler@51105: also have "open \" immler@51105: unfolding open_finmap_def immler@51105: by (intro generate_topology.UN) (auto intro: generate_topology.Basis) immler@51105: finally show "open S" . immler@51105: qed immler@50088: next wenzelm@53015: fix P Q::"'a \\<^sub>F 'b" immler@51104: have Max_eq_iff: "\A m. finite A \ A \ {} \ (Max A = m) = (m \ A \ (\a\A. a \ m))" haftmann@51489: by (auto intro: Max_in Max_eqI) immler@50088: show "dist P Q = 0 \ P = Q" immler@51104: by (auto simp: finmap_eq_iff dist_finmap_def Max_ge_iff finite_proj_diag Max_eq_iff hoelzl@56633: add_nonneg_eq_0_iff immler@51104: intro!: Max_eqI image_eqI[where x=undefined]) immler@50088: next wenzelm@53015: fix P Q R::"'a \\<^sub>F 'b" wenzelm@53015: let ?dists = "\P Q i. dist ((P)\<^sub>F i) ((Q)\<^sub>F i)" immler@51104: let ?dpq = "?dists P Q" and ?dpr = "?dists P R" and ?dqr = "?dists Q R" immler@51104: let ?dom = "\P Q. (if domain P = domain Q then 0 else 1::real)" immler@51104: have "dist P Q = Max (range ?dpq) + ?dom P Q" immler@51104: by (simp add: dist_finmap_def) immler@51104: also obtain t where "t \ range ?dpq" "t = Max (range ?dpq)" by (simp add: finite_proj_diag) immler@51104: then obtain i where "Max (range ?dpq) = ?dpq i" by auto immler@51104: also have "?dpq i \ ?dpr i + ?dqr i" by (rule dist_triangle2) immler@51104: also have "?dpr i \ Max (range ?dpr)" by (simp add: finite_proj_diag) immler@51104: also have "?dqr i \ Max (range ?dqr)" by (simp add: finite_proj_diag) immler@51104: also have "?dom P Q \ ?dom P R + ?dom Q R" by simp immler@51104: finally show "dist P Q \ dist P R + dist Q R" by (simp add: dist_finmap_def ac_simps) immler@50088: qed immler@50088: immler@50088: end immler@50088: immler@50088: subsection {* Complete Space of Finite Maps *} immler@50088: immler@50088: lemma tendsto_finmap: wenzelm@53015: fixes f::"nat \ ('i \\<^sub>F ('a::metric_space))" immler@50088: assumes ind_f: "\n. domain (f n) = domain g" immler@50088: assumes proj_g: "\i. i \ domain g \ (\n. (f n) i) ----> g i" immler@50088: shows "f ----> g" immler@51104: unfolding tendsto_iff immler@51104: proof safe immler@51104: fix e::real assume "0 < e" wenzelm@53015: let ?dists = "\x i. dist ((f x)\<^sub>F i) ((g)\<^sub>F i)" immler@51104: have "eventually (\x. \i\domain g. ?dists x i < e) sequentially" immler@51104: using finite_domain[of g] proj_g immler@51104: proof induct immler@51104: case (insert i G) immler@51104: with `0 < e` have "eventually (\x. ?dists x i < e) sequentially" by (auto simp add: tendsto_iff) immler@51104: moreover wenzelm@53015: from insert have "eventually (\x. \i\G. dist ((f x)\<^sub>F i) ((g)\<^sub>F i) < e) sequentially" by simp immler@51104: ultimately show ?case by eventually_elim auto immler@51104: qed simp immler@51104: thus "eventually (\x. dist (f x) g < e) sequentially" immler@51104: by eventually_elim (auto simp add: dist_finmap_def finite_proj_diag ind_f `0 < e`) immler@51104: qed immler@50088: immler@50088: instance finmap :: (type, complete_space) complete_space immler@50088: proof wenzelm@53015: fix P::"nat \ 'a \\<^sub>F 'b" immler@50088: assume "Cauchy P" immler@50088: then obtain Nd where Nd: "\n. n \ Nd \ dist (P n) (P Nd) < 1" immler@50088: by (force simp: cauchy) immler@50088: def d \ "domain (P Nd)" immler@50088: with Nd have dim: "\n. n \ Nd \ domain (P n) = d" using dist_le_1_imp_domain_eq by auto immler@50088: have [simp]: "finite d" unfolding d_def by simp immler@50088: def p \ "\i n. (P n) i" immler@50088: def q \ "\i. lim (p i)" immler@50088: def Q \ "finmap_of d q" immler@50088: have q: "\i. i \ d \ q i = Q i" by (auto simp add: Q_def Abs_finmap_inverse) immler@50088: { immler@50088: fix i assume "i \ d" immler@50088: have "Cauchy (p i)" unfolding cauchy p_def immler@50088: proof safe immler@50088: fix e::real assume "0 < e" immler@50088: with `Cauchy P` obtain N where N: "\n. n\N \ dist (P n) (P N) < min e 1" immler@50088: by (force simp: cauchy min_def) immler@50088: hence "\n. n \ N \ domain (P n) = domain (P N)" using dist_le_1_imp_domain_eq by auto immler@50088: with dim have dim: "\n. n \ N \ domain (P n) = d" by (metis nat_le_linear) immler@50088: show "\N. \n\N. dist ((P n) i) ((P N) i) < e" immler@50088: proof (safe intro!: exI[where x="N"]) immler@50088: fix n assume "N \ n" have "N \ N" by simp immler@50088: have "dist ((P n) i) ((P N) i) \ dist (P n) (P N)" immler@50088: using dim[OF `N \ n`] dim[OF `N \ N`] `i \ d` immler@50088: by (auto intro!: dist_proj) immler@50088: also have "\ < e" using N[OF `N \ n`] by simp immler@50088: finally show "dist ((P n) i) ((P N) i) < e" . immler@50088: qed immler@50088: qed immler@50088: hence "convergent (p i)" by (metis Cauchy_convergent_iff) immler@50088: hence "p i ----> q i" unfolding q_def convergent_def by (metis limI) immler@50088: } note p = this immler@50088: have "P ----> Q" immler@50088: proof (rule metric_LIMSEQ_I) immler@50088: fix e::real assume "0 < e" immler@51104: have "\ni. \i\d. \n\ni i. dist (p i n) (q i) < e" immler@50088: proof (safe intro!: bchoice) immler@50088: fix i assume "i \ d" immler@51104: from p[OF `i \ d`, THEN metric_LIMSEQ_D, OF `0 < e`] immler@51104: show "\no. \n\no. dist (p i n) (q i) < e" . immler@50088: qed then guess ni .. note ni = this immler@50088: def N \ "max Nd (Max (ni ` d))" immler@50088: show "\N. \n\N. dist (P n) Q < e" immler@50088: proof (safe intro!: exI[where x="N"]) immler@50088: fix n assume "N \ n" immler@51104: hence dom: "domain (P n) = d" "domain Q = d" "domain (P n) = domain Q" immler@50088: using dim by (simp_all add: N_def Q_def dim_def Abs_finmap_inverse) immler@51104: show "dist (P n) Q < e" immler@51104: proof (rule dist_finmap_lessI[OF dom(3) `0 < e`]) immler@51104: fix i immler@51104: assume "i \ domain (P n)" immler@51104: hence "ni i \ Max (ni ` d)" using dom by simp immler@50088: also have "\ \ N" by (simp add: N_def) wenzelm@53015: finally show "dist ((P n)\<^sub>F i) ((Q)\<^sub>F i) < e" using ni `i \ domain (P n)` `N \ n` dom immler@51104: by (auto simp: p_def q N_def less_imp_le) immler@50088: qed immler@50088: qed immler@50088: qed immler@50088: thus "convergent P" by (auto simp: convergent_def) immler@50088: qed immler@50088: immler@51105: subsection {* Second Countable Space of Finite Maps *} immler@50088: immler@51105: instantiation finmap :: (countable, second_countable_topology) second_countable_topology immler@50088: begin immler@50088: immler@51106: definition basis_proj::"'b set set" immler@51106: where "basis_proj = (SOME B. countable B \ topological_basis B)" immler@51106: immler@51106: lemma countable_basis_proj: "countable basis_proj" and basis_proj: "topological_basis basis_proj" immler@51106: unfolding basis_proj_def by (intro is_basis countable_basis)+ immler@51106: wenzelm@53015: definition basis_finmap::"('a \\<^sub>F 'b) set set" immler@51106: where "basis_finmap = {Pi' I S|I S. finite I \ (\i \ I. S i \ basis_proj)}" immler@50245: immler@50245: lemma in_basis_finmapI: immler@51106: assumes "finite I" assumes "\i. i \ I \ S i \ basis_proj" immler@50245: shows "Pi' I S \ basis_finmap" immler@50245: using assms unfolding basis_finmap_def by auto immler@50245: immler@50245: lemma basis_finmap_eq: immler@51106: assumes "basis_proj \ {}" wenzelm@53015: shows "basis_finmap = (\f. Pi' (domain f) (\i. from_nat_into basis_proj ((f)\<^sub>F i))) ` wenzelm@53015: (UNIV::('a \\<^sub>F nat) set)" (is "_ = ?f ` _") immler@50245: unfolding basis_finmap_def immler@50245: proof safe immler@50245: fix I::"'a set" and S::"'a \ 'b set" immler@51106: assume "finite I" "\i\I. S i \ basis_proj" immler@51106: hence "Pi' I S = ?f (finmap_of I (\x. to_nat_on basis_proj (S x)))" immler@51106: by (force simp: Pi'_def countable_basis_proj) immler@50245: thus "Pi' I S \ range ?f" by simp immler@51106: next wenzelm@53015: fix x and f::"'a \\<^sub>F nat" wenzelm@56222: show "\I S. (\' i\domain f. from_nat_into basis_proj ((f)\<^sub>F i)) = Pi' I S \ wenzelm@56222: finite I \ (\i\I. S i \ basis_proj)" immler@51106: using assms by (auto intro: from_nat_into) immler@51106: qed immler@51106: immler@51106: lemma basis_finmap_eq_empty: "basis_proj = {} \ basis_finmap = {Pi' {} undefined}" immler@51106: by (auto simp: Pi'_iff basis_finmap_def) immler@50088: immler@50245: lemma countable_basis_finmap: "countable basis_finmap" immler@51106: by (cases "basis_proj = {}") (auto simp: basis_finmap_eq basis_finmap_eq_empty) immler@50088: immler@50088: lemma finmap_topological_basis: immler@50245: "topological_basis basis_finmap" immler@50088: proof (subst topological_basis_iff, safe) immler@50245: fix B' assume "B' \ basis_finmap" immler@50245: thus "open B'" immler@51106: by (auto intro!: open_Pi'I topological_basis_open[OF basis_proj] immler@50245: simp: topological_basis_def basis_finmap_def Let_def) immler@50088: next wenzelm@53015: fix O'::"('a \\<^sub>F 'b) set" and x immler@51105: assume O': "open O'" "x \ O'" immler@51105: then obtain a where a: immler@51105: "x \ Pi' (domain x) a" "Pi' (domain x) a \ O'" "\i. i\domain x \ open (a i)" immler@51105: unfolding open_finmap_def immler@51105: proof (atomize_elim, induct rule: generate_topology.induct) immler@51105: case (Int a b) immler@51105: let ?p="\a f. x \ Pi' (domain x) f \ Pi' (domain x) f \ a \ (\i. i \ domain x \ open (f i))" immler@51105: from Int obtain f g where "?p a f" "?p b g" by auto immler@51105: thus ?case by (force intro!: exI[where x="\i. f i \ g i"] simp: Pi'_def) immler@51105: next immler@51105: case (UN k) immler@51105: then obtain kk a where "x \ kk" "kk \ k" "x \ Pi' (domain x) a" "Pi' (domain x) a \ kk" immler@51105: "\i. i\domain x \ open (a i)" immler@51105: by force immler@51105: thus ?case by blast immler@51105: qed (auto simp: Pi'_def) immler@50088: have "\B. immler@51106: (\i\domain x. x i \ B i \ B i \ a i \ B i \ basis_proj)" immler@50088: proof (rule bchoice, safe) immler@50088: fix i assume "i \ domain x" immler@51105: hence "open (a i)" "x i \ a i" using a by auto immler@51106: from topological_basisE[OF basis_proj this] guess b' . immler@51106: thus "\y. x i \ y \ y \ a i \ y \ basis_proj" by auto immler@50088: qed immler@50088: then guess B .. note B = this immler@50245: def B' \ "Pi' (domain x) (\i. (B i)::'b set)" immler@51105: have "B' \ Pi' (domain x) a" using B by (auto intro!: Pi'_mono simp: B'_def) immler@51105: also note `\ \ O'` immler@51105: finally show "\B'\basis_finmap. x \ B' \ B' \ O'" using B immler@51105: by (auto intro!: bexI[where x=B'] Pi'_mono in_basis_finmapI simp: B'_def) immler@50088: qed immler@50088: immler@50088: lemma range_enum_basis_finmap_imp_open: immler@50245: assumes "x \ basis_finmap" immler@50088: shows "open x" immler@50088: using finmap_topological_basis assms by (auto simp: topological_basis_def) immler@50088: hoelzl@51343: instance proof qed (blast intro: finmap_topological_basis countable_basis_finmap topological_basis_imp_subbasis) immler@50088: immler@50088: end immler@50088: immler@51105: subsection {* Polish Space of Finite Maps *} immler@51105: immler@51105: instance finmap :: (countable, polish_space) polish_space proof qed immler@51105: immler@51105: immler@50088: subsection {* Product Measurable Space of Finite Maps *} immler@50088: immler@50088: definition "PiF I M \ hoelzl@50124: sigma (\J \ I. (\' j\J. space (M j))) {(\' j\J. X j) |X J. J \ I \ X \ (\ j\J. sets (M j))}" immler@50088: immler@50088: abbreviation wenzelm@53015: "Pi\<^sub>F I M \ PiF I M" immler@50088: immler@50088: syntax immler@50088: "_PiF" :: "pttrn \ 'i set \ 'a measure \ ('i => 'a) measure" ("(3PIF _:_./ _)" 10) immler@50088: immler@50088: syntax (xsymbols) wenzelm@53015: "_PiF" :: "pttrn \ 'i set \ 'a measure \ ('i => 'a) measure" ("(3\\<^sub>F _\_./ _)" 10) immler@50088: immler@50088: syntax (HTML output) wenzelm@53015: "_PiF" :: "pttrn \ 'i set \ 'a measure \ ('i => 'a) measure" ("(3\\<^sub>F _\_./ _)" 10) immler@50088: immler@50088: translations immler@50088: "PIF x:I. M" == "CONST PiF I (%x. M)" immler@50088: immler@50088: lemma PiF_gen_subset: "{(\' j\J. X j) |X J. J \ I \ X \ (\ j\J. sets (M j))} \ immler@50088: Pow (\J \ I. (\' j\J. space (M j)))" immler@50244: by (auto simp: Pi'_def) (blast dest: sets.sets_into_space) immler@50088: immler@50088: lemma space_PiF: "space (PiF I M) = (\J \ I. (\' j\J. space (M j)))" immler@50088: unfolding PiF_def using PiF_gen_subset by (rule space_measure_of) immler@50088: immler@50088: lemma sets_PiF: immler@50088: "sets (PiF I M) = sigma_sets (\J \ I. (\' j\J. space (M j))) immler@50088: {(\' j\J. X j) |X J. J \ I \ X \ (\ j\J. sets (M j))}" immler@50088: unfolding PiF_def using PiF_gen_subset by (rule sets_measure_of) immler@50088: immler@50088: lemma sets_PiF_singleton: immler@50088: "sets (PiF {I} M) = sigma_sets (\' j\I. space (M j)) immler@50088: {(\' j\I. X j) |X. X \ (\ j\I. sets (M j))}" immler@50088: unfolding sets_PiF by simp immler@50088: immler@50088: lemma in_sets_PiFI: immler@50088: assumes "X = (Pi' J S)" "J \ I" "\i. i\J \ S i \ sets (M i)" immler@50088: shows "X \ sets (PiF I M)" immler@50088: unfolding sets_PiF immler@50088: using assms by blast immler@50088: immler@50088: lemma product_in_sets_PiFI: immler@50088: assumes "J \ I" "\i. i\J \ S i \ sets (M i)" immler@50088: shows "(Pi' J S) \ sets (PiF I M)" immler@50088: unfolding sets_PiF immler@50088: using assms by blast immler@50088: immler@50088: lemma singleton_space_subset_in_sets: immler@50088: fixes J immler@50088: assumes "J \ I" immler@50088: assumes "finite J" immler@50088: shows "space (PiF {J} M) \ sets (PiF I M)" immler@50088: using assms immler@50088: by (intro in_sets_PiFI[where J=J and S="\i. space (M i)"]) immler@50088: (auto simp: product_def space_PiF) immler@50088: immler@50088: lemma singleton_subspace_set_in_sets: immler@50088: assumes A: "A \ sets (PiF {J} M)" immler@50088: assumes "finite J" immler@50088: assumes "J \ I" immler@50088: shows "A \ sets (PiF I M)" immler@50088: using A[unfolded sets_PiF] immler@50088: apply (induct A) immler@50088: unfolding sets_PiF[symmetric] unfolding space_PiF[symmetric] immler@50088: using assms immler@50088: by (auto intro: in_sets_PiFI intro!: singleton_space_subset_in_sets) immler@50088: hoelzl@50124: lemma finite_measurable_singletonI: immler@50088: assumes "finite I" immler@50088: assumes "\J. J \ I \ finite J" immler@50088: assumes MN: "\J. J \ I \ A \ measurable (PiF {J} M) N" immler@50088: shows "A \ measurable (PiF I M) N" immler@50088: unfolding measurable_def immler@50088: proof safe immler@50088: fix y assume "y \ sets N" immler@50088: have "A -` y \ space (PiF I M) = (\J\I. A -` y \ space (PiF {J} M))" immler@50088: by (auto simp: space_PiF) immler@50088: also have "\ \ sets (PiF I M)" immler@50088: proof immler@50088: show "finite I" by fact immler@50088: fix J assume "J \ I" immler@50088: with assms have "finite J" by simp immler@50088: show "A -` y \ space (PiF {J} M) \ sets (PiF I M)" immler@50088: by (rule singleton_subspace_set_in_sets[OF measurable_sets[OF assms(3)]]) fact+ immler@50088: qed immler@50088: finally show "A -` y \ space (PiF I M) \ sets (PiF I M)" . immler@50088: next immler@50088: fix x assume "x \ space (PiF I M)" thus "A x \ space N" immler@50088: using MN[of "domain x"] immler@50088: by (auto simp: space_PiF measurable_space Pi'_def) immler@50088: qed immler@50088: hoelzl@50124: lemma countable_finite_comprehension: immler@50088: fixes f :: "'a::countable set \ _" immler@50088: assumes "\s. P s \ finite s" immler@50088: assumes "\s. P s \ f s \ sets M" immler@50088: shows "\{f s|s. P s} \ sets M" immler@50088: proof - immler@50088: have "\{f s|s. P s} = (\n::nat. let s = set (from_nat n) in if P s then f s else {})" immler@50088: proof safe wenzelm@53374: fix x X s assume *: "x \ f s" "P s" wenzelm@53374: with assms obtain l where "s = set l" using finite_list by blast wenzelm@53374: with * show "x \ (\n. let s = set (from_nat n) in if P s then f s else {})" using `P s` immler@50088: by (auto intro!: exI[where x="to_nat l"]) immler@50088: next immler@50088: fix x n assume "x \ (let s = set (from_nat n) in if P s then f s else {})" immler@50088: thus "x \ \{f s|s. P s}" using assms by (auto simp: Let_def split: split_if_asm) immler@50088: qed immler@50088: hence "\{f s|s. P s} = (\n. let s = set (from_nat n) in if P s then f s else {})" by simp immler@50088: also have "\ \ sets M" using assms by (auto simp: Let_def) immler@50088: finally show ?thesis . immler@50088: qed immler@50088: immler@50088: lemma space_subset_in_sets: immler@50088: fixes J::"'a::countable set set" immler@50088: assumes "J \ I" immler@50088: assumes "\j. j \ J \ finite j" immler@50088: shows "space (PiF J M) \ sets (PiF I M)" immler@50088: proof - immler@50088: have "space (PiF J M) = \{space (PiF {j} M)|j. j \ J}" immler@50088: unfolding space_PiF by blast immler@50088: also have "\ \ sets (PiF I M)" using assms immler@50088: by (intro countable_finite_comprehension) (auto simp: singleton_space_subset_in_sets) immler@50088: finally show ?thesis . immler@50088: qed immler@50088: immler@50088: lemma subspace_set_in_sets: immler@50088: fixes J::"'a::countable set set" immler@50088: assumes A: "A \ sets (PiF J M)" immler@50088: assumes "J \ I" immler@50088: assumes "\j. j \ J \ finite j" immler@50088: shows "A \ sets (PiF I M)" immler@50088: using A[unfolded sets_PiF] immler@50088: apply (induct A) immler@50088: unfolding sets_PiF[symmetric] unfolding space_PiF[symmetric] immler@50088: using assms immler@50088: by (auto intro: in_sets_PiFI intro!: space_subset_in_sets) immler@50088: hoelzl@50124: lemma countable_measurable_PiFI: immler@50088: fixes I::"'a::countable set set" immler@50088: assumes MN: "\J. J \ I \ finite J \ A \ measurable (PiF {J} M) N" immler@50088: shows "A \ measurable (PiF I M) N" immler@50088: unfolding measurable_def immler@50088: proof safe immler@50088: fix y assume "y \ sets N" immler@50088: have "A -` y = (\{A -` y \ {x. domain x = J}|J. finite J})" by auto wenzelm@53015: { fix x::"'a \\<^sub>F 'b" immler@50088: from finite_list[of "domain x"] obtain xs where "set xs = domain x" by auto immler@50245: hence "\n. domain x = set (from_nat n)" immler@50245: by (intro exI[where x="to_nat xs"]) auto } immler@50245: hence "A -` y \ space (PiF I M) = (\n. A -` y \ space (PiF ({set (from_nat n)}\I) M))" immler@50245: by (auto simp: space_PiF Pi'_def) immler@50088: also have "\ \ sets (PiF I M)" immler@50244: apply (intro sets.Int sets.countable_nat_UN subsetI, safe) immler@50088: apply (case_tac "set (from_nat i) \ I") immler@50088: apply simp_all immler@50088: apply (rule singleton_subspace_set_in_sets[OF measurable_sets[OF MN]]) immler@50088: using assms `y \ sets N` immler@50088: apply (auto simp: space_PiF) immler@50088: done immler@50088: finally show "A -` y \ space (PiF I M) \ sets (PiF I M)" . immler@50088: next immler@50088: fix x assume "x \ space (PiF I M)" thus "A x \ space N" immler@50088: using MN[of "domain x"] by (auto simp: space_PiF measurable_space Pi'_def) immler@50088: qed immler@50088: immler@50088: lemma measurable_PiF: immler@50088: assumes f: "\x. x \ space N \ domain (f x) \ I \ (\i\domain (f x). (f x) i \ space (M i))" immler@50088: assumes S: "\J S. J \ I \ (\i. i \ J \ S i \ sets (M i)) \ immler@50088: f -` (Pi' J S) \ space N \ sets N" immler@50088: shows "f \ measurable N (PiF I M)" immler@50088: unfolding PiF_def immler@50088: using PiF_gen_subset immler@50088: apply (rule measurable_measure_of) immler@50088: using f apply force immler@50088: apply (insert S, auto) immler@50088: done immler@50088: hoelzl@50124: lemma restrict_sets_measurable: immler@50088: assumes A: "A \ sets (PiF I M)" and "J \ I" immler@50088: shows "A \ {m. domain m \ J} \ sets (PiF J M)" immler@50088: using A[unfolded sets_PiF] hoelzl@50124: proof (induct A) hoelzl@50124: case (Basic a) immler@50088: then obtain K S where S: "a = Pi' K S" "K \ I" "(\i\K. S i \ sets (M i))" immler@50088: by auto hoelzl@50124: show ?case immler@50088: proof cases immler@50088: assume "K \ J" immler@50088: hence "a \ {m. domain m \ J} \ {Pi' K X |X K. K \ J \ X \ (\ j\K. sets (M j))}" using S immler@50088: by (auto intro!: exI[where x=K] exI[where x=S] simp: Pi'_def) immler@50088: also have "\ \ sets (PiF J M)" unfolding sets_PiF by auto immler@50088: finally show ?thesis . immler@50088: next immler@50088: assume "K \ J" immler@50088: hence "a \ {m. domain m \ J} = {}" using S by (auto simp: Pi'_def) immler@50088: also have "\ \ sets (PiF J M)" by simp immler@50088: finally show ?thesis . immler@50088: qed immler@50088: next hoelzl@50124: case (Union a) immler@50088: have "UNION UNIV a \ {m. domain m \ J} = (\i. (a i \ {m. domain m \ J}))" immler@50088: by simp immler@50244: also have "\ \ sets (PiF J M)" using Union by (intro sets.countable_nat_UN) auto hoelzl@50124: finally show ?case . immler@50088: next hoelzl@50124: case (Compl a) immler@50088: have "(space (PiF I M) - a) \ {m. domain m \ J} = (space (PiF J M) - (a \ {m. domain m \ J}))" immler@50088: using `J \ I` by (auto simp: space_PiF Pi'_def) hoelzl@50124: also have "\ \ sets (PiF J M)" using Compl by auto hoelzl@50124: finally show ?case by (simp add: space_PiF) hoelzl@50124: qed simp immler@50088: immler@50088: lemma measurable_finmap_of: immler@50088: assumes f: "\i. (\x \ space N. i \ J x) \ (\x. f x i) \ measurable N (M i)" immler@50088: assumes J: "\x. x \ space N \ J x \ I" "\x. x \ space N \ finite (J x)" immler@50088: assumes JN: "\S. {x. J x = S} \ space N \ sets N" immler@50088: shows "(\x. finmap_of (J x) (f x)) \ measurable N (PiF I M)" immler@50088: proof (rule measurable_PiF) immler@50088: fix x assume "x \ space N" immler@50088: with J[of x] measurable_space[OF f] immler@50088: show "domain (finmap_of (J x) (f x)) \ I \ immler@50088: (\i\domain (finmap_of (J x) (f x)). (finmap_of (J x) (f x)) i \ space (M i))" immler@50088: by auto immler@50088: next immler@50088: fix K S assume "K \ I" and *: "\i. i \ K \ S i \ sets (M i)" immler@50088: with J have eq: "(\x. finmap_of (J x) (f x)) -` Pi' K S \ space N = immler@50088: (if \x \ space N. K = J x \ finite K then if K = {} then {x \ space N. J x = K} immler@50088: else (\i\K. (\x. f x i) -` S i \ {x \ space N. J x = K}) else {})" immler@50088: by (auto simp: Pi'_def) immler@50088: have r: "{x \ space N. J x = K} = space N \ ({x. J x = K} \ space N)" by auto immler@50088: show "(\x. finmap_of (J x) (f x)) -` Pi' K S \ space N \ sets N" immler@50088: unfolding eq r immler@50088: apply (simp del: INT_simps add: ) immler@50244: apply (intro conjI impI sets.finite_INT JN sets.Int[OF sets.top]) immler@50088: apply simp apply assumption immler@50088: apply (subst Int_assoc[symmetric]) immler@50244: apply (rule sets.Int) immler@50088: apply (intro measurable_sets[OF f] *) apply force apply assumption immler@50088: apply (intro JN) immler@50088: done immler@50088: qed immler@50088: immler@50088: lemma measurable_PiM_finmap_of: immler@50088: assumes "finite J" wenzelm@53015: shows "finmap_of J \ measurable (Pi\<^sub>M J M) (PiF {J} M)" immler@50088: apply (rule measurable_finmap_of) immler@50088: apply (rule measurable_component_singleton) immler@50088: apply simp immler@50088: apply rule immler@50088: apply (rule `finite J`) immler@50088: apply simp immler@50088: done immler@50088: immler@50088: lemma proj_measurable_singleton: hoelzl@50124: assumes "A \ sets (M i)" wenzelm@53015: shows "(\x. (x)\<^sub>F i) -` A \ space (PiF {I} M) \ sets (PiF {I} M)" immler@50088: proof cases immler@50088: assume "i \ I" wenzelm@53015: hence "(\x. (x)\<^sub>F i) -` A \ space (PiF {I} M) = immler@50088: Pi' I (\x. if x = i then A else space (M x))" immler@50244: using sets.sets_into_space[OF ] `A \ sets (M i)` assms immler@50088: by (auto simp: space_PiF Pi'_def) immler@50088: thus ?thesis using assms `A \ sets (M i)` immler@50088: by (intro in_sets_PiFI) auto immler@50088: next immler@50088: assume "i \ I" wenzelm@53015: hence "(\x. (x)\<^sub>F i) -` A \ space (PiF {I} M) = immler@50088: (if undefined \ A then space (PiF {I} M) else {})" by (auto simp: space_PiF Pi'_def) immler@50088: thus ?thesis by simp immler@50088: qed immler@50088: immler@50088: lemma measurable_proj_singleton: hoelzl@50124: assumes "i \ I" wenzelm@53015: shows "(\x. (x)\<^sub>F i) \ measurable (PiF {I} M) (M i)" hoelzl@50124: by (unfold measurable_def, intro CollectI conjI ballI proj_measurable_singleton assms) hoelzl@50124: (insert `i \ I`, auto simp: space_PiF) immler@50088: immler@50088: lemma measurable_proj_countable: immler@50088: fixes I::"'a::countable set set" immler@50088: assumes "y \ space (M i)" wenzelm@53015: shows "(\x. if i \ domain x then (x)\<^sub>F i else y) \ measurable (PiF I M) (M i)" immler@50088: proof (rule countable_measurable_PiFI) immler@50088: fix J assume "J \ I" "finite J" immler@50088: show "(\x. if i \ domain x then x i else y) \ measurable (PiF {J} M) (M i)" immler@50088: unfolding measurable_def immler@50088: proof safe immler@50088: fix z assume "z \ sets (M i)" immler@50088: have "(\x. if i \ domain x then x i else y) -` z \ space (PiF {J} M) = wenzelm@53015: (\x. if i \ J then (x)\<^sub>F i else y) -` z \ space (PiF {J} M)" immler@50088: by (auto simp: space_PiF Pi'_def) immler@50088: also have "\ \ sets (PiF {J} M)" using `z \ sets (M i)` `finite J` immler@50088: by (cases "i \ J") (auto intro!: measurable_sets[OF measurable_proj_singleton]) immler@50088: finally show "(\x. if i \ domain x then x i else y) -` z \ space (PiF {J} M) \ immler@50088: sets (PiF {J} M)" . immler@50088: qed (insert `y \ space (M i)`, auto simp: space_PiF Pi'_def) immler@50088: qed immler@50088: immler@50088: lemma measurable_restrict_proj: immler@50088: assumes "J \ II" "finite J" immler@50088: shows "finmap_of J \ measurable (PiM J M) (PiF II M)" immler@50088: using assms immler@50088: by (intro measurable_finmap_of measurable_component_singleton) auto immler@50088: hoelzl@50124: lemma measurable_proj_PiM: immler@50088: fixes J K ::"'a::countable set" and I::"'a set set" immler@50088: assumes "finite J" "J \ I" immler@50088: assumes "x \ space (PiM J M)" hoelzl@50124: shows "proj \ measurable (PiF {J} M) (PiM J M)" immler@50088: proof (rule measurable_PiM_single) wenzelm@53015: show "proj \ space (PiF {J} M) \ (\\<^sub>E i \ J. space (M i))" immler@50088: using assms by (auto simp add: space_PiM space_PiF extensional_def sets_PiF Pi'_def) immler@50088: next immler@50088: fix A i assume A: "i \ J" "A \ sets (M i)" wenzelm@53015: show "{\ \ space (PiF {J} M). (\)\<^sub>F i \ A} \ sets (PiF {J} M)" immler@50088: proof wenzelm@53015: have "{\ \ space (PiF {J} M). (\)\<^sub>F i \ A} = wenzelm@53015: (\\. (\)\<^sub>F i) -` A \ space (PiF {J} M)" by auto immler@50088: also have "\ \ sets (PiF {J} M)" immler@50088: using assms A by (auto intro: measurable_sets[OF measurable_proj_singleton] simp: space_PiM) immler@50088: finally show ?thesis . immler@50088: qed simp immler@50088: qed immler@50088: immler@50088: lemma space_PiF_singleton_eq_product: immler@50088: assumes "finite I" immler@50088: shows "space (PiF {I} M) = (\' i\I. space (M i))" immler@50088: by (auto simp: product_def space_PiF assms) immler@50088: immler@50088: text {* adapted from @{thm sets_PiM_single} *} immler@50088: immler@50088: lemma sets_PiF_single: immler@50088: assumes "finite I" "I \ {}" immler@50088: shows "sets (PiF {I} M) = immler@50088: sigma_sets (\' i\I. space (M i)) immler@50088: {{f\\' i\I. space (M i). f i \ A} | i A. i \ I \ A \ sets (M i)}" immler@50088: (is "_ = sigma_sets ?\ ?R") immler@50088: unfolding sets_PiF_singleton immler@50088: proof (rule sigma_sets_eqI) immler@50088: interpret R: sigma_algebra ?\ "sigma_sets ?\ ?R" by (rule sigma_algebra_sigma_sets) auto immler@50088: fix A assume "A \ {Pi' I X |X. X \ (\ j\I. sets (M j))}" immler@50088: then obtain X where X: "A = Pi' I X" "X \ (\ j\I. sets (M j))" by auto immler@50088: show "A \ sigma_sets ?\ ?R" immler@50088: proof - immler@50088: from `I \ {}` X have "A = (\j\I. {f\space (PiF {I} M). f j \ X j})" immler@50244: using sets.sets_into_space immler@50088: by (auto simp: space_PiF product_def) blast immler@50088: also have "\ \ sigma_sets ?\ ?R" immler@50088: using X `I \ {}` assms by (intro R.finite_INT) (auto simp: space_PiF) immler@50088: finally show "A \ sigma_sets ?\ ?R" . immler@50088: qed immler@50088: next immler@50088: fix A assume "A \ ?R" immler@50088: then obtain i B where A: "A = {f\\' i\I. space (M i). f i \ B}" "i \ I" "B \ sets (M i)" immler@50088: by auto immler@50088: then have "A = (\' j \ I. if j = i then B else space (M j))" immler@50244: using sets.sets_into_space[OF A(3)] immler@50088: apply (auto simp: Pi'_iff split: split_if_asm) immler@50088: apply blast immler@50088: done immler@50088: also have "\ \ sigma_sets ?\ {Pi' I X |X. X \ (\ j\I. sets (M j))}" immler@50088: using A immler@50088: by (intro sigma_sets.Basic ) immler@50088: (auto intro: exI[where x="\j. if j = i then B else space (M j)"]) immler@50088: finally show "A \ sigma_sets ?\ {Pi' I X |X. X \ (\ j\I. sets (M j))}" . immler@50088: qed immler@50088: immler@50088: text {* adapted from @{thm PiE_cong} *} immler@50088: immler@50088: lemma Pi'_cong: immler@50088: assumes "finite I" immler@50088: assumes "\i. i \ I \ f i = g i" immler@50088: shows "Pi' I f = Pi' I g" immler@50088: using assms by (auto simp: Pi'_def) immler@50088: immler@50088: text {* adapted from @{thm Pi_UN} *} immler@50088: immler@50088: lemma Pi'_UN: immler@50088: fixes A :: "nat \ 'i \ 'a set" immler@50088: assumes "finite I" immler@50088: assumes mono: "\i n m. i \ I \ n \ m \ A n i \ A m i" immler@50088: shows "(\n. Pi' I (A n)) = Pi' I (\i. \n. A n i)" immler@50088: proof (intro set_eqI iffI) immler@50088: fix f assume "f \ Pi' I (\i. \n. A n i)" immler@50088: then have "\i\I. \n. f i \ A n i" "domain f = I" by (auto simp: `finite I` Pi'_def) immler@50088: from bchoice[OF this(1)] obtain n where n: "\i. i \ I \ f i \ (A (n i) i)" by auto immler@50088: obtain k where k: "\i. i \ I \ n i \ k" immler@50088: using `finite I` finite_nat_set_iff_bounded_le[of "n`I"] by auto immler@50088: have "f \ Pi' I (\i. A k i)" immler@50088: proof immler@50088: fix i assume "i \ I" immler@50088: from mono[OF this, of "n i" k] k[OF this] n[OF this] `domain f = I` `i \ I` immler@50088: show "f i \ A k i " by (auto simp: `finite I`) immler@50088: qed (simp add: `domain f = I` `finite I`) immler@50088: then show "f \ (\n. Pi' I (A n))" by auto immler@50088: qed (auto simp: Pi'_def `finite I`) immler@50088: immler@50088: text {* adapted from @{thm sigma_prod_algebra_sigma_eq} *} immler@50088: immler@50088: lemma sigma_fprod_algebra_sigma_eq: immler@51106: fixes E :: "'i \ 'a set set" and S :: "'i \ nat \ 'a set" immler@50088: assumes [simp]: "finite I" "I \ {}" immler@50088: and S_union: "\i. i \ I \ (\j. S i j) = space (M i)" immler@50088: and S_in_E: "\i. i \ I \ range (S i) \ E i" immler@50088: assumes E_closed: "\i. i \ I \ E i \ Pow (space (M i))" immler@50088: and E_generates: "\i. i \ I \ sets (M i) = sigma_sets (space (M i)) (E i)" immler@50088: defines "P == { Pi' I F | F. \i\I. F i \ E i }" immler@50088: shows "sets (PiF {I} M) = sigma_sets (space (PiF {I} M)) P" immler@50088: proof wenzelm@53015: let ?P = "sigma (space (Pi\<^sub>F {I} M)) P" immler@51106: from `finite I`[THEN ex_bij_betw_finite_nat] guess T .. immler@51106: then have T: "\i. i \ I \ T i < card I" "\i. i\I \ the_inv_into I T (T i) = i" immler@51106: by (auto simp add: bij_betw_def set_eq_iff image_iff the_inv_into_f_f simp del: `finite I`) wenzelm@53015: have P_closed: "P \ Pow (space (Pi\<^sub>F {I} M))" immler@50088: using E_closed by (auto simp: space_PiF P_def Pi'_iff subset_eq) immler@50088: then have space_P: "space ?P = (\' i\I. space (M i))" immler@50088: by (simp add: space_PiF) immler@50088: have "sets (PiF {I} M) = immler@50088: sigma_sets (space ?P) {{f \ \' i\I. space (M i). f i \ A} |i A. i \ I \ A \ sets (M i)}" immler@50088: using sets_PiF_single[of I M] by (simp add: space_P) immler@50088: also have "\ \ sets (sigma (space (PiF {I} M)) P)" immler@50244: proof (safe intro!: sets.sigma_sets_subset) immler@50088: fix i A assume "i \ I" and A: "A \ sets (M i)" wenzelm@53015: have "(\x. (x)\<^sub>F i) \ measurable ?P (sigma (space (M i)) (E i))" immler@50088: proof (subst measurable_iff_measure_of) immler@50088: show "E i \ Pow (space (M i))" using `i \ I` by fact wenzelm@53015: from space_P `i \ I` show "(\x. (x)\<^sub>F i) \ space ?P \ space (M i)" immler@50088: by auto wenzelm@53015: show "\A\E i. (\x. (x)\<^sub>F i) -` A \ space ?P \ sets ?P" immler@50088: proof immler@50088: fix A assume A: "A \ E i" wenzelm@53015: then have "(\x. (x)\<^sub>F i) -` A \ space ?P = (\' j\I. if i = j then A else space (M j))" immler@50088: using E_closed `i \ I` by (auto simp: space_P Pi_iff subset_eq split: split_if_asm) immler@50088: also have "\ = (\' j\I. \n. if i = j then A else S j n)" immler@50088: by (intro Pi'_cong) (simp_all add: S_union) immler@51106: also have "\ = (\xs\{xs. length xs = card I}. \' j\I. if i = j then A else S j (xs ! T j))" immler@51106: using T immler@51106: apply auto immler@51106: apply (simp_all add: Pi'_iff bchoice_iff) immler@51106: apply (erule conjE exE)+ immler@51106: apply (rule_tac x="map (\n. f (the_inv_into I T n)) [0.. \ sets ?P" immler@50244: proof (safe intro!: sets.countable_UN) immler@51106: fix xs show "(\' j\I. if i = j then A else S j (xs ! T j)) \ sets ?P" immler@50088: using A S_in_E immler@50088: by (simp add: P_closed) immler@51106: (auto simp: P_def subset_eq intro!: exI[of _ "\j. if i = j then A else S j (xs ! T j)"]) immler@50088: qed wenzelm@53015: finally show "(\x. (x)\<^sub>F i) -` A \ space ?P \ sets ?P" immler@50088: using P_closed by simp immler@50088: qed immler@50088: qed immler@50088: from measurable_sets[OF this, of A] A `i \ I` E_closed wenzelm@53015: have "(\x. (x)\<^sub>F i) -` A \ space ?P \ sets ?P" immler@50088: by (simp add: E_generates) wenzelm@53015: also have "(\x. (x)\<^sub>F i) -` A \ space ?P = {f \ \' i\I. space (M i). f i \ A}" immler@50088: using P_closed by (auto simp: space_PiF) immler@50088: finally show "\ \ sets ?P" . immler@50088: qed immler@50088: finally show "sets (PiF {I} M) \ sigma_sets (space (PiF {I} M)) P" immler@50088: by (simp add: P_closed) immler@50088: show "sigma_sets (space (PiF {I} M)) P \ sets (PiF {I} M)" immler@50088: using `finite I` `I \ {}` immler@50244: by (auto intro!: sets.sigma_sets_subset product_in_sets_PiFI simp: E_generates P_def) immler@50088: qed immler@50088: immler@50088: lemma product_open_generates_sets_PiF_single: immler@50088: assumes "I \ {}" immler@50088: assumes [simp]: "finite I" hoelzl@50881: shows "sets (PiF {I} (\_. borel::'b::second_countable_topology measure)) = immler@50088: sigma_sets (space (PiF {I} (\_. borel))) {Pi' I F |F. (\i\I. F i \ Collect open)}" immler@50088: proof - immler@51106: from open_countable_basisE[OF open_UNIV] guess S::"'b set set" . note S = this immler@50088: show ?thesis immler@50088: proof (rule sigma_fprod_algebra_sigma_eq) immler@50088: show "finite I" by simp immler@50088: show "I \ {}" by fact immler@51106: def S'\"from_nat_into S" immler@51106: show "(\j. S' j) = space borel" immler@51106: using S immler@51106: apply (auto simp add: from_nat_into countable_basis_proj S'_def basis_proj_def) immler@51106: apply (metis (lifting, mono_tags) UNIV_I UnionE basis_proj_def countable_basis_proj countable_subset from_nat_into_surj) immler@51106: done immler@51106: show "range S' \ Collect open" immler@51106: using S immler@51106: apply (auto simp add: from_nat_into countable_basis_proj S'_def) immler@51106: apply (metis UNIV_not_empty Union_empty from_nat_into set_mp topological_basis_open[OF basis_proj] basis_proj_def) immler@51106: done immler@50088: show "Collect open \ Pow (space borel)" by simp immler@50088: show "sets borel = sigma_sets (space borel) (Collect open)" immler@50088: by (simp add: borel_def) immler@50088: qed immler@50088: qed immler@50088: hoelzl@50124: lemma finmap_UNIV[simp]: "(\J\Collect finite. PI' j : J. UNIV) = UNIV" by auto immler@50088: immler@50088: lemma borel_eq_PiF_borel: wenzelm@53015: shows "(borel :: ('i::countable \\<^sub>F 'a::polish_space) measure) = immler@50245: PiF (Collect finite) (\_. borel :: 'a measure)" immler@50245: unfolding borel_def PiF_def immler@50245: proof (rule measure_eqI, clarsimp, rule sigma_sets_eqI) wenzelm@53015: fix a::"('i \\<^sub>F 'a) set" assume "a \ Collect open" hence "open a" by simp immler@50245: then obtain B' where B': "B'\basis_finmap" "a = \B'" immler@50245: using finmap_topological_basis by (force simp add: topological_basis_def) immler@50245: have "a \ sigma UNIV {Pi' J X |X J. finite J \ X \ J \ sigma_sets UNIV (Collect open)}" immler@50245: unfolding `a = \B'` immler@50245: proof (rule sets.countable_Union) immler@50245: from B' countable_basis_finmap show "countable B'" by (metis countable_subset) immler@50088: next immler@50245: show "B' \ sets (sigma UNIV immler@50245: {Pi' J X |X J. finite J \ X \ J \ sigma_sets UNIV (Collect open)})" (is "_ \ sets ?s") immler@50088: proof immler@50245: fix x assume "x \ B'" with B' have "x \ basis_finmap" by auto immler@50245: then obtain J X where "x = Pi' J X" "finite J" "X \ J \ sigma_sets UNIV (Collect open)" immler@51106: by (auto simp: basis_finmap_def topological_basis_open[OF basis_proj]) immler@50245: thus "x \ sets ?s" by auto immler@50088: qed immler@50088: qed immler@50245: thus "a \ sigma_sets UNIV {Pi' J X |X J. finite J \ X \ J \ sigma_sets UNIV (Collect open)}" immler@50245: by simp immler@50245: next wenzelm@53015: fix b::"('i \\<^sub>F 'a) set" immler@50245: assume "b \ {Pi' J X |X J. finite J \ X \ J \ sigma_sets UNIV (Collect open)}" wenzelm@53015: hence b': "b \ sets (Pi\<^sub>F (Collect finite) (\_. borel))" by (auto simp: sets_PiF borel_def) immler@50245: let ?b = "\J. b \ {x. domain x = J}" immler@50245: have "b = \((\J. ?b J) ` Collect finite)" by auto immler@50245: also have "\ \ sets borel" immler@50245: proof (rule sets.countable_Union, safe) immler@50245: fix J::"'i set" assume "finite J" immler@50245: { assume ef: "J = {}" immler@50245: have "?b J \ sets borel" immler@50245: proof cases immler@50245: assume "?b J \ {}" immler@50245: then obtain f where "f \ b" "domain f = {}" using ef by auto immler@50245: hence "?b J = {f}" using `J = {}` immler@50245: by (auto simp: finmap_eq_iff) immler@50245: also have "{f} \ sets borel" by simp immler@50245: finally show ?thesis . immler@50245: qed simp immler@50245: } moreover { immler@50245: assume "J \ ({}::'i set)" immler@50245: have "(?b J) = b \ {m. domain m \ {J}}" by auto immler@50245: also have "\ \ sets (PiF {J} (\_. borel))" immler@50245: using b' by (rule restrict_sets_measurable) (auto simp: `finite J`) immler@50245: also have "\ = sigma_sets (space (PiF {J} (\_. borel))) immler@50245: {Pi' (J) F |F. (\j\J. F j \ Collect open)}" immler@50245: (is "_ = sigma_sets _ ?P") immler@50245: by (rule product_open_generates_sets_PiF_single[OF `J \ {}` `finite J`]) immler@50245: also have "\ \ sigma_sets UNIV (Collect open)" immler@50245: by (intro sigma_sets_mono'') (auto intro!: open_Pi'I simp: space_PiF) immler@50245: finally have "(?b J) \ sets borel" by (simp add: borel_def) immler@50245: } ultimately show "(?b J) \ sets borel" by blast immler@50245: qed (simp add: countable_Collect_finite) immler@50245: finally show "b \ sigma_sets UNIV (Collect open)" by (simp add: borel_def) immler@50088: qed (simp add: emeasure_sigma borel_def PiF_def) immler@50088: immler@50088: subsection {* Isomorphism between Functions and Finite Maps *} immler@50088: hoelzl@50124: lemma measurable_finmap_compose: immler@50088: shows "(\m. compose J m f) \ measurable (PiM (f ` J) (\_. M)) (PiM J (\_. M))" hoelzl@50124: unfolding compose_def by measurable immler@50088: hoelzl@50124: lemma measurable_compose_inv: immler@50088: assumes inj: "\j. j \ J \ f' (f j) = j" immler@50088: shows "(\m. compose (f ` J) m f') \ measurable (PiM J (\_. M)) (PiM (f ` J) (\_. M))" hoelzl@50124: unfolding compose_def by (rule measurable_restrict) (auto simp: inj) immler@50088: immler@50088: locale function_to_finmap = immler@50088: fixes J::"'a set" and f :: "'a \ 'b::countable" and f' immler@50088: assumes [simp]: "finite J" immler@50088: assumes inv: "i \ J \ f' (f i) = i" immler@50088: begin immler@50088: immler@50088: text {* to measure finmaps *} immler@50088: immler@50088: definition "fm = (finmap_of (f ` J)) o (\g. compose (f ` J) g f')" immler@50088: immler@50088: lemma domain_fm[simp]: "domain (fm x) = f ` J" immler@50088: unfolding fm_def by simp immler@50088: immler@50088: lemma fm_restrict[simp]: "fm (restrict y J) = fm y" immler@50088: unfolding fm_def by (auto simp: compose_def inv intro: restrict_ext) immler@50088: immler@50088: lemma fm_product: immler@50088: assumes "\i. space (M i) = UNIV" wenzelm@53015: shows "fm -` Pi' (f ` J) S \ space (Pi\<^sub>M J M) = (\\<^sub>E j \ J. S (f j))" immler@50088: using assms immler@50088: by (auto simp: inv fm_def compose_def space_PiM Pi'_def) immler@50088: immler@50088: lemma fm_measurable: immler@50088: assumes "f ` J \ N" wenzelm@53015: shows "fm \ measurable (Pi\<^sub>M J (\_. M)) (Pi\<^sub>F N (\_. M))" immler@50088: unfolding fm_def immler@50088: proof (rule measurable_comp, rule measurable_compose_inv) wenzelm@53015: show "finmap_of (f ` J) \ measurable (Pi\<^sub>M (f ` J) (\_. M)) (PiF N (\_. M)) " immler@50088: using assms by (intro measurable_finmap_of measurable_component_singleton) auto immler@50088: qed (simp_all add: inv) immler@50088: immler@50088: lemma proj_fm: immler@50088: assumes "x \ J" immler@50088: shows "fm m (f x) = m x" immler@50088: using assms by (auto simp: fm_def compose_def o_def inv) immler@50088: immler@50088: lemma inj_on_compose_f': "inj_on (\g. compose (f ` J) g f') (extensional J)" immler@50088: proof (rule inj_on_inverseI) immler@50088: fix x::"'a \ 'c" assume "x \ extensional J" immler@50088: thus "(\x. compose J x f) (compose (f ` J) x f') = x" immler@50088: by (auto simp: compose_def inv extensional_def) immler@50088: qed immler@50088: immler@50088: lemma inj_on_fm: immler@50088: assumes "\i. space (M i) = UNIV" wenzelm@53015: shows "inj_on fm (space (Pi\<^sub>M J M))" immler@50088: using assms hoelzl@50123: apply (auto simp: fm_def space_PiM PiE_def) immler@50088: apply (rule comp_inj_on) immler@50088: apply (rule inj_on_compose_f') immler@50088: apply (rule finmap_of_inj_on_extensional_finite) immler@50088: apply simp immler@50088: apply (auto) immler@50088: done immler@50088: immler@50088: text {* to measure functions *} immler@50088: immler@50088: definition "mf = (\g. compose J g f) o proj" immler@50088: immler@50088: lemma mf_fm: wenzelm@53015: assumes "x \ space (Pi\<^sub>M J (\_. M))" immler@50088: shows "mf (fm x) = x" immler@50088: proof - immler@50088: have "mf (fm x) \ extensional J" immler@50088: by (auto simp: mf_def extensional_def compose_def) immler@50088: moreover immler@50244: have "x \ extensional J" using assms sets.sets_into_space hoelzl@50123: by (force simp: space_PiM PiE_def) immler@50088: moreover immler@50088: { fix i assume "i \ J" immler@50088: hence "mf (fm x) i = x i" immler@50088: by (auto simp: inv mf_def compose_def fm_def) immler@50088: } immler@50088: ultimately immler@50088: show ?thesis by (rule extensionalityI) immler@50088: qed immler@50088: immler@50088: lemma mf_measurable: immler@50088: assumes "space M = UNIV" immler@50088: shows "mf \ measurable (PiF {f ` J} (\_. M)) (PiM J (\_. M))" immler@50088: unfolding mf_def immler@50088: proof (rule measurable_comp, rule measurable_proj_PiM) wenzelm@53015: show "(\g. compose J g f) \ measurable (Pi\<^sub>M (f ` J) (\x. M)) (Pi\<^sub>M J (\_. M))" hoelzl@50124: by (rule measurable_finmap_compose) immler@50088: qed (auto simp add: space_PiM extensional_def assms) immler@50088: immler@50088: lemma fm_image_measurable: immler@50088: assumes "space M = UNIV" wenzelm@53015: assumes "X \ sets (Pi\<^sub>M J (\_. M))" immler@50088: shows "fm ` X \ sets (PiF {f ` J} (\_. M))" immler@50088: proof - immler@50088: have "fm ` X = (mf) -` X \ space (PiF {f ` J} (\_. M))" immler@50088: proof safe immler@50088: fix x assume "x \ X" immler@50244: with mf_fm[of x] sets.sets_into_space[OF assms(2)] show "fm x \ mf -` X" by auto immler@50088: show "fm x \ space (PiF {f ` J} (\_. M))" by (simp add: space_PiF assms) immler@50088: next immler@50088: fix y x immler@50088: assume x: "mf y \ X" immler@50088: assume y: "y \ space (PiF {f ` J} (\_. M))" immler@50088: thus "y \ fm ` X" immler@50088: by (intro image_eqI[OF _ x], unfold finmap_eq_iff) immler@50088: (auto simp: space_PiF fm_def mf_def compose_def inv Pi'_def) immler@50088: qed immler@50088: also have "\ \ sets (PiF {f ` J} (\_. M))" immler@50088: using assms immler@50088: by (intro measurable_sets[OF mf_measurable]) auto immler@50088: finally show ?thesis . immler@50088: qed immler@50088: immler@50088: lemma fm_image_measurable_finite: immler@50088: assumes "space M = UNIV" wenzelm@53015: assumes "X \ sets (Pi\<^sub>M J (\_. M::'c measure))" immler@50088: shows "fm ` X \ sets (PiF (Collect finite) (\_. M::'c measure))" immler@50088: using fm_image_measurable[OF assms] immler@50088: by (rule subspace_set_in_sets) (auto simp: finite_subset) immler@50088: immler@50088: text {* measure on finmaps *} immler@50088: immler@50088: definition "mapmeasure M N = distr M (PiF (Collect finite) N) (fm)" immler@50088: immler@50088: lemma sets_mapmeasure[simp]: "sets (mapmeasure M N) = sets (PiF (Collect finite) N)" immler@50088: unfolding mapmeasure_def by simp immler@50088: immler@50088: lemma space_mapmeasure[simp]: "space (mapmeasure M N) = space (PiF (Collect finite) N)" immler@50088: unfolding mapmeasure_def by simp immler@50088: immler@50088: lemma mapmeasure_PiF: wenzelm@53015: assumes s1: "space M = space (Pi\<^sub>M J (\_. N))" wenzelm@53015: assumes s2: "sets M = sets (Pi\<^sub>M J (\_. N))" immler@50088: assumes "space N = UNIV" immler@50088: assumes "X \ sets (PiF (Collect finite) (\_. N))" immler@50088: shows "emeasure (mapmeasure M (\_. N)) X = emeasure M ((fm -` X \ extensional J))" immler@50088: using assms immler@50088: by (auto simp: measurable_eqI[OF s1 refl s2 refl] mapmeasure_def emeasure_distr hoelzl@50123: fm_measurable space_PiM PiE_def) immler@50088: immler@50088: lemma mapmeasure_PiM: immler@50088: fixes N::"'c measure" wenzelm@53015: assumes s1: "space M = space (Pi\<^sub>M J (\_. N))" wenzelm@53015: assumes s2: "sets M = (Pi\<^sub>M J (\_. N))" immler@50088: assumes N: "space N = UNIV" immler@50088: assumes X: "X \ sets M" immler@50088: shows "emeasure M X = emeasure (mapmeasure M (\_. N)) (fm ` X)" immler@50088: unfolding mapmeasure_def immler@50088: proof (subst emeasure_distr, subst measurable_eqI[OF s1 refl s2 refl], rule fm_measurable) wenzelm@53015: have "X \ space (Pi\<^sub>M J (\_. N))" using assms by (simp add: sets.sets_into_space) wenzelm@53015: from assms inj_on_fm[of "\_. N"] set_mp[OF this] have "fm -` fm ` X \ space (Pi\<^sub>M J (\_. N)) = X" immler@50088: by (auto simp: vimage_image_eq inj_on_def) immler@50088: thus "emeasure M X = emeasure M (fm -` fm ` X \ space M)" using s1 immler@50088: by simp immler@50088: show "fm ` X \ sets (PiF (Collect finite) (\_. N))" immler@50088: by (rule fm_image_measurable_finite[OF N X[simplified s2]]) immler@50088: qed simp immler@50088: immler@50088: end immler@50088: immler@50088: end