wenzelm@32960: (* Title: HOL/Transcendental.thy wenzelm@32960: Author: Jacques D. Fleuriot, University of Cambridge, University of Edinburgh wenzelm@32960: Author: Lawrence C Paulson hoelzl@51527: Author: Jeremy Avigad paulson@12196: *) paulson@12196: paulson@15077: header{*Power Series, Transcendental Functions etc.*} paulson@15077: nipkow@15131: theory Transcendental haftmann@25600: imports Fact Series Deriv NthRoot nipkow@15131: begin paulson@15077: hoelzl@57025: lemma root_test_convergence: hoelzl@57025: fixes f :: "nat \ 'a::banach" hoelzl@57025: assumes f: "(\n. root n (norm (f n))) ----> x" -- "could be weakened to lim sup" hoelzl@57025: assumes "x < 1" hoelzl@57025: shows "summable f" hoelzl@57025: proof - hoelzl@57025: have "0 \ x" hoelzl@57025: by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1]) hoelzl@57025: from `x < 1` obtain z where z: "x < z" "z < 1" hoelzl@57025: by (metis dense) hoelzl@57025: from f `x < z` hoelzl@57025: have "eventually (\n. root n (norm (f n)) < z) sequentially" hoelzl@57025: by (rule order_tendstoD) hoelzl@57025: then have "eventually (\n. norm (f n) \ z^n) sequentially" hoelzl@57025: using eventually_ge_at_top hoelzl@57025: proof eventually_elim hoelzl@57025: fix n assume less: "root n (norm (f n)) < z" and n: "1 \ n" hoelzl@57025: from power_strict_mono[OF less, of n] n hoelzl@57025: show "norm (f n) \ z ^ n" hoelzl@57025: by simp hoelzl@57025: qed hoelzl@57025: then show "summable f" hoelzl@57025: unfolding eventually_sequentially hoelzl@57025: using z `0 \ x` by (auto intro!: summable_comparison_test[OF _ summable_geometric]) hoelzl@57025: qed hoelzl@57025: huffman@29164: subsection {* Properties of Power Series *} paulson@15077: huffman@23082: lemma lemma_realpow_diff: haftmann@31017: fixes y :: "'a::monoid_mult" huffman@23082: shows "p \ n \ y ^ (Suc n - p) = (y ^ (n - p)) * y" huffman@23082: proof - huffman@23082: assume "p \ n" huffman@23082: hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le) huffman@30273: thus ?thesis by (simp add: power_commutes) huffman@23082: qed paulson@15077: paulson@15229: lemma lemma_realpow_diff_sumr2: wenzelm@53079: fixes y :: "'a::{comm_ring,monoid_mult}" wenzelm@53079: shows wenzelm@53079: "x ^ (Suc n) - y ^ (Suc n) = hoelzl@56193: (x - y) * (\ppppipp 0 \ x^n - 1 = (x - 1) * (\i 0 \ 1 - x^n = (1 - x) * (\i 0 \ 1 - x^n = (1 - x) * (\iz\ < \x\"}.*} paulson@15077: paulson@15077: lemma powser_insidea: huffman@53599: fixes x z :: "'a::real_normed_div_algebra" huffman@20849: assumes 1: "summable (\n. f n * x ^ n)" wenzelm@53079: and 2: "norm z < norm x" huffman@23082: shows "summable (\n. norm (f n * z ^ n))" huffman@20849: proof - huffman@20849: from 2 have x_neq_0: "x \ 0" by clarsimp huffman@20849: from 1 have "(\n. f n * x ^ n) ----> 0" huffman@20849: by (rule summable_LIMSEQ_zero) huffman@20849: hence "convergent (\n. f n * x ^ n)" huffman@20849: by (rule convergentI) huffman@20849: hence "Cauchy (\n. f n * x ^ n)" huffman@44726: by (rule convergent_Cauchy) huffman@20849: hence "Bseq (\n. f n * x ^ n)" huffman@20849: by (rule Cauchy_Bseq) huffman@23082: then obtain K where 3: "0 < K" and 4: "\n. norm (f n * x ^ n) \ K" huffman@20849: by (simp add: Bseq_def, safe) huffman@23082: have "\N. \n\N. norm (norm (f n * z ^ n)) \ huffman@23082: K * norm (z ^ n) * inverse (norm (x ^ n))" huffman@20849: proof (intro exI allI impI) wenzelm@53079: fix n::nat wenzelm@53079: assume "0 \ n" huffman@23082: have "norm (norm (f n * z ^ n)) * norm (x ^ n) = huffman@23082: norm (f n * x ^ n) * norm (z ^ n)" huffman@23082: by (simp add: norm_mult abs_mult) huffman@23082: also have "\ \ K * norm (z ^ n)" huffman@23082: by (simp only: mult_right_mono 4 norm_ge_zero) huffman@23082: also have "\ = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))" huffman@20849: by (simp add: x_neq_0) huffman@23082: also have "\ = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)" haftmann@57512: by (simp only: mult.assoc) huffman@23082: finally show "norm (norm (f n * z ^ n)) \ huffman@23082: K * norm (z ^ n) * inverse (norm (x ^ n))" huffman@20849: by (simp add: mult_le_cancel_right x_neq_0) huffman@20849: qed huffman@23082: moreover have "summable (\n. K * norm (z ^ n) * inverse (norm (x ^ n)))" huffman@20849: proof - huffman@23082: from 2 have "norm (norm (z * inverse x)) < 1" huffman@23082: using x_neq_0 huffman@53599: by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric]) huffman@23082: hence "summable (\n. norm (z * inverse x) ^ n)" huffman@20849: by (rule summable_geometric) huffman@23082: hence "summable (\n. K * norm (z * inverse x) ^ n)" huffman@20849: by (rule summable_mult) huffman@23082: thus "summable (\n. K * norm (z ^ n) * inverse (norm (x ^ n)))" huffman@23082: using x_neq_0 huffman@23082: by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib haftmann@57512: power_inverse norm_power mult.assoc) huffman@20849: qed huffman@23082: ultimately show "summable (\n. norm (f n * z ^ n))" huffman@20849: by (rule summable_comparison_test) huffman@20849: qed paulson@15077: paulson@15229: lemma powser_inside: huffman@53599: fixes f :: "nat \ 'a::{real_normed_div_algebra,banach}" wenzelm@53079: shows wenzelm@53079: "summable (\n. f n * (x ^ n)) \ norm z < norm x \ wenzelm@53079: summable (\n. f n * (z ^ n))" wenzelm@53079: by (rule powser_insidea [THEN summable_norm_cancel]) wenzelm@53079: wenzelm@53079: lemma sum_split_even_odd: wenzelm@53079: fixes f :: "nat \ real" wenzelm@53079: shows hoelzl@56193: "(\i<2 * n. if even i then f i else g i) = hoelzl@56193: (\iii<2 * Suc n. if even i then f i else g i) = hoelzl@56193: (\ii = (\ii real" wenzelm@53079: assumes "g sums x" hoelzl@29803: shows "(\ n. if even n then 0 else g ((n - 1) div 2)) sums x" hoelzl@29803: unfolding sums_def hoelzl@29803: proof (rule LIMSEQ_I) wenzelm@53079: fix r :: real wenzelm@53079: assume "0 < r" hoelzl@29803: from `g sums x`[unfolded sums_def, THEN LIMSEQ_D, OF this] hoelzl@56193: obtain no where no_eq: "\ n. n \ no \ (norm (setsum g {.. 2 * no" wenzelm@53079: hence "m div 2 \ no" by auto hoelzl@56193: have sum_eq: "?SUM (2 * (m div 2)) = setsum g {..< m div 2}" hoelzl@29803: using sum_split_even_odd by auto wenzelm@53079: hence "(norm (?SUM (2 * (m div 2)) - x) < r)" wenzelm@53079: using no_eq unfolding sum_eq using `m div 2 \ no` by auto hoelzl@29803: moreover hoelzl@29803: have "?SUM (2 * (m div 2)) = ?SUM m" hoelzl@29803: proof (cases "even m") wenzelm@53079: case True wenzelm@53079: show ?thesis wenzelm@53079: unfolding even_nat_div_two_times_two[OF True, unfolded numeral_2_eq_2[symmetric]] .. hoelzl@29803: next wenzelm@53079: case False wenzelm@53079: hence "even (Suc m)" by auto wenzelm@53079: from even_nat_div_two_times_two[OF this, unfolded numeral_2_eq_2[symmetric]] wenzelm@53079: odd_nat_plus_one_div_two[OF False, unfolded numeral_2_eq_2[symmetric]] hoelzl@29803: have eq: "Suc (2 * (m div 2)) = m" by auto hoelzl@29803: hence "even (2 * (m div 2))" using `odd m` by auto hoelzl@29803: have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq .. hoelzl@29803: also have "\ = ?SUM (2 * (m div 2))" using `even (2 * (m div 2))` by auto hoelzl@29803: finally show ?thesis by auto hoelzl@29803: qed hoelzl@29803: ultimately have "(norm (?SUM m - x) < r)" by auto hoelzl@29803: } hoelzl@29803: thus "\ no. \ m \ no. norm (?SUM m - x) < r" by blast hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma sums_if: wenzelm@53079: fixes g :: "nat \ real" wenzelm@53079: assumes "g sums x" and "f sums y" hoelzl@29803: shows "(\ n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)" hoelzl@29803: proof - hoelzl@29803: let ?s = "\ n. if even n then 0 else f ((n - 1) div 2)" wenzelm@53079: { wenzelm@53079: fix B T E wenzelm@53079: have "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)" wenzelm@53079: by (cases B) auto wenzelm@53079: } note if_sum = this wenzelm@53079: have g_sums: "(\ n. if even n then 0 else g ((n - 1) div 2)) sums x" wenzelm@53079: using sums_if'[OF `g sums x`] . hoelzl@41970: { wenzelm@41550: have if_eq: "\B T E. (if \ B then T else E) = (if B then E else T)" by auto hoelzl@29803: hoelzl@29803: have "?s sums y" using sums_if'[OF `f sums y`] . hoelzl@41970: from this[unfolded sums_def, THEN LIMSEQ_Suc] hoelzl@29803: have "(\ n. if even n then f (n div 2) else 0) sums y" haftmann@57418: by (simp add: lessThan_Suc_eq_insert_0 image_iff setsum.reindex if_eq sums_def cong del: if_cong) wenzelm@53079: } wenzelm@53079: from sums_add[OF g_sums this] show ?thesis unfolding if_sum . hoelzl@29803: qed hoelzl@29803: hoelzl@29803: subsection {* Alternating series test / Leibniz formula *} hoelzl@29803: hoelzl@29803: lemma sums_alternating_upper_lower: hoelzl@29803: fixes a :: "nat \ real" hoelzl@29803: assumes mono: "\n. a (Suc n) \ a n" and a_pos: "\n. 0 \ a n" and "a ----> 0" hoelzl@56193: shows "\l. ((\n. (\i<2*n. -1^i*a i) \ l) \ (\ n. \i<2*n. -1^i*a i) ----> l) \ hoelzl@56193: ((\n. l \ (\i<2*n + 1. -1^i*a i)) \ (\ n. \i<2*n + 1. -1^i*a i) ----> l)" hoelzl@29803: (is "\l. ((\n. ?f n \ l) \ _) \ ((\n. l \ ?g n) \ _)") wenzelm@53079: proof (rule nested_sequence_unique) huffman@30082: have fg_diff: "\n. ?f n - ?g n = - a (2 * n)" unfolding One_nat_def by auto hoelzl@29803: wenzelm@53079: show "\n. ?f n \ ?f (Suc n)" wenzelm@53079: proof wenzelm@53079: fix n wenzelm@53079: show "?f n \ ?f (Suc n)" using mono[of "2*n"] by auto wenzelm@53079: qed wenzelm@53079: show "\n. ?g (Suc n) \ ?g n" wenzelm@53079: proof wenzelm@53079: fix n wenzelm@53079: show "?g (Suc n) \ ?g n" using mono[of "Suc (2*n)"] wenzelm@53079: unfolding One_nat_def by auto wenzelm@53079: qed wenzelm@53079: show "\n. ?f n \ ?g n" wenzelm@53079: proof wenzelm@53079: fix n wenzelm@53079: show "?f n \ ?g n" using fg_diff a_pos wenzelm@53079: unfolding One_nat_def by auto hoelzl@29803: qed wenzelm@53079: show "(\n. ?f n - ?g n) ----> 0" unfolding fg_diff wenzelm@53079: proof (rule LIMSEQ_I) wenzelm@53079: fix r :: real wenzelm@53079: assume "0 < r" wenzelm@53079: with `a ----> 0`[THEN LIMSEQ_D] obtain N where "\ n. n \ N \ norm (a n - 0) < r" wenzelm@53079: by auto wenzelm@53079: hence "\n \ N. norm (- a (2 * n) - 0) < r" by auto wenzelm@53079: thus "\N. \n \ N. norm (- a (2 * n) - 0) < r" by auto wenzelm@53079: qed hoelzl@41970: qed hoelzl@29803: wenzelm@53079: lemma summable_Leibniz': wenzelm@53079: fixes a :: "nat \ real" wenzelm@53079: assumes a_zero: "a ----> 0" wenzelm@53079: and a_pos: "\ n. 0 \ a n" wenzelm@53079: and a_monotone: "\ n. a (Suc n) \ a n" hoelzl@29803: shows summable: "summable (\ n. (-1)^n * a n)" hoelzl@56193: and "\n. (\i<2*n. (-1)^i*a i) \ (\i. (-1)^i*a i)" hoelzl@56193: and "(\n. \i<2*n. (-1)^i*a i) ----> (\i. (-1)^i*a i)" hoelzl@56193: and "\n. (\i. (-1)^i*a i) \ (\i<2*n+1. (-1)^i*a i)" hoelzl@56193: and "(\n. \i<2*n+1. (-1)^i*a i) ----> (\i. (-1)^i*a i)" hoelzl@29803: proof - wenzelm@53079: let ?S = "\n. (-1)^n * a n" hoelzl@56193: let ?P = "\n. \i n. ?f n \ l" wenzelm@53079: and "?f ----> l" wenzelm@53079: and above_l: "\ n. l \ ?g n" wenzelm@53079: and "?g ----> l" hoelzl@29803: using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast hoelzl@41970: hoelzl@56193: let ?Sa = "\m. \n l" hoelzl@29803: proof (rule LIMSEQ_I) wenzelm@53079: fix r :: real wenzelm@53079: assume "0 < r" hoelzl@41970: with `?f ----> l`[THEN LIMSEQ_D] hoelzl@29803: obtain f_no where f: "\ n. n \ f_no \ norm (?f n - l) < r" by auto hoelzl@29803: hoelzl@41970: from `0 < r` `?g ----> l`[THEN LIMSEQ_D] hoelzl@29803: obtain g_no where g: "\ n. n \ g_no \ norm (?g n - l) < r" by auto hoelzl@29803: wenzelm@53079: { wenzelm@53079: fix n :: nat wenzelm@53079: assume "n \ (max (2 * f_no) (2 * g_no))" wenzelm@53079: hence "n \ 2 * f_no" and "n \ 2 * g_no" by auto hoelzl@29803: have "norm (?Sa n - l) < r" hoelzl@29803: proof (cases "even n") wenzelm@53079: case True wenzelm@53079: from even_nat_div_two_times_two[OF this] wenzelm@53079: have n_eq: "2 * (n div 2) = n" wenzelm@53079: unfolding numeral_2_eq_2[symmetric] by auto wenzelm@53079: with `n \ 2 * f_no` have "n div 2 \ f_no" wenzelm@53079: by auto wenzelm@53079: from f[OF this] show ?thesis wenzelm@53079: unfolding n_eq atLeastLessThanSuc_atLeastAtMost . hoelzl@29803: next wenzelm@53079: case False wenzelm@53079: hence "even (n - 1)" by simp wenzelm@32960: from even_nat_div_two_times_two[OF this] wenzelm@53079: have n_eq: "2 * ((n - 1) div 2) = n - 1" wenzelm@53079: unfolding numeral_2_eq_2[symmetric] by auto wenzelm@53079: hence range_eq: "n - 1 + 1 = n" wenzelm@53079: using odd_pos[OF False] by auto wenzelm@53079: wenzelm@53079: from n_eq `n \ 2 * g_no` have "(n - 1) div 2 \ g_no" wenzelm@53079: by auto wenzelm@53079: from g[OF this] show ?thesis hoelzl@56193: unfolding n_eq range_eq . hoelzl@29803: qed hoelzl@29803: } wenzelm@53079: thus "\no. \n \ no. norm (?Sa n - l) < r" by blast hoelzl@29803: qed wenzelm@53079: hence sums_l: "(\i. (-1)^i * a i) sums l" hoelzl@56193: unfolding sums_def . hoelzl@29803: thus "summable ?S" using summable_def by auto hoelzl@29803: hoelzl@29803: have "l = suminf ?S" using sums_unique[OF sums_l] . hoelzl@29803: wenzelm@53079: fix n wenzelm@53079: show "suminf ?S \ ?g n" wenzelm@53079: unfolding sums_unique[OF sums_l, symmetric] using above_l by auto wenzelm@53079: show "?f n \ suminf ?S" wenzelm@53079: unfolding sums_unique[OF sums_l, symmetric] using below_l by auto wenzelm@53079: show "?g ----> suminf ?S" wenzelm@53079: using `?g ----> l` `l = suminf ?S` by auto wenzelm@53079: show "?f ----> suminf ?S" wenzelm@53079: using `?f ----> l` `l = suminf ?S` by auto hoelzl@29803: qed hoelzl@29803: wenzelm@53079: theorem summable_Leibniz: wenzelm@53079: fixes a :: "nat \ real" hoelzl@29803: assumes a_zero: "a ----> 0" and "monoseq a" hoelzl@29803: shows "summable (\ n. (-1)^n * a n)" (is "?summable") wenzelm@53079: and "0 < a 0 \ hoelzl@56193: (\n. (\i. -1^i*a i) \ { \i<2*n. -1^i * a i .. \i<2*n+1. -1^i * a i})" (is "?pos") wenzelm@53079: and "a 0 < 0 \ hoelzl@56193: (\n. (\i. -1^i*a i) \ { \i<2*n+1. -1^i * a i .. \i<2*n. -1^i * a i})" (is "?neg") hoelzl@56193: and "(\n. \i<2*n. -1^i*a i) ----> (\i. -1^i*a i)" (is "?f") hoelzl@56193: and "(\n. \i<2*n+1. -1^i*a i) ----> (\i. -1^i*a i)" (is "?g") hoelzl@29803: proof - hoelzl@29803: have "?summable \ ?pos \ ?neg \ ?f \ ?g" hoelzl@29803: proof (cases "(\ n. 0 \ a n) \ (\m. \n\m. a n \ a m)") hoelzl@29803: case True wenzelm@53079: hence ord: "\n m. m \ n \ a n \ a m" and ge0: "\ n. 0 \ a n" wenzelm@53079: by auto wenzelm@53079: { wenzelm@53079: fix n wenzelm@53079: have "a (Suc n) \ a n" wenzelm@53079: using ord[where n="Suc n" and m=n] by auto wenzelm@53079: } note mono = this wenzelm@53079: note leibniz = summable_Leibniz'[OF `a ----> 0` ge0] hoelzl@29803: from leibniz[OF mono] hoelzl@29803: show ?thesis using `0 \ a 0` by auto hoelzl@29803: next hoelzl@29803: let ?a = "\ n. - a n" hoelzl@29803: case False hoelzl@29803: with monoseq_le[OF `monoseq a` `a ----> 0`] hoelzl@29803: have "(\ n. a n \ 0) \ (\m. \n\m. a m \ a n)" by auto wenzelm@53079: hence ord: "\n m. m \ n \ ?a n \ ?a m" and ge0: "\ n. 0 \ ?a n" wenzelm@53079: by auto wenzelm@53079: { wenzelm@53079: fix n wenzelm@53079: have "?a (Suc n) \ ?a n" using ord[where n="Suc n" and m=n] wenzelm@53079: by auto wenzelm@53079: } note monotone = this wenzelm@53079: note leibniz = wenzelm@53079: summable_Leibniz'[OF _ ge0, of "\x. x", wenzelm@53079: OF tendsto_minus[OF `a ----> 0`, unfolded minus_zero] monotone] wenzelm@53079: have "summable (\ n. (-1)^n * ?a n)" wenzelm@53079: using leibniz(1) by auto wenzelm@53079: then obtain l where "(\ n. (-1)^n * ?a n) sums l" wenzelm@53079: unfolding summable_def by auto wenzelm@53079: from this[THEN sums_minus] have "(\ n. (-1)^n * a n) sums -l" wenzelm@53079: by auto hoelzl@29803: hence ?summable unfolding summable_def by auto hoelzl@29803: moreover wenzelm@53079: have "\a b :: real. \- a - - b\ = \a - b\" wenzelm@53079: unfolding minus_diff_minus by auto hoelzl@41970: hoelzl@29803: from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus] wenzelm@53079: have move_minus: "(\n. - (-1 ^ n * a n)) = - (\n. -1 ^ n * a n)" wenzelm@53079: by auto hoelzl@29803: hoelzl@29803: have ?pos using `0 \ ?a 0` by auto wenzelm@53079: moreover have ?neg wenzelm@53079: using leibniz(2,4) wenzelm@53079: unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le wenzelm@53079: by auto wenzelm@53079: moreover have ?f and ?g wenzelm@53079: using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN tendsto_minus_cancel] wenzelm@53079: by auto hoelzl@29803: ultimately show ?thesis by auto hoelzl@29803: qed paulson@54576: then show ?summable and ?pos and ?neg and ?f and ?g paulson@54573: by safe hoelzl@29803: qed paulson@15077: huffman@29164: subsection {* Term-by-Term Differentiability of Power Series *} huffman@23043: hoelzl@56193: definition diffs :: "(nat \ 'a::ring_1) \ nat \ 'a" hoelzl@56193: where "diffs c = (\n. of_nat (Suc n) * c (Suc n))" paulson@15077: paulson@15077: text{*Lemma about distributing negation over it*} wenzelm@53079: lemma diffs_minus: "diffs (\n. - c n) = (\n. - diffs c n)" wenzelm@53079: by (simp add: diffs_def) paulson@15077: huffman@29163: lemma sums_Suc_imp: hoelzl@56193: "(f::nat \ 'a::real_normed_vector) 0 = 0 \ (\n. f (Suc n)) sums s \ (\n. f n) sums s" hoelzl@56193: using sums_Suc_iff[of f] by simp paulson@15077: paulson@15229: lemma diffs_equiv: hoelzl@41970: fixes x :: "'a::{real_normed_vector, ring_1}" hoelzl@56193: shows "summable (\n. diffs c n * x^n) \ hoelzl@56193: (\n. of_nat n * c n * x^(n - Suc 0)) sums (\n. diffs c n * x^n)" wenzelm@53079: unfolding diffs_def paulson@54573: by (simp add: summable_sums sums_Suc_imp) paulson@15077: paulson@15077: lemma lemma_termdiff1: haftmann@31017: fixes z :: "'a :: {monoid_mult,comm_ring}" shows hoelzl@56193: "(\ppi 0" wenzelm@53079: shows wenzelm@53079: "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) = hoelzl@56193: h * (\p< n - Suc 0. \q< n - Suc 0 - p. wenzelm@53079: (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs") wenzelm@53079: apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h) wenzelm@53079: apply (simp add: right_diff_distrib diff_divide_distrib h) haftmann@57512: apply (simp add: mult.assoc [symmetric]) wenzelm@53079: apply (cases "n", simp) wenzelm@53079: apply (simp add: lemma_realpow_diff_sumr2 h haftmann@57512: right_diff_distrib [symmetric] mult.assoc hoelzl@56193: del: power_Suc setsum_lessThan_Suc of_nat_Suc) wenzelm@53079: apply (subst lemma_realpow_rev_sumr) wenzelm@53079: apply (subst sumr_diff_mult_const2) wenzelm@53079: apply simp wenzelm@53079: apply (simp only: lemma_termdiff1 setsum_right_distrib) haftmann@57418: apply (rule setsum.cong [OF refl]) haftmann@54230: apply (simp add: less_iff_Suc_add) wenzelm@53079: apply (clarify) haftmann@57514: apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 ac_simps hoelzl@56193: del: setsum_lessThan_Suc power_Suc) haftmann@57512: apply (subst mult.assoc [symmetric], subst power_add [symmetric]) haftmann@57514: apply (simp add: ac_simps) wenzelm@53079: done huffman@20860: huffman@20860: lemma real_setsum_nat_ivl_bounded2: haftmann@35028: fixes K :: "'a::linordered_semidom" huffman@23082: assumes f: "\p::nat. p < n \ f p \ K" wenzelm@53079: and K: "0 \ K" hoelzl@56193: shows "setsum f {.. of_nat n * K" wenzelm@53079: apply (rule order_trans [OF setsum_mono]) wenzelm@53079: apply (rule f, simp) wenzelm@53079: apply (simp add: mult_right_mono K) wenzelm@53079: done paulson@15077: paulson@15229: lemma lemma_termdiff3: haftmann@31017: fixes h z :: "'a::{real_normed_field}" huffman@20860: assumes 1: "h \ 0" wenzelm@53079: and 2: "norm z \ K" wenzelm@53079: and 3: "norm (z + h) \ K" huffman@23082: shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) huffman@23082: \ of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h" huffman@20860: proof - huffman@23082: have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) = hoelzl@56193: norm (\pq \ of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h" huffman@23082: proof (rule mult_right_mono [OF _ norm_ge_zero]) wenzelm@53079: from norm_ge_zero 2 have K: "0 \ K" wenzelm@53079: by (rule order_trans) huffman@23082: have le_Kn: "\i j n. i + j = n \ norm ((z + h) ^ i * z ^ j) \ K ^ n" huffman@20860: apply (erule subst) huffman@23082: apply (simp only: norm_mult norm_power power_add) huffman@23082: apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K) huffman@20860: done hoelzl@56193: show "norm (\pq of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))" huffman@20860: apply (intro huffman@23082: order_trans [OF norm_setsum] huffman@20860: real_setsum_nat_ivl_bounded2 huffman@20860: mult_nonneg_nonneg huffman@47489: of_nat_0_le_iff huffman@20860: zero_le_power K) huffman@20860: apply (rule le_Kn, simp) huffman@20860: done huffman@20860: qed huffman@23082: also have "\ = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h" haftmann@57512: by (simp only: mult.assoc) huffman@20860: finally show ?thesis . huffman@20860: qed paulson@15077: huffman@20860: lemma lemma_termdiff4: huffman@56167: fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" huffman@20860: assumes k: "0 < (k::real)" wenzelm@53079: and le: "\h. \h \ 0; norm h < k\ \ norm (f h) \ K * norm h" huffman@20860: shows "f -- 0 --> 0" huffman@56167: proof (rule tendsto_norm_zero_cancel) huffman@56167: show "(\h. norm (f h)) -- 0 --> 0" huffman@56167: proof (rule real_tendsto_sandwich) huffman@56167: show "eventually (\h. 0 \ norm (f h)) (at 0)" huffman@20860: by simp huffman@56167: show "eventually (\h. norm (f h) \ K * norm h) (at 0)" huffman@56167: using k by (auto simp add: eventually_at dist_norm le) huffman@56167: show "(\h. 0) -- (0::'a) --> (0::real)" huffman@56167: by (rule tendsto_const) huffman@56167: have "(\h. K * norm h) -- (0::'a) --> K * norm (0::'a)" huffman@56167: by (intro tendsto_intros) huffman@56167: then show "(\h. K * norm h) -- (0::'a) --> 0" huffman@56167: by simp huffman@20860: qed huffman@20860: qed paulson@15077: paulson@15229: lemma lemma_termdiff5: huffman@56167: fixes g :: "'a::real_normed_vector \ nat \ 'b::banach" huffman@20860: assumes k: "0 < (k::real)" huffman@20860: assumes f: "summable f" huffman@23082: assumes le: "\h n. \h \ 0; norm h < k\ \ norm (g h n) \ f n * norm h" huffman@20860: shows "(\h. suminf (g h)) -- 0 --> 0" huffman@20860: proof (rule lemma_termdiff4 [OF k]) wenzelm@53079: fix h::'a wenzelm@53079: assume "h \ 0" and "norm h < k" huffman@23082: hence A: "\n. norm (g h n) \ f n * norm h" huffman@20860: by (simp add: le) huffman@23082: hence "\N. \n\N. norm (norm (g h n)) \ f n * norm h" huffman@20860: by simp huffman@23082: moreover from f have B: "summable (\n. f n * norm h)" huffman@20860: by (rule summable_mult2) huffman@23082: ultimately have C: "summable (\n. norm (g h n))" huffman@20860: by (rule summable_comparison_test) huffman@23082: hence "norm (suminf (g h)) \ (\n. norm (g h n))" huffman@23082: by (rule summable_norm) huffman@23082: also from A C B have "(\n. norm (g h n)) \ (\n. f n * norm h)" hoelzl@56213: by (rule suminf_le) huffman@23082: also from f have "(\n. f n * norm h) = suminf f * norm h" huffman@20860: by (rule suminf_mult2 [symmetric]) huffman@23082: finally show "norm (suminf (g h)) \ suminf f * norm h" . huffman@20860: qed paulson@15077: paulson@15077: paulson@15077: text{* FIXME: Long proofs*} paulson@15077: paulson@15077: lemma termdiffs_aux: haftmann@31017: fixes x :: "'a::{real_normed_field,banach}" huffman@20849: assumes 1: "summable (\n. diffs (diffs c) n * K ^ n)" wenzelm@53079: and 2: "norm x < norm K" huffman@20860: shows "(\h. \n. c n * (((x + h) ^ n - x ^ n) / h huffman@23082: - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0" huffman@20849: proof - huffman@20860: from dense [OF 2] huffman@23082: obtain r where r1: "norm x < r" and r2: "r < norm K" by fast huffman@23082: from norm_ge_zero r1 have r: "0 < r" huffman@20860: by (rule order_le_less_trans) huffman@20860: hence r_neq_0: "r \ 0" by simp huffman@20860: show ?thesis huffman@20849: proof (rule lemma_termdiff5) huffman@23082: show "0 < r - norm x" using r1 by simp huffman@23082: from r r2 have "norm (of_real r::'a) < norm K" huffman@23082: by simp huffman@23082: with 1 have "summable (\n. norm (diffs (diffs c) n * (of_real r ^ n)))" huffman@20860: by (rule powser_insidea) huffman@23082: hence "summable (\n. diffs (diffs (\n. norm (c n))) n * r ^ n)" huffman@23082: using r huffman@23082: by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc) huffman@23082: hence "summable (\n. of_nat n * diffs (\n. norm (c n)) n * r ^ (n - Suc 0))" huffman@20860: by (rule diffs_equiv [THEN sums_summable]) wenzelm@53079: also have "(\n. of_nat n * diffs (\n. norm (c n)) n * r ^ (n - Suc 0)) = wenzelm@53079: (\n. diffs (\m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))" huffman@20849: apply (rule ext) huffman@20849: apply (simp add: diffs_def) huffman@20849: apply (case_tac n, simp_all add: r_neq_0) huffman@20849: done hoelzl@41970: finally have "summable huffman@23082: (\n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))" huffman@20860: by (rule diffs_equiv [THEN sums_summable]) huffman@20860: also have huffman@23082: "(\n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * huffman@20860: r ^ (n - Suc 0)) = huffman@23082: (\n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" huffman@20849: apply (rule ext) huffman@20849: apply (case_tac "n", simp) blanchet@55417: apply (rename_tac nat) huffman@20849: apply (case_tac "nat", simp) huffman@20849: apply (simp add: r_neq_0) huffman@20849: done wenzelm@53079: finally wenzelm@53079: show "summable (\n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" . huffman@20849: next huffman@23082: fix h::'a and n::nat huffman@20860: assume h: "h \ 0" huffman@23082: assume "norm h < r - norm x" huffman@23082: hence "norm x + norm h < r" by simp huffman@23082: with norm_triangle_ineq have xh: "norm (x + h) < r" huffman@20860: by (rule order_le_less_trans) huffman@23082: show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) huffman@23082: \ norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h" haftmann@57512: apply (simp only: norm_mult mult.assoc) huffman@23082: apply (rule mult_left_mono [OF _ norm_ge_zero]) haftmann@57512: apply (simp add: mult.assoc [symmetric]) paulson@54575: apply (metis h lemma_termdiff3 less_eq_real_def r1 xh) huffman@20860: done huffman@20849: qed huffman@20849: qed webertj@20217: huffman@20860: lemma termdiffs: haftmann@31017: fixes K x :: "'a::{real_normed_field,banach}" huffman@20860: assumes 1: "summable (\n. c n * K ^ n)" paulson@54575: and 2: "summable (\n. (diffs c) n * K ^ n)" paulson@54575: and 3: "summable (\n. (diffs (diffs c)) n * K ^ n)" paulson@54575: and 4: "norm x < norm K" huffman@20860: shows "DERIV (\x. \n. c n * x ^ n) x :> (\n. (diffs c) n * x ^ n)" hoelzl@56381: unfolding DERIV_def huffman@29163: proof (rule LIM_zero_cancel) huffman@20860: show "(\h. (suminf (\n. c n * (x + h) ^ n) - suminf (\n. c n * x ^ n)) / h huffman@20860: - suminf (\n. diffs c n * x ^ n)) -- 0 --> 0" huffman@20860: proof (rule LIM_equal2) huffman@29163: show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq) huffman@20860: next huffman@23082: fix h :: 'a huffman@23082: assume "norm (h - 0) < norm K - norm x" huffman@23082: hence "norm x + norm h < norm K" by simp huffman@23082: hence 5: "norm (x + h) < norm K" huffman@23082: by (rule norm_triangle_ineq [THEN order_le_less_trans]) huffman@56167: have "summable (\n. c n * x ^ n)" huffman@56167: and "summable (\n. c n * (x + h) ^ n)" huffman@56167: and "summable (\n. diffs c n * x ^ n)" huffman@56167: using 1 2 4 5 by (auto elim: powser_inside) huffman@56167: then have "((\n. c n * (x + h) ^ n) - (\n. c n * x ^ n)) / h - (\n. diffs c n * x ^ n) = huffman@56167: (\n. (c n * (x + h) ^ n - c n * x ^ n) / h - of_nat n * c n * x ^ (n - Suc 0))" huffman@56167: by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums) huffman@56167: then show "((\n. c n * (x + h) ^ n) - (\n. c n * x ^ n)) / h - (\n. diffs c n * x ^ n) = huffman@56167: (\n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))" paulson@54575: by (simp add: algebra_simps) huffman@20860: next wenzelm@53079: show "(\h. \n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0" wenzelm@53079: by (rule termdiffs_aux [OF 3 4]) huffman@20860: qed huffman@20860: qed huffman@20860: paulson@15077: hoelzl@29803: subsection {* Derivability of power series *} hoelzl@29803: wenzelm@53079: lemma DERIV_series': wenzelm@53079: fixes f :: "real \ nat \ real" hoelzl@29803: assumes DERIV_f: "\ n. DERIV (\ x. f x n) x0 :> (f' x0 n)" wenzelm@53079: and allf_summable: "\ x. x \ {a <..< b} \ summable (f x)" and x0_in_I: "x0 \ {a <..< b}" wenzelm@53079: and "summable (f' x0)" wenzelm@53079: and "summable L" wenzelm@53079: and L_def: "\n x y. \ x \ { a <..< b} ; y \ { a <..< b} \ \ \f x n - f y n\ \ L n * \x - y\" hoelzl@29803: shows "DERIV (\ x. suminf (f x)) x0 :> (suminf (f' x0))" hoelzl@56381: unfolding DERIV_def hoelzl@29803: proof (rule LIM_I) wenzelm@53079: fix r :: real wenzelm@53079: assume "0 < r" hence "0 < r/3" by auto hoelzl@29803: hoelzl@41970: obtain N_L where N_L: "\ n. N_L \ n \ \ \ i. L (i + n) \ < r/3" hoelzl@29803: using suminf_exist_split[OF `0 < r/3` `summable L`] by auto hoelzl@29803: hoelzl@41970: obtain N_f' where N_f': "\ n. N_f' \ n \ \ \ i. f' x0 (i + n) \ < r/3" hoelzl@29803: using suminf_exist_split[OF `0 < r/3` `summable (f' x0)`] by auto hoelzl@29803: hoelzl@29803: let ?N = "Suc (max N_L N_f')" hoelzl@29803: have "\ \ i. f' x0 (i + ?N) \ < r/3" (is "?f'_part < r/3") and hoelzl@29803: L_estimate: "\ \ i. L (i + ?N) \ < r/3" using N_L[of "?N"] and N_f' [of "?N"] by auto hoelzl@29803: wenzelm@53079: let ?diff = "\i x. (f (x0 + x) i - f x0 i) / x" hoelzl@29803: hoelzl@29803: let ?r = "r / (3 * real ?N)" nipkow@56541: from `0 < r` have "0 < ?r" by simp hoelzl@29803: hoelzl@56193: let ?s = "\n. SOME s. 0 < s \ (\ x. x \ 0 \ \ x \ < s \ \ ?diff n x - f' x0 n \ < ?r)" hoelzl@56193: def S' \ "Min (?s ` {..< ?N })" hoelzl@29803: hoelzl@29803: have "0 < S'" unfolding S'_def hoelzl@29803: proof (rule iffD2[OF Min_gr_iff]) hoelzl@56193: show "\x \ (?s ` {..< ?N }). 0 < x" wenzelm@53079: proof wenzelm@53079: fix x hoelzl@56193: assume "x \ ?s ` {.. {.. (\x. x \ 0 \ \x\ < s \ \?diff n x - f' x0 n\ < ?r)" wenzelm@53079: by auto wenzelm@53079: have "0 < ?s n" by (rule someI2[where a=s]) (auto simp add: s_bound) hoelzl@29803: thus "0 < x" unfolding `x = ?s n` . hoelzl@29803: qed hoelzl@29803: qed auto hoelzl@29803: hoelzl@29803: def S \ "min (min (x0 - a) (b - x0)) S'" wenzelm@53079: hence "0 < S" and S_a: "S \ x0 - a" and S_b: "S \ b - x0" wenzelm@53079: and "S \ S'" using x0_in_I and `0 < S'` hoelzl@29803: by auto hoelzl@29803: wenzelm@53079: { wenzelm@53079: fix x wenzelm@53079: assume "x \ 0" and "\ x \ < S" wenzelm@53079: hence x_in_I: "x0 + x \ { a <..< b }" wenzelm@53079: using S_a S_b by auto hoelzl@41970: hoelzl@29803: note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]] hoelzl@29803: note div_smbl = summable_divide[OF diff_smbl] hoelzl@29803: note all_smbl = summable_diff[OF div_smbl `summable (f' x0)`] hoelzl@29803: note ign = summable_ignore_initial_segment[where k="?N"] hoelzl@29803: note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]] hoelzl@29803: note div_shft_smbl = summable_divide[OF diff_shft_smbl] hoelzl@29803: note all_shft_smbl = summable_diff[OF div_smbl ign[OF `summable (f' x0)`]] hoelzl@29803: hoelzl@56193: { fix n hoelzl@41970: have "\ ?diff (n + ?N) x \ \ L (n + ?N) * \ (x0 + x) - x0 \ / \ x \" wenzelm@53079: using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero] wenzelm@53079: unfolding abs_divide . wenzelm@53079: hence "\ (\?diff (n + ?N) x \) \ \ L (n + ?N)" hoelzl@56193: using `x \ 0` by auto } hoelzl@56193: note 1 = this and 2 = summable_rabs_comparison_test[OF _ ign[OF `summable L`]] hoelzl@56193: then have "\ \ i. ?diff (i + ?N) x \ \ (\ i. L (i + ?N))" hoelzl@56213: by (metis (lifting) abs_idempotent order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF `summable L`]]]) hoelzl@56193: then have "\ \ i. ?diff (i + ?N) x \ \ r / 3" (is "?L_part \ r/3") wenzelm@53079: using L_estimate by auto wenzelm@53079: hoelzl@56193: have "\\n \ (\n?diff n x - f' x0 n \)" .. hoelzl@56193: also have "\ < (\n {..< ?N}" wenzelm@53079: have "\x\ < S" using `\x\ < S` . hoelzl@29803: also have "S \ S'" using `S \ S'` . hoelzl@41970: also have "S' \ ?s n" unfolding S'_def hoelzl@29803: proof (rule Min_le_iff[THEN iffD2]) hoelzl@56193: have "?s n \ (?s ` {.. ?s n \ ?s n" hoelzl@56193: using `n \ {..< ?N}` by auto hoelzl@56193: thus "\ a \ (?s ` {.. ?s n" by blast hoelzl@29803: qed auto wenzelm@53079: finally have "\x\ < ?s n" . hoelzl@29803: hoelzl@29803: from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2] hoelzl@29803: have "\x. x \ 0 \ \x\ < ?s n \ \?diff n x - f' x0 n\ < ?r" . wenzelm@53079: with `x \ 0` and `\x\ < ?s n` show "\?diff n x - f' x0 n\ < ?r" wenzelm@53079: by blast hoelzl@29803: qed auto hoelzl@56193: also have "\ = of_nat (card {.. = real ?N * ?r" wenzelm@53079: unfolding real_eq_of_nat by auto hoelzl@29803: also have "\ = r/3" by auto hoelzl@56193: finally have "\\n < r / 3" (is "?diff_part < r / 3") . hoelzl@29803: hoelzl@29803: from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]] wenzelm@53079: have "\(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)\ = wenzelm@53079: \\n. ?diff n x - f' x0 n\" wenzelm@53079: unfolding suminf_diff[OF div_smbl `summable (f' x0)`, symmetric] wenzelm@53079: using suminf_divide[OF diff_smbl, symmetric] by auto wenzelm@53079: also have "\ \ ?diff_part + \ (\n. ?diff (n + ?N) x) - (\ n. f' x0 (n + ?N)) \" wenzelm@53079: unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"] wenzelm@53079: unfolding suminf_diff[OF div_shft_smbl ign[OF `summable (f' x0)`]] haftmann@57512: apply (subst (5) add.commute) wenzelm@53079: by (rule abs_triangle_ineq) wenzelm@53079: also have "\ \ ?diff_part + ?L_part + ?f'_part" wenzelm@53079: using abs_triangle_ineq4 by auto hoelzl@41970: also have "\ < r /3 + r/3 + r/3" huffman@36842: using `?diff_part < r/3` `?L_part \ r/3` and `?f'_part < r/3` huffman@36842: by (rule add_strict_mono [OF add_less_le_mono]) wenzelm@53079: finally have "\(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)\ < r" hoelzl@29803: by auto wenzelm@53079: } wenzelm@53079: thus "\ s > 0. \ x. x \ 0 \ norm (x - 0) < s \ wenzelm@53079: norm (((\n. f (x0 + x) n) - (\n. f x0 n)) / x - (\n. f' x0 n)) < r" wenzelm@53079: using `0 < S` unfolding real_norm_def diff_0_right by blast hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma DERIV_power_series': wenzelm@53079: fixes f :: "nat \ real" hoelzl@29803: assumes converges: "\ x. x \ {-R <..< R} \ summable (\ n. f n * real (Suc n) * x^n)" wenzelm@53079: and x0_in_I: "x0 \ {-R <..< R}" and "0 < R" hoelzl@29803: shows "DERIV (\ x. (\ n. f n * x^(Suc n))) x0 :> (\ n. f n * real (Suc n) * x0^n)" hoelzl@29803: (is "DERIV (\ x. (suminf (?f x))) x0 :> (suminf (?f' x0))") hoelzl@29803: proof - wenzelm@53079: { wenzelm@53079: fix R' wenzelm@53079: assume "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" wenzelm@53079: hence "x0 \ {-R' <..< R'}" and "R' \ {-R <..< R}" and "x0 \ {-R <..< R}" wenzelm@53079: by auto hoelzl@29803: have "DERIV (\ x. (suminf (?f x))) x0 :> (suminf (?f' x0))" hoelzl@29803: proof (rule DERIV_series') hoelzl@29803: show "summable (\ n. \f n * real (Suc n) * R'^n\)" hoelzl@29803: proof - wenzelm@53079: have "(R' + R) / 2 < R" and "0 < (R' + R) / 2" wenzelm@53079: using `0 < R'` `0 < R` `R' < R` by auto wenzelm@53079: hence in_Rball: "(R' + R) / 2 \ {-R <..< R}" wenzelm@53079: using `R' < R` by auto wenzelm@53079: have "norm R' < norm ((R' + R) / 2)" wenzelm@53079: using `0 < R'` `0 < R` `R' < R` by auto wenzelm@53079: from powser_insidea[OF converges[OF in_Rball] this] show ?thesis wenzelm@53079: by auto hoelzl@29803: qed wenzelm@53079: { wenzelm@53079: fix n x y wenzelm@53079: assume "x \ {-R' <..< R'}" and "y \ {-R' <..< R'}" wenzelm@32960: show "\?f x n - ?f y n\ \ \f n * real (Suc n) * R'^n\ * \x-y\" wenzelm@32960: proof - wenzelm@53079: have "\f n * x ^ (Suc n) - f n * y ^ (Suc n)\ = hoelzl@56193: (\f n\ * \x-y\) * \\p" wenzelm@53079: unfolding right_diff_distrib[symmetric] lemma_realpow_diff_sumr2 abs_mult wenzelm@53079: by auto hoelzl@41970: also have "\ \ (\f n\ * \x-y\) * (\real (Suc n)\ * \R' ^ n\)" wenzelm@32960: proof (rule mult_left_mono) hoelzl@56193: have "\\p \ (\px ^ p * y ^ (n - p)\)" wenzelm@53079: by (rule setsum_abs) hoelzl@56193: also have "\ \ (\p {.. n" by auto wenzelm@53079: { wenzelm@53079: fix n wenzelm@53079: fix x :: real wenzelm@53079: assume "x \ {-R'<..x\ \ R'" by auto wenzelm@53079: hence "\x^n\ \ R'^n" wenzelm@53079: unfolding power_abs by (rule power_mono, auto) wenzelm@53079: } wenzelm@53079: from mult_mono[OF this[OF `x \ {-R'<.. {-R'<..x^p * y^(n-p)\ \ R'^p * R'^(n-p)" wenzelm@53079: unfolding abs_mult by auto wenzelm@53079: thus "\x^p * y^(n-p)\ \ R'^n" wenzelm@53079: unfolding power_add[symmetric] using `p \ n` by auto wenzelm@32960: qed wenzelm@53079: also have "\ = real (Suc n) * R' ^ n" wenzelm@53079: unfolding setsum_constant card_atLeastLessThan real_of_nat_def by auto hoelzl@56193: finally show "\\p \ \real (Suc n)\ * \R' ^ n\" wenzelm@53079: unfolding abs_real_of_nat_cancel abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF `0 < R'`]]] . wenzelm@53079: show "0 \ \f n\ * \x - y\" wenzelm@53079: unfolding abs_mult[symmetric] by auto wenzelm@32960: qed wenzelm@53079: also have "\ = \f n * real (Suc n) * R' ^ n\ * \x - y\" haftmann@57512: unfolding abs_mult mult.assoc[symmetric] by algebra wenzelm@32960: finally show ?thesis . wenzelm@53079: qed wenzelm@53079: } wenzelm@53079: { wenzelm@53079: fix n wenzelm@53079: show "DERIV (\ x. ?f x n) x0 :> (?f' x0 n)" hoelzl@56381: by (auto intro!: derivative_eq_intros simp del: power_Suc simp: real_of_nat_def) wenzelm@53079: } wenzelm@53079: { wenzelm@53079: fix x wenzelm@53079: assume "x \ {-R' <..< R'}" wenzelm@53079: hence "R' \ {-R <..< R}" and "norm x < norm R'" wenzelm@53079: using assms `R' < R` by auto wenzelm@32960: have "summable (\ n. f n * x^n)" hoelzl@56193: proof (rule summable_comparison_test, intro exI allI impI) wenzelm@32960: fix n wenzelm@53079: have le: "\f n\ * 1 \ \f n\ * real (Suc n)" wenzelm@53079: by (rule mult_left_mono) auto hoelzl@56193: show "norm (f n * x ^ n) \ norm (f n * real (Suc n) * x ^ n)" wenzelm@53079: unfolding real_norm_def abs_mult wenzelm@53079: by (rule mult_right_mono) (auto simp add: le[unfolded mult_1_right]) hoelzl@56193: qed (rule powser_insidea[OF converges[OF `R' \ {-R <..< R}`] `norm x < norm R'`]) haftmann@57512: from this[THEN summable_mult2[where c=x], unfolded mult.assoc, unfolded mult.commute] wenzelm@53079: show "summable (?f x)" by auto wenzelm@53079: } wenzelm@53079: show "summable (?f' x0)" wenzelm@53079: using converges[OF `x0 \ {-R <..< R}`] . wenzelm@53079: show "x0 \ {-R' <..< R'}" wenzelm@53079: using `x0 \ {-R' <..< R'}` . hoelzl@29803: qed hoelzl@29803: } note for_subinterval = this hoelzl@29803: let ?R = "(R + \x0\) / 2" hoelzl@29803: have "\x0\ < ?R" using assms by auto hoelzl@29803: hence "- ?R < x0" hoelzl@29803: proof (cases "x0 < 0") hoelzl@29803: case True hoelzl@29803: hence "- x0 < ?R" using `\x0\ < ?R` by auto hoelzl@29803: thus ?thesis unfolding neg_less_iff_less[symmetric, of "- x0"] by auto hoelzl@29803: next hoelzl@29803: case False hoelzl@29803: have "- ?R < 0" using assms by auto hoelzl@41970: also have "\ \ x0" using False by auto hoelzl@29803: finally show ?thesis . hoelzl@29803: qed wenzelm@53079: hence "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R" wenzelm@53079: using assms by auto hoelzl@29803: from for_subinterval[OF this] hoelzl@29803: show ?thesis . hoelzl@29803: qed chaieb@29695: wenzelm@53079: huffman@29164: subsection {* Exponential Function *} huffman@23043: wenzelm@53079: definition exp :: "'a \ 'a::{real_normed_field,banach}" wenzelm@53079: where "exp = (\x. \n. x ^ n /\<^sub>R real (fact n))" huffman@23043: huffman@23115: lemma summable_exp_generic: haftmann@31017: fixes x :: "'a::{real_normed_algebra_1,banach}" haftmann@25062: defines S_def: "S \ \n. x ^ n /\<^sub>R real (fact n)" huffman@23115: shows "summable S" huffman@23115: proof - haftmann@25062: have S_Suc: "\n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)" huffman@30273: unfolding S_def by (simp del: mult_Suc) huffman@23115: obtain r :: real where r0: "0 < r" and r1: "r < 1" huffman@23115: using dense [OF zero_less_one] by fast huffman@23115: obtain N :: nat where N: "norm x < real N * r" huffman@23115: using reals_Archimedean3 [OF r0] by fast huffman@23115: from r1 show ?thesis hoelzl@56193: proof (rule summable_ratio_test [rule_format]) huffman@23115: fix n :: nat huffman@23115: assume n: "N \ n" huffman@23115: have "norm x \ real N * r" huffman@23115: using N by (rule order_less_imp_le) huffman@23115: also have "real N * r \ real (Suc n) * r" huffman@23115: using r0 n by (simp add: mult_right_mono) huffman@23115: finally have "norm x * norm (S n) \ real (Suc n) * r * norm (S n)" huffman@23115: using norm_ge_zero by (rule mult_right_mono) huffman@23115: hence "norm (x * S n) \ real (Suc n) * r * norm (S n)" huffman@23115: by (rule order_trans [OF norm_mult_ineq]) huffman@23115: hence "norm (x * S n) / real (Suc n) \ r * norm (S n)" haftmann@57514: by (simp add: pos_divide_le_eq ac_simps) huffman@23115: thus "norm (S (Suc n)) \ r * norm (S n)" huffman@35216: by (simp add: S_Suc inverse_eq_divide) huffman@23115: qed huffman@23115: qed huffman@23115: huffman@23115: lemma summable_norm_exp: haftmann@31017: fixes x :: "'a::{real_normed_algebra_1,banach}" haftmann@25062: shows "summable (\n. norm (x ^ n /\<^sub>R real (fact n)))" huffman@23115: proof (rule summable_norm_comparison_test [OF exI, rule_format]) haftmann@25062: show "summable (\n. norm x ^ n /\<^sub>R real (fact n))" huffman@23115: by (rule summable_exp_generic) wenzelm@53079: fix n wenzelm@53079: show "norm (x ^ n /\<^sub>R real (fact n)) \ norm x ^ n /\<^sub>R real (fact n)" huffman@35216: by (simp add: norm_power_ineq) huffman@23115: qed huffman@23115: wenzelm@53079: lemma summable_exp: "summable (\n. inverse (real (fact n)) * x ^ n)" wenzelm@53079: using summable_exp_generic [where x=x] by simp huffman@23043: haftmann@25062: lemma exp_converges: "(\n. x ^ n /\<^sub>R real (fact n)) sums exp x" wenzelm@53079: unfolding exp_def by (rule summable_exp_generic [THEN summable_sums]) huffman@23043: huffman@23043: hoelzl@41970: lemma exp_fdiffs: wenzelm@53079: "diffs (\n. inverse(real (fact n))) = (\n. inverse(real (fact n)))" haftmann@57512: by (simp add: diffs_def mult.assoc [symmetric] real_of_nat_def of_nat_mult wenzelm@53079: del: mult_Suc of_nat_Suc) paulson@15077: huffman@23115: lemma diffs_of_real: "diffs (\n. of_real (f n)) = (\n. of_real (diffs f n))" wenzelm@53079: by (simp add: diffs_def) huffman@23115: paulson@15077: lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)" wenzelm@53079: unfolding exp_def scaleR_conv_of_real wenzelm@53079: apply (rule DERIV_cong) wenzelm@53079: apply (rule termdiffs [where K="of_real (1 + norm x)"]) wenzelm@53079: apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs) wenzelm@53079: apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+ wenzelm@53079: apply (simp del: of_real_add) wenzelm@53079: done paulson@15077: hoelzl@56381: declare DERIV_exp[THEN DERIV_chain2, derivative_intros] hoelzl@51527: huffman@44311: lemma isCont_exp: "isCont exp x" huffman@44311: by (rule DERIV_exp [THEN DERIV_isCont]) huffman@44311: huffman@44311: lemma isCont_exp' [simp]: "isCont f a \ isCont (\x. exp (f x)) a" huffman@44311: by (rule isCont_o2 [OF _ isCont_exp]) huffman@44311: huffman@44311: lemma tendsto_exp [tendsto_intros]: huffman@44311: "(f ---> a) F \ ((\x. exp (f x)) ---> exp a) F" huffman@44311: by (rule isCont_tendsto_compose [OF isCont_exp]) huffman@23045: wenzelm@53079: lemma continuous_exp [continuous_intros]: wenzelm@53079: "continuous F f \ continuous F (\x. exp (f x))" hoelzl@51478: unfolding continuous_def by (rule tendsto_exp) hoelzl@51478: hoelzl@56371: lemma continuous_on_exp [continuous_intros]: wenzelm@53079: "continuous_on s f \ continuous_on s (\x. exp (f x))" hoelzl@51478: unfolding continuous_on_def by (auto intro: tendsto_exp) hoelzl@51478: wenzelm@53079: huffman@29167: subsubsection {* Properties of the Exponential Function *} paulson@15077: huffman@23278: lemma powser_zero: haftmann@31017: fixes f :: "nat \ 'a::{real_normed_algebra_1}" huffman@23278: shows "(\n. f n * 0 ^ n) = f 0" paulson@15077: proof - hoelzl@56193: have "(\n<1. f n * 0 ^ n) = (\n. f n * 0 ^ n)" hoelzl@56213: by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left) huffman@30082: thus ?thesis unfolding One_nat_def by simp paulson@15077: qed paulson@15077: huffman@23278: lemma exp_zero [simp]: "exp 0 = 1" wenzelm@53079: unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero) huffman@23278: huffman@23115: lemma exp_series_add: haftmann@31017: fixes x y :: "'a::{real_field}" haftmann@25062: defines S_def: "S \ \x n. x ^ n /\<^sub>R real (fact n)" hoelzl@56213: shows "S (x + y) n = (\i\n. S x i * S y (n - i))" huffman@23115: proof (induct n) huffman@23115: case 0 huffman@23115: show ?case huffman@23115: unfolding S_def by simp huffman@23115: next huffman@23115: case (Suc n) haftmann@25062: have S_Suc: "\x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)" huffman@30273: unfolding S_def by (simp del: mult_Suc) haftmann@25062: hence times_S: "\x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)" huffman@23115: by simp huffman@23115: haftmann@25062: have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n" huffman@23115: by (simp only: times_S) hoelzl@56213: also have "\ = (x + y) * (\i\n. S x i * S y (n-i))" huffman@23115: by (simp only: Suc) hoelzl@56213: also have "\ = x * (\i\n. S x i * S y (n-i)) hoelzl@56213: + y * (\i\n. S x i * S y (n-i))" webertj@49962: by (rule distrib_right) hoelzl@56213: also have "\ = (\i\n. (x * S x i) * S y (n-i)) hoelzl@56213: + (\i\n. S x i * (y * S y (n-i)))" haftmann@57514: by (simp only: setsum_right_distrib ac_simps) hoelzl@56213: also have "\ = (\i\n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) hoelzl@56213: + (\i\n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))" huffman@23115: by (simp add: times_S Suc_diff_le) hoelzl@56213: also have "(\i\n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) = hoelzl@56213: (\i\Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))" hoelzl@56213: by (subst setsum_atMost_Suc_shift) simp hoelzl@56213: also have "(\i\n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) = hoelzl@56213: (\i\Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))" hoelzl@56213: by simp hoelzl@56213: also have "(\i\Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) + hoelzl@56213: (\i\Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) = hoelzl@56213: (\i\Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))" haftmann@57418: by (simp only: setsum.distrib [symmetric] scaleR_left_distrib [symmetric] hoelzl@56213: real_of_nat_add [symmetric]) simp hoelzl@56213: also have "\ = real (Suc n) *\<^sub>R (\i\Suc n. S x i * S y (Suc n-i))" huffman@23127: by (simp only: scaleR_right.setsum) huffman@23115: finally show hoelzl@56213: "S (x + y) (Suc n) = (\i\Suc n. S x i * S y (Suc n - i))" huffman@35216: by (simp del: setsum_cl_ivl_Suc) huffman@23115: qed huffman@23115: huffman@23115: lemma exp_add: "exp (x + y) = exp x * exp y" wenzelm@53079: unfolding exp_def wenzelm@53079: by (simp only: Cauchy_product summable_norm_exp exp_series_add) huffman@23115: huffman@29170: lemma mult_exp_exp: "exp x * exp y = exp (x + y)" wenzelm@53079: by (rule exp_add [symmetric]) huffman@29170: huffman@23241: lemma exp_of_real: "exp (of_real x) = of_real (exp x)" wenzelm@53079: unfolding exp_def wenzelm@53079: apply (subst suminf_of_real) wenzelm@53079: apply (rule summable_exp_generic) wenzelm@53079: apply (simp add: scaleR_conv_of_real) wenzelm@53079: done huffman@23241: huffman@29170: lemma exp_not_eq_zero [simp]: "exp x \ 0" huffman@29170: proof huffman@29170: have "exp x * exp (- x) = 1" by (simp add: mult_exp_exp) huffman@29170: also assume "exp x = 0" huffman@29170: finally show "False" by simp paulson@15077: qed paulson@15077: huffman@29170: lemma exp_minus: "exp (- x) = inverse (exp x)" wenzelm@53079: by (rule inverse_unique [symmetric], simp add: mult_exp_exp) paulson@15077: huffman@29170: lemma exp_diff: "exp (x - y) = exp x / exp y" haftmann@54230: using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse) paulson@15077: huffman@29167: huffman@29167: subsubsection {* Properties of the Exponential Function on Reals *} huffman@29167: huffman@29170: text {* Comparisons of @{term "exp x"} with zero. *} huffman@29167: huffman@29167: text{*Proof: because every exponential can be seen as a square.*} huffman@29167: lemma exp_ge_zero [simp]: "0 \ exp (x::real)" huffman@29167: proof - huffman@29167: have "0 \ exp (x/2) * exp (x/2)" by simp huffman@29167: thus ?thesis by (simp add: exp_add [symmetric]) huffman@29167: qed huffman@29167: huffman@23115: lemma exp_gt_zero [simp]: "0 < exp (x::real)" wenzelm@53079: by (simp add: order_less_le) paulson@15077: huffman@29170: lemma not_exp_less_zero [simp]: "\ exp (x::real) < 0" wenzelm@53079: by (simp add: not_less) huffman@29170: huffman@29170: lemma not_exp_le_zero [simp]: "\ exp (x::real) \ 0" wenzelm@53079: by (simp add: not_le) paulson@15077: huffman@23115: lemma abs_exp_cancel [simp]: "\exp x::real\ = exp x" wenzelm@53079: by simp paulson@15077: paulson@15077: lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n" haftmann@57512: by (induct n) (auto simp add: real_of_nat_Suc distrib_left exp_add mult.commute) paulson@15077: huffman@29170: text {* Strict monotonicity of exponential. *} huffman@29170: paulson@54575: lemma exp_ge_add_one_self_aux: paulson@54575: assumes "0 \ (x::real)" shows "1+x \ exp(x)" paulson@54575: using order_le_imp_less_or_eq [OF assms] paulson@54575: proof paulson@54575: assume "0 < x" hoelzl@56193: have "1+x \ (\n<2. inverse (real (fact n)) * x ^ n)" paulson@54575: by (auto simp add: numeral_2_eq_2) paulson@54575: also have "... \ (\n. inverse (real (fact n)) * x ^ n)" hoelzl@56213: apply (rule setsum_le_suminf [OF summable_exp]) paulson@54575: using `0 < x` paulson@54575: apply (auto simp add: zero_le_mult_iff) paulson@54575: done paulson@54575: finally show "1+x \ exp x" paulson@54575: by (simp add: exp_def) paulson@54575: next paulson@54575: assume "0 = x" paulson@54575: then show "1 + x \ exp x" paulson@54575: by auto paulson@54575: qed huffman@29170: huffman@29170: lemma exp_gt_one: "0 < (x::real) \ 1 < exp x" huffman@29170: proof - huffman@29170: assume x: "0 < x" huffman@29170: hence "1 < 1 + x" by simp huffman@29170: also from x have "1 + x \ exp x" huffman@29170: by (simp add: exp_ge_add_one_self_aux) huffman@29170: finally show ?thesis . huffman@29170: qed huffman@29170: paulson@15077: lemma exp_less_mono: huffman@23115: fixes x y :: real wenzelm@53079: assumes "x < y" wenzelm@53079: shows "exp x < exp y" paulson@15077: proof - huffman@29165: from `x < y` have "0 < y - x" by simp huffman@29165: hence "1 < exp (y - x)" by (rule exp_gt_one) huffman@29165: hence "1 < exp y / exp x" by (simp only: exp_diff) huffman@29165: thus "exp x < exp y" by simp paulson@15077: qed paulson@15077: wenzelm@53079: lemma exp_less_cancel: "exp (x::real) < exp y \ x < y" paulson@54575: unfolding linorder_not_le [symmetric] paulson@54575: by (auto simp add: order_le_less exp_less_mono) paulson@15077: huffman@29170: lemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \ x < y" wenzelm@53079: by (auto intro: exp_less_mono exp_less_cancel) paulson@15077: huffman@29170: lemma exp_le_cancel_iff [iff]: "exp (x::real) \ exp y \ x \ y" wenzelm@53079: by (auto simp add: linorder_not_less [symmetric]) paulson@15077: huffman@29170: lemma exp_inj_iff [iff]: "exp (x::real) = exp y \ x = y" wenzelm@53079: by (simp add: order_eq_iff) paulson@15077: huffman@29170: text {* Comparisons of @{term "exp x"} with one. *} huffman@29170: huffman@29170: lemma one_less_exp_iff [simp]: "1 < exp (x::real) \ 0 < x" huffman@29170: using exp_less_cancel_iff [where x=0 and y=x] by simp huffman@29170: huffman@29170: lemma exp_less_one_iff [simp]: "exp (x::real) < 1 \ x < 0" huffman@29170: using exp_less_cancel_iff [where x=x and y=0] by simp huffman@29170: huffman@29170: lemma one_le_exp_iff [simp]: "1 \ exp (x::real) \ 0 \ x" huffman@29170: using exp_le_cancel_iff [where x=0 and y=x] by simp huffman@29170: huffman@29170: lemma exp_le_one_iff [simp]: "exp (x::real) \ 1 \ x \ 0" huffman@29170: using exp_le_cancel_iff [where x=x and y=0] by simp huffman@29170: huffman@29170: lemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \ x = 0" huffman@29170: using exp_inj_iff [where x=x and y=0] by simp huffman@29170: wenzelm@53079: lemma lemma_exp_total: "1 \ y \ \x. 0 \ x & x \ y - 1 & exp(x::real) = y" huffman@44755: proof (rule IVT) huffman@44755: assume "1 \ y" huffman@44755: hence "0 \ y - 1" by simp huffman@44755: hence "1 + (y - 1) \ exp (y - 1)" by (rule exp_ge_add_one_self_aux) huffman@44755: thus "y \ exp (y - 1)" by simp huffman@44755: qed (simp_all add: le_diff_eq) paulson@15077: wenzelm@53079: lemma exp_total: "0 < (y::real) \ \x. exp x = y" huffman@44755: proof (rule linorder_le_cases [of 1 y]) wenzelm@53079: assume "1 \ y" wenzelm@53079: thus "\x. exp x = y" by (fast dest: lemma_exp_total) huffman@44755: next huffman@44755: assume "0 < y" and "y \ 1" huffman@44755: hence "1 \ inverse y" by (simp add: one_le_inverse_iff) huffman@44755: then obtain x where "exp x = inverse y" by (fast dest: lemma_exp_total) huffman@44755: hence "exp (- x) = y" by (simp add: exp_minus) huffman@44755: thus "\x. exp x = y" .. huffman@44755: qed paulson@15077: paulson@15077: huffman@29164: subsection {* Natural Logarithm *} paulson@15077: wenzelm@53079: definition ln :: "real \ real" wenzelm@53079: where "ln x = (THE u. exp u = x)" huffman@23043: huffman@23043: lemma ln_exp [simp]: "ln (exp x) = x" huffman@44308: by (simp add: ln_def) paulson@15077: huffman@22654: lemma exp_ln [simp]: "0 < x \ exp (ln x) = x" huffman@44308: by (auto dest: exp_total) huffman@22654: huffman@29171: lemma exp_ln_iff [simp]: "exp (ln x) = x \ 0 < x" huffman@44308: by (metis exp_gt_zero exp_ln) paulson@15077: huffman@29171: lemma ln_unique: "exp y = x \ ln x = y" huffman@44308: by (erule subst, rule ln_exp) huffman@29171: huffman@29171: lemma ln_one [simp]: "ln 1 = 0" wenzelm@53079: by (rule ln_unique) simp wenzelm@53079: wenzelm@53079: lemma ln_mult: "0 < x \ 0 < y \ ln (x * y) = ln x + ln y" wenzelm@53079: by (rule ln_unique) (simp add: exp_add) huffman@29171: huffman@29171: lemma ln_inverse: "0 < x \ ln (inverse x) = - ln x" wenzelm@53079: by (rule ln_unique) (simp add: exp_minus) wenzelm@53079: wenzelm@53079: lemma ln_div: "0 < x \ 0 < y \ ln (x / y) = ln x - ln y" wenzelm@53079: by (rule ln_unique) (simp add: exp_diff) paulson@15077: huffman@29171: lemma ln_realpow: "0 < x \ ln (x ^ n) = real n * ln x" wenzelm@53079: by (rule ln_unique) (simp add: exp_real_of_nat_mult) wenzelm@53079: wenzelm@53079: lemma ln_less_cancel_iff [simp]: "0 < x \ 0 < y \ ln x < ln y \ x < y" wenzelm@53079: by (subst exp_less_cancel_iff [symmetric]) simp wenzelm@53079: wenzelm@53079: lemma ln_le_cancel_iff [simp]: "0 < x \ 0 < y \ ln x \ ln y \ x \ y" huffman@44308: by (simp add: linorder_not_less [symmetric]) huffman@29171: wenzelm@53079: lemma ln_inj_iff [simp]: "0 < x \ 0 < y \ ln x = ln y \ x = y" huffman@44308: by (simp add: order_eq_iff) huffman@29171: huffman@29171: lemma ln_add_one_self_le_self [simp]: "0 \ x \ ln (1 + x) \ x" huffman@44308: apply (rule exp_le_cancel_iff [THEN iffD1]) huffman@44308: apply (simp add: exp_ge_add_one_self_aux) huffman@44308: done paulson@15077: huffman@29171: lemma ln_less_self [simp]: "0 < x \ ln x < x" huffman@44308: by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_all huffman@44308: huffman@44308: lemma ln_ge_zero [simp]: "1 \ x \ 0 \ ln x" huffman@44308: using ln_le_cancel_iff [of 1 x] by simp huffman@44308: wenzelm@53079: lemma ln_ge_zero_imp_ge_one: "0 \ ln x \ 0 < x \ 1 \ x" huffman@44308: using ln_le_cancel_iff [of 1 x] by simp huffman@44308: wenzelm@53079: lemma ln_ge_zero_iff [simp]: "0 < x \ 0 \ ln x \ 1 \ x" huffman@44308: using ln_le_cancel_iff [of 1 x] by simp huffman@44308: wenzelm@53079: lemma ln_less_zero_iff [simp]: "0 < x \ ln x < 0 \ x < 1" huffman@44308: using ln_less_cancel_iff [of x 1] by simp huffman@44308: huffman@44308: lemma ln_gt_zero: "1 < x \ 0 < ln x" huffman@44308: using ln_less_cancel_iff [of 1 x] by simp huffman@44308: wenzelm@53079: lemma ln_gt_zero_imp_gt_one: "0 < ln x \ 0 < x \ 1 < x" huffman@44308: using ln_less_cancel_iff [of 1 x] by simp huffman@44308: wenzelm@53079: lemma ln_gt_zero_iff [simp]: "0 < x \ 0 < ln x \ 1 < x" huffman@44308: using ln_less_cancel_iff [of 1 x] by simp huffman@44308: wenzelm@53079: lemma ln_eq_zero_iff [simp]: "0 < x \ ln x = 0 \ x = 1" huffman@44308: using ln_inj_iff [of x 1] by simp huffman@44308: wenzelm@53079: lemma ln_less_zero: "0 < x \ x < 1 \ ln x < 0" huffman@44308: by simp paulson@15077: hoelzl@57275: lemma ln_neg_is_const: "x \ 0 \ ln x = (THE x. False)" hoelzl@57275: by (auto simp add: ln_def intro!: arg_cong[where f=The]) hoelzl@57275: hoelzl@57275: lemma isCont_ln: assumes "x \ 0" shows "isCont ln x" hoelzl@57275: proof cases hoelzl@57275: assume "0 < x" hoelzl@57275: moreover then have "isCont ln (exp (ln x))" hoelzl@57275: by (intro isCont_inv_fun[where d="\x\" and f=exp]) auto hoelzl@57275: ultimately show ?thesis hoelzl@57275: by simp hoelzl@57275: next hoelzl@57275: assume "\ 0 < x" with `x \ 0` show "isCont ln x" hoelzl@57275: unfolding isCont_def hoelzl@57275: by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "\_. ln 0"]) hoelzl@57275: (auto simp: ln_neg_is_const not_less eventually_at dist_real_def hoelzl@57275: intro!: tendsto_const exI[of _ "\x\"]) hoelzl@57275: qed huffman@23045: huffman@45915: lemma tendsto_ln [tendsto_intros]: hoelzl@57275: "(f ---> a) F \ a \ 0 \ ((\x. ln (f x)) ---> ln a) F" huffman@45915: by (rule isCont_tendsto_compose [OF isCont_ln]) huffman@45915: hoelzl@51478: lemma continuous_ln: hoelzl@57275: "continuous F f \ f (Lim F (\x. x)) \ 0 \ continuous F (\x. ln (f x))" hoelzl@51478: unfolding continuous_def by (rule tendsto_ln) hoelzl@51478: hoelzl@51478: lemma isCont_ln' [continuous_intros]: hoelzl@57275: "continuous (at x) f \ f x \ 0 \ continuous (at x) (\x. ln (f x))" hoelzl@51478: unfolding continuous_at by (rule tendsto_ln) hoelzl@51478: hoelzl@51478: lemma continuous_within_ln [continuous_intros]: hoelzl@57275: "continuous (at x within s) f \ f x \ 0 \ continuous (at x within s) (\x. ln (f x))" hoelzl@51478: unfolding continuous_within by (rule tendsto_ln) hoelzl@51478: hoelzl@56371: lemma continuous_on_ln [continuous_intros]: hoelzl@57275: "continuous_on s f \ (\x\s. f x \ 0) \ continuous_on s (\x. ln (f x))" hoelzl@51478: unfolding continuous_on_def by (auto intro: tendsto_ln) hoelzl@51478: huffman@23045: lemma DERIV_ln: "0 < x \ DERIV ln x :> inverse x" huffman@44308: apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"]) paulson@54576: apply (auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln) huffman@44308: done huffman@23045: wenzelm@53079: lemma DERIV_ln_divide: "0 < x \ DERIV ln x :> 1 / x" paulson@33667: by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse) paulson@33667: hoelzl@56381: declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros] hoelzl@51527: wenzelm@53079: lemma ln_series: wenzelm@53079: assumes "0 < x" and "x < 2" wenzelm@53079: shows "ln x = (\ n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))" wenzelm@53079: (is "ln x = suminf (?f (x - 1))") hoelzl@29803: proof - wenzelm@53079: let ?f' = "\x n. (-1)^n * (x - 1)^n" hoelzl@29803: hoelzl@29803: have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))" hoelzl@29803: proof (rule DERIV_isconst3[where x=x]) wenzelm@53079: fix x :: real wenzelm@53079: assume "x \ {0 <..< 2}" wenzelm@53079: hence "0 < x" and "x < 2" by auto wenzelm@53079: have "norm (1 - x) < 1" wenzelm@53079: using `0 < x` and `x < 2` by auto hoelzl@29803: have "1 / x = 1 / (1 - (1 - x))" by auto wenzelm@53079: also have "\ = (\ n. (1 - x)^n)" wenzelm@53079: using geometric_sums[OF `norm (1 - x) < 1`] by (rule sums_unique) wenzelm@53079: also have "\ = suminf (?f' x)" wenzelm@53079: unfolding power_mult_distrib[symmetric] wenzelm@53079: by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto) wenzelm@53079: finally have "DERIV ln x :> suminf (?f' x)" wenzelm@53079: using DERIV_ln[OF `0 < x`] unfolding divide_inverse by auto hoelzl@29803: moreover hoelzl@29803: have repos: "\ h x :: real. h - 1 + x = h + x - 1" by auto wenzelm@53079: have "DERIV (\x. suminf (?f x)) (x - 1) :> wenzelm@53079: (\n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)" hoelzl@29803: proof (rule DERIV_power_series') wenzelm@53079: show "x - 1 \ {- 1<..<1}" and "(0 :: real) < 1" wenzelm@53079: using `0 < x` `x < 2` by auto wenzelm@53079: fix x :: real wenzelm@53079: assume "x \ {- 1<..<1}" wenzelm@53079: hence "norm (-x) < 1" by auto wenzelm@53079: show "summable (\n. -1 ^ n * (1 / real (n + 1)) * real (Suc n) * x ^ n)" wenzelm@53079: unfolding One_nat_def wenzelm@53079: by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`]) hoelzl@29803: qed wenzelm@53079: hence "DERIV (\x. suminf (?f x)) (x - 1) :> suminf (?f' x)" wenzelm@53079: unfolding One_nat_def by auto wenzelm@53079: hence "DERIV (\x. suminf (?f (x - 1))) x :> suminf (?f' x)" hoelzl@56381: unfolding DERIV_def repos . hoelzl@29803: ultimately have "DERIV (\x. ln x - suminf (?f (x - 1))) x :> (suminf (?f' x) - suminf (?f' x))" hoelzl@29803: by (rule DERIV_diff) hoelzl@29803: thus "DERIV (\x. ln x - suminf (?f (x - 1))) x :> 0" by auto hoelzl@29803: qed (auto simp add: assms) huffman@44289: thus ?thesis by auto hoelzl@29803: qed paulson@15077: hoelzl@50326: lemma exp_first_two_terms: "exp x = 1 + x + (\ n. inverse(fact (n+2)) * (x ^ (n+2)))" hoelzl@50326: proof - wenzelm@53079: have "exp x = suminf (\n. inverse(fact n) * (x ^ n))" hoelzl@50326: by (simp add: exp_def) hoelzl@56193: also from summable_exp have "... = (\ n. inverse(fact(n+2)) * (x ^ (n+2))) + hoelzl@56193: (\ n::nat<2. inverse(fact n) * (x ^ n))" (is "_ = _ + ?a") hoelzl@50326: by (rule suminf_split_initial_segment) hoelzl@50326: also have "?a = 1 + x" hoelzl@50326: by (simp add: numeral_2_eq_2) hoelzl@56193: finally show ?thesis hoelzl@56193: by simp hoelzl@50326: qed hoelzl@50326: wenzelm@53079: lemma exp_bound: "0 <= (x::real) \ x <= 1 \ exp x <= 1 + x + x\<^sup>2" hoelzl@50326: proof - hoelzl@50326: assume a: "0 <= x" hoelzl@50326: assume b: "x <= 1" wenzelm@53079: { wenzelm@53079: fix n :: nat hoelzl@50326: have "2 * 2 ^ n \ fact (n + 2)" wenzelm@53079: by (induct n) simp_all hoelzl@50326: hence "real ((2::nat) * 2 ^ n) \ real (fact (n + 2))" hoelzl@50326: by (simp only: real_of_nat_le_iff) hoelzl@50326: hence "2 * 2 ^ n \ real (fact (n + 2))" hoelzl@50326: by simp hoelzl@50326: hence "inverse (fact (n + 2)) \ inverse (2 * 2 ^ n)" hoelzl@50326: by (rule le_imp_inverse_le) simp hoelzl@50326: hence "inverse (fact (n + 2)) \ 1/2 * (1/2)^n" wenzelm@53079: by (simp add: power_inverse) wenzelm@53015: hence "inverse (fact (n + 2)) * (x^n * x\<^sup>2) \ 1/2 * (1/2)^n * (1 * x\<^sup>2)" hoelzl@50326: by (rule mult_mono) nipkow@56536: (rule mult_mono, simp_all add: power_le_one a b) wenzelm@53015: hence "inverse (fact (n + 2)) * x ^ (n + 2) \ (x\<^sup>2/2) * ((1/2)^n)" haftmann@57514: unfolding power_add by (simp add: ac_simps del: fact_Suc) } hoelzl@50326: note aux1 = this wenzelm@53015: have "(\n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums (x\<^sup>2 / 2 * (1 / (1 - 1 / 2)))" hoelzl@50326: by (intro sums_mult geometric_sums, simp) wenzelm@53076: hence aux2: "(\n. x\<^sup>2 / 2 * (1 / 2) ^ n) sums x\<^sup>2" hoelzl@50326: by simp wenzelm@53079: have "suminf (\n. inverse(fact (n+2)) * (x ^ (n+2))) <= x\<^sup>2" hoelzl@50326: proof - wenzelm@53079: have "suminf (\n. inverse(fact (n+2)) * (x ^ (n+2))) <= wenzelm@53079: suminf (\n. (x\<^sup>2/2) * ((1/2)^n))" hoelzl@56213: apply (rule suminf_le) hoelzl@50326: apply (rule allI, rule aux1) hoelzl@50326: apply (rule summable_exp [THEN summable_ignore_initial_segment]) hoelzl@50326: by (rule sums_summable, rule aux2) wenzelm@53076: also have "... = x\<^sup>2" hoelzl@50326: by (rule sums_unique [THEN sym], rule aux2) hoelzl@50326: finally show ?thesis . hoelzl@50326: qed hoelzl@50326: thus ?thesis unfolding exp_first_two_terms by auto hoelzl@50326: qed hoelzl@50326: wenzelm@53079: lemma ln_one_minus_pos_upper_bound: "0 <= x \ x < 1 \ ln (1 - x) <= - x" hoelzl@50326: proof - hoelzl@50326: assume a: "0 <= (x::real)" and b: "x < 1" wenzelm@53076: have "(1 - x) * (1 + x + x\<^sup>2) = (1 - x^3)" hoelzl@50326: by (simp add: algebra_simps power2_eq_square power3_eq_cube) hoelzl@50326: also have "... <= 1" hoelzl@50326: by (auto simp add: a) wenzelm@53076: finally have "(1 - x) * (1 + x + x\<^sup>2) <= 1" . wenzelm@53015: moreover have c: "0 < 1 + x + x\<^sup>2" hoelzl@50326: by (simp add: add_pos_nonneg a) wenzelm@53076: ultimately have "1 - x <= 1 / (1 + x + x\<^sup>2)" hoelzl@50326: by (elim mult_imp_le_div_pos) hoelzl@50326: also have "... <= 1 / exp x" paulson@54576: by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs paulson@54576: real_sqrt_pow2_iff real_sqrt_power) hoelzl@50326: also have "... = exp (-x)" hoelzl@50326: by (auto simp add: exp_minus divide_inverse) hoelzl@50326: finally have "1 - x <= exp (- x)" . hoelzl@50326: also have "1 - x = exp (ln (1 - x))" paulson@54576: by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq) hoelzl@50326: finally have "exp (ln (1 - x)) <= exp (- x)" . hoelzl@50326: thus ?thesis by (auto simp only: exp_le_cancel_iff) hoelzl@50326: qed hoelzl@50326: hoelzl@50326: lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x" hoelzl@50326: apply (case_tac "0 <= x") hoelzl@50326: apply (erule exp_ge_add_one_self_aux) hoelzl@50326: apply (case_tac "x <= -1") hoelzl@50326: apply (subgoal_tac "1 + x <= 0") hoelzl@50326: apply (erule order_trans) hoelzl@50326: apply simp hoelzl@50326: apply simp hoelzl@50326: apply (subgoal_tac "1 + x = exp(ln (1 + x))") hoelzl@50326: apply (erule ssubst) hoelzl@50326: apply (subst exp_le_cancel_iff) hoelzl@50326: apply (subgoal_tac "ln (1 - (- x)) <= - (- x)") hoelzl@50326: apply simp hoelzl@50326: apply (rule ln_one_minus_pos_upper_bound) hoelzl@50326: apply auto hoelzl@50326: done hoelzl@50326: wenzelm@53079: lemma ln_one_plus_pos_lower_bound: "0 <= x \ x <= 1 \ x - x\<^sup>2 <= ln (1 + x)" hoelzl@51527: proof - hoelzl@51527: assume a: "0 <= x" and b: "x <= 1" wenzelm@53076: have "exp (x - x\<^sup>2) = exp x / exp (x\<^sup>2)" hoelzl@51527: by (rule exp_diff) wenzelm@53076: also have "... <= (1 + x + x\<^sup>2) / exp (x \<^sup>2)" paulson@54576: by (metis a b divide_right_mono exp_bound exp_ge_zero) wenzelm@53076: also have "... <= (1 + x + x\<^sup>2) / (1 + x\<^sup>2)" nipkow@56544: by (simp add: a divide_left_mono add_pos_nonneg) hoelzl@51527: also from a have "... <= 1 + x" hoelzl@51527: by (simp add: field_simps add_strict_increasing zero_le_mult_iff) wenzelm@53076: finally have "exp (x - x\<^sup>2) <= 1 + x" . hoelzl@51527: also have "... = exp (ln (1 + x))" hoelzl@51527: proof - hoelzl@51527: from a have "0 < 1 + x" by auto hoelzl@51527: thus ?thesis hoelzl@51527: by (auto simp only: exp_ln_iff [THEN sym]) hoelzl@51527: qed wenzelm@53076: finally have "exp (x - x\<^sup>2) <= exp (ln (1 + x))" . paulson@54576: thus ?thesis paulson@54576: by (metis exp_le_cancel_iff) hoelzl@51527: qed hoelzl@51527: wenzelm@53079: lemma ln_one_minus_pos_lower_bound: wenzelm@53079: "0 <= x \ x <= (1 / 2) \ - x - 2 * x\<^sup>2 <= ln (1 - x)" hoelzl@51527: proof - hoelzl@51527: assume a: "0 <= x" and b: "x <= (1 / 2)" wenzelm@53079: from b have c: "x < 1" by auto hoelzl@51527: then have "ln (1 - x) = - ln (1 + x / (1 - x))" paulson@54576: apply (subst ln_inverse [symmetric]) paulson@54576: apply (simp add: field_simps) paulson@54576: apply (rule arg_cong [where f=ln]) paulson@54576: apply (simp add: field_simps) paulson@54576: done hoelzl@51527: also have "- (x / (1 - x)) <= ..." wenzelm@53079: proof - hoelzl@51527: have "ln (1 + x / (1 - x)) <= x / (1 - x)" hoelzl@56571: using a c by (intro ln_add_one_self_le_self) auto hoelzl@51527: thus ?thesis hoelzl@51527: by auto hoelzl@51527: qed hoelzl@51527: also have "- (x / (1 - x)) = -x / (1 - x)" hoelzl@51527: by auto hoelzl@51527: finally have d: "- x / (1 - x) <= ln (1 - x)" . hoelzl@51527: have "0 < 1 - x" using a b by simp wenzelm@53076: hence e: "-x - 2 * x\<^sup>2 <= - x / (1 - x)" hoelzl@51527: using mult_right_le_one_le[of "x*x" "2*x"] a b wenzelm@53079: by (simp add: field_simps power2_eq_square) wenzelm@53076: from e d show "- x - 2 * x\<^sup>2 <= ln (1 - x)" hoelzl@51527: by (rule order_trans) hoelzl@51527: qed hoelzl@51527: wenzelm@53079: lemma ln_add_one_self_le_self2: "-1 < x \ ln(1 + x) <= x" hoelzl@51527: apply (subgoal_tac "ln (1 + x) \ ln (exp x)", simp) hoelzl@51527: apply (subst ln_le_cancel_iff) hoelzl@51527: apply auto wenzelm@53079: done hoelzl@51527: hoelzl@51527: lemma abs_ln_one_plus_x_minus_x_bound_nonneg: wenzelm@53079: "0 <= x \ x <= 1 \ abs(ln (1 + x) - x) <= x\<^sup>2" hoelzl@51527: proof - hoelzl@51527: assume x: "0 <= x" hoelzl@51527: assume x1: "x <= 1" hoelzl@51527: from x have "ln (1 + x) <= x" hoelzl@51527: by (rule ln_add_one_self_le_self) wenzelm@53079: then have "ln (1 + x) - x <= 0" hoelzl@51527: by simp hoelzl@51527: then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)" hoelzl@51527: by (rule abs_of_nonpos) wenzelm@53079: also have "... = x - ln (1 + x)" hoelzl@51527: by simp wenzelm@53076: also have "... <= x\<^sup>2" hoelzl@51527: proof - wenzelm@53076: from x x1 have "x - x\<^sup>2 <= ln (1 + x)" hoelzl@51527: by (intro ln_one_plus_pos_lower_bound) hoelzl@51527: thus ?thesis hoelzl@51527: by simp hoelzl@51527: qed hoelzl@51527: finally show ?thesis . hoelzl@51527: qed hoelzl@51527: hoelzl@51527: lemma abs_ln_one_plus_x_minus_x_bound_nonpos: wenzelm@53079: "-(1 / 2) <= x \ x <= 0 \ abs(ln (1 + x) - x) <= 2 * x\<^sup>2" hoelzl@51527: proof - hoelzl@51527: assume a: "-(1 / 2) <= x" hoelzl@51527: assume b: "x <= 0" wenzelm@53079: have "abs(ln (1 + x) - x) = x - ln(1 - (-x))" hoelzl@51527: apply (subst abs_of_nonpos) hoelzl@51527: apply simp hoelzl@51527: apply (rule ln_add_one_self_le_self2) hoelzl@51527: using a apply auto hoelzl@51527: done wenzelm@53076: also have "... <= 2 * x\<^sup>2" wenzelm@53076: apply (subgoal_tac "- (-x) - 2 * (-x)\<^sup>2 <= ln (1 - (-x))") hoelzl@51527: apply (simp add: algebra_simps) hoelzl@51527: apply (rule ln_one_minus_pos_lower_bound) hoelzl@51527: using a b apply auto hoelzl@51527: done hoelzl@51527: finally show ?thesis . hoelzl@51527: qed hoelzl@51527: hoelzl@51527: lemma abs_ln_one_plus_x_minus_x_bound: wenzelm@53079: "abs x <= 1 / 2 \ abs(ln (1 + x) - x) <= 2 * x\<^sup>2" hoelzl@51527: apply (case_tac "0 <= x") hoelzl@51527: apply (rule order_trans) hoelzl@51527: apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg) hoelzl@51527: apply auto hoelzl@51527: apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos) hoelzl@51527: apply auto wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma ln_x_over_x_mono: "exp 1 <= x \ x <= y \ (ln y / y) <= (ln x / x)" hoelzl@51527: proof - hoelzl@51527: assume x: "exp 1 <= x" "x <= y" hoelzl@51527: moreover have "0 < exp (1::real)" by simp hoelzl@51527: ultimately have a: "0 < x" and b: "0 < y" hoelzl@51527: by (fast intro: less_le_trans order_trans)+ hoelzl@51527: have "x * ln y - x * ln x = x * (ln y - ln x)" hoelzl@51527: by (simp add: algebra_simps) hoelzl@51527: also have "... = x * ln(y / x)" hoelzl@51527: by (simp only: ln_div a b) hoelzl@51527: also have "y / x = (x + (y - x)) / x" hoelzl@51527: by simp hoelzl@51527: also have "... = 1 + (y - x) / x" hoelzl@51527: using x a by (simp add: field_simps) hoelzl@51527: also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)" hoelzl@56571: using x a hoelzl@56571: by (intro mult_left_mono ln_add_one_self_le_self) simp_all hoelzl@51527: also have "... = y - x" using a by simp hoelzl@51527: also have "... = (y - x) * ln (exp 1)" by simp hoelzl@51527: also have "... <= (y - x) * ln x" hoelzl@51527: apply (rule mult_left_mono) hoelzl@51527: apply (subst ln_le_cancel_iff) hoelzl@51527: apply fact hoelzl@51527: apply (rule a) hoelzl@51527: apply (rule x) hoelzl@51527: using x apply simp hoelzl@51527: done hoelzl@51527: also have "... = y * ln x - x * ln x" hoelzl@51527: by (rule left_diff_distrib) hoelzl@51527: finally have "x * ln y <= y * ln x" hoelzl@51527: by arith hoelzl@51527: then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps) hoelzl@51527: also have "... = y * (ln x / x)" by simp hoelzl@51527: finally show ?thesis using b by (simp add: field_simps) hoelzl@51527: qed hoelzl@51527: wenzelm@53079: lemma ln_le_minus_one: "0 < x \ ln x \ x - 1" hoelzl@51527: using exp_ge_add_one_self[of "ln x"] by simp hoelzl@51527: hoelzl@51527: lemma ln_eq_minus_one: wenzelm@53079: assumes "0 < x" "ln x = x - 1" wenzelm@53079: shows "x = 1" hoelzl@51527: proof - wenzelm@53079: let ?l = "\y. ln y - y + 1" hoelzl@51527: have D: "\x. 0 < x \ DERIV ?l x :> (1 / x - 1)" hoelzl@56381: by (auto intro!: derivative_eq_intros) hoelzl@51527: hoelzl@51527: show ?thesis hoelzl@51527: proof (cases rule: linorder_cases) hoelzl@51527: assume "x < 1" hoelzl@51527: from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast hoelzl@51527: from `x < a` have "?l x < ?l a" hoelzl@51527: proof (rule DERIV_pos_imp_increasing, safe) wenzelm@53079: fix y wenzelm@53079: assume "x \ y" "y \ a" hoelzl@51527: with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y" hoelzl@51527: by (auto simp: field_simps) hoelzl@51527: with D show "\z. DERIV ?l y :> z \ 0 < z" hoelzl@51527: by auto hoelzl@51527: qed hoelzl@51527: also have "\ \ 0" hoelzl@51527: using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps) hoelzl@51527: finally show "x = 1" using assms by auto hoelzl@51527: next hoelzl@51527: assume "1 < x" wenzelm@53079: from dense[OF this] obtain a where "1 < a" "a < x" by blast hoelzl@51527: from `a < x` have "?l x < ?l a" hoelzl@51527: proof (rule DERIV_neg_imp_decreasing, safe) wenzelm@53079: fix y wenzelm@53079: assume "a \ y" "y \ x" hoelzl@51527: with `1 < a` have "1 / y - 1 < 0" "0 < y" hoelzl@51527: by (auto simp: field_simps) hoelzl@51527: with D show "\z. DERIV ?l y :> z \ z < 0" hoelzl@51527: by blast hoelzl@51527: qed hoelzl@51527: also have "\ \ 0" hoelzl@51527: using ln_le_minus_one `1 < a` by (auto simp: field_simps) hoelzl@51527: finally show "x = 1" using assms by auto wenzelm@53079: next wenzelm@53079: assume "x = 1" wenzelm@53079: then show ?thesis by simp wenzelm@53079: qed hoelzl@51527: qed hoelzl@51527: hoelzl@50326: lemma exp_at_bot: "(exp ---> (0::real)) at_bot" hoelzl@50326: unfolding tendsto_Zfun_iff hoelzl@50326: proof (rule ZfunI, simp add: eventually_at_bot_dense) hoelzl@50326: fix r :: real assume "0 < r" wenzelm@53079: { wenzelm@53079: fix x wenzelm@53079: assume "x < ln r" hoelzl@50326: then have "exp x < exp (ln r)" hoelzl@50326: by simp hoelzl@50326: with `0 < r` have "exp x < r" wenzelm@53079: by simp wenzelm@53079: } hoelzl@50326: then show "\k. \n at_top" hoelzl@50346: by (rule filterlim_at_top_at_top[where Q="\x. True" and P="\x. 0 < x" and g="ln"]) hoelzl@50346: (auto intro: eventually_gt_at_top) hoelzl@50326: hoelzl@50326: lemma ln_at_0: "LIM x at_right 0. ln x :> at_bot" hoelzl@50346: by (rule filterlim_at_bot_at_right[where Q="\x. 0 < x" and P="\x. True" and g="exp"]) hoelzl@51641: (auto simp: eventually_at_filter) hoelzl@50326: hoelzl@50326: lemma ln_at_top: "LIM x at_top. ln x :> at_top" hoelzl@50346: by (rule filterlim_at_top_at_top[where Q="\x. 0 < x" and P="\x. True" and g="exp"]) hoelzl@50346: (auto intro: eventually_gt_at_top) hoelzl@50326: hoelzl@50347: lemma tendsto_power_div_exp_0: "((\x. x ^ k / exp x) ---> (0::real)) at_top" hoelzl@50347: proof (induct k) wenzelm@53079: case 0 hoelzl@50347: show "((\x. x ^ 0 / exp x) ---> (0::real)) at_top" hoelzl@50347: by (simp add: inverse_eq_divide[symmetric]) hoelzl@50347: (metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono hoelzl@50347: at_top_le_at_infinity order_refl) hoelzl@50347: next hoelzl@50347: case (Suc k) hoelzl@50347: show ?case hoelzl@50347: proof (rule lhospital_at_top_at_top) hoelzl@50347: show "eventually (\x. DERIV (\x. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top" hoelzl@56381: by eventually_elim (intro derivative_eq_intros, auto) hoelzl@50347: show "eventually (\x. DERIV exp x :> exp x) at_top" hoelzl@56381: by eventually_elim auto hoelzl@50347: show "eventually (\x. exp x \ 0) at_top" hoelzl@50347: by auto hoelzl@50347: from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"] hoelzl@50347: show "((\x. real (Suc k) * x ^ k / exp x) ---> 0) at_top" hoelzl@50347: by simp hoelzl@50347: qed (rule exp_at_top) hoelzl@50347: qed hoelzl@50347: hoelzl@51527: wenzelm@53079: definition powr :: "[real,real] => real" (infixr "powr" 80) wenzelm@53079: -- {*exponentation with real exponent*} wenzelm@53079: where "x powr a = exp(a * ln x)" wenzelm@53079: wenzelm@53079: definition log :: "[real,real] => real" wenzelm@53079: -- {*logarithm of @{term x} to base @{term a}*} wenzelm@53079: where "log a x = ln x / ln a" hoelzl@51527: hoelzl@51527: hoelzl@51527: lemma tendsto_log [tendsto_intros]: hoelzl@51527: "\(f ---> a) F; (g ---> b) F; 0 < a; a \ 1; 0 < b\ \ ((\x. log (f x) (g x)) ---> log a b) F" hoelzl@51527: unfolding log_def by (intro tendsto_intros) auto hoelzl@51527: hoelzl@51527: lemma continuous_log: wenzelm@53079: assumes "continuous F f" wenzelm@53079: and "continuous F g" wenzelm@53079: and "0 < f (Lim F (\x. x))" wenzelm@53079: and "f (Lim F (\x. x)) \ 1" wenzelm@53079: and "0 < g (Lim F (\x. x))" hoelzl@51527: shows "continuous F (\x. log (f x) (g x))" hoelzl@51527: using assms unfolding continuous_def by (rule tendsto_log) hoelzl@51527: hoelzl@51527: lemma continuous_at_within_log[continuous_intros]: wenzelm@53079: assumes "continuous (at a within s) f" wenzelm@53079: and "continuous (at a within s) g" wenzelm@53079: and "0 < f a" wenzelm@53079: and "f a \ 1" wenzelm@53079: and "0 < g a" hoelzl@51527: shows "continuous (at a within s) (\x. log (f x) (g x))" hoelzl@51527: using assms unfolding continuous_within by (rule tendsto_log) hoelzl@51527: hoelzl@51527: lemma isCont_log[continuous_intros, simp]: hoelzl@51527: assumes "isCont f a" "isCont g a" "0 < f a" "f a \ 1" "0 < g a" hoelzl@51527: shows "isCont (\x. log (f x) (g x)) a" hoelzl@51527: using assms unfolding continuous_at by (rule tendsto_log) hoelzl@51527: hoelzl@56371: lemma continuous_on_log[continuous_intros]: wenzelm@53079: assumes "continuous_on s f" "continuous_on s g" wenzelm@53079: and "\x\s. 0 < f x" "\x\s. f x \ 1" "\x\s. 0 < g x" hoelzl@51527: shows "continuous_on s (\x. log (f x) (g x))" hoelzl@51527: using assms unfolding continuous_on_def by (fast intro: tendsto_log) hoelzl@51527: hoelzl@51527: lemma powr_one_eq_one [simp]: "1 powr a = 1" wenzelm@53079: by (simp add: powr_def) hoelzl@51527: hoelzl@51527: lemma powr_zero_eq_one [simp]: "x powr 0 = 1" wenzelm@53079: by (simp add: powr_def) hoelzl@51527: hoelzl@51527: lemma powr_one_gt_zero_iff [simp]: "(x powr 1 = x) = (0 < x)" wenzelm@53079: by (simp add: powr_def) hoelzl@51527: declare powr_one_gt_zero_iff [THEN iffD2, simp] hoelzl@51527: wenzelm@53079: lemma powr_mult: "0 < x \ 0 < y \ (x * y) powr a = (x powr a) * (y powr a)" wenzelm@53079: by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left) hoelzl@51527: hoelzl@51527: lemma powr_gt_zero [simp]: "0 < x powr a" wenzelm@53079: by (simp add: powr_def) hoelzl@51527: hoelzl@51527: lemma powr_ge_pzero [simp]: "0 <= x powr y" wenzelm@53079: by (rule order_less_imp_le, rule powr_gt_zero) hoelzl@51527: hoelzl@51527: lemma powr_not_zero [simp]: "x powr a \ 0" wenzelm@53079: by (simp add: powr_def) wenzelm@53079: wenzelm@53079: lemma powr_divide: "0 < x \ 0 < y \ (x / y) powr a = (x powr a) / (y powr a)" wenzelm@53079: apply (simp add: divide_inverse positive_imp_inverse_positive powr_mult) wenzelm@53079: apply (simp add: powr_def exp_minus [symmetric] exp_add [symmetric] ln_inverse) wenzelm@53079: done hoelzl@51527: hoelzl@51527: lemma powr_divide2: "x powr a / x powr b = x powr (a - b)" hoelzl@51527: apply (simp add: powr_def) hoelzl@51527: apply (subst exp_diff [THEN sym]) hoelzl@51527: apply (simp add: left_diff_distrib) wenzelm@53079: done hoelzl@51527: hoelzl@51527: lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)" wenzelm@53079: by (simp add: powr_def exp_add [symmetric] distrib_right) wenzelm@53079: wenzelm@53079: lemma powr_mult_base: "0 < x \x * x powr y = x powr (1 + y)" wenzelm@53079: using assms by (auto simp: powr_add) hoelzl@51527: hoelzl@51527: lemma powr_powr: "(x powr a) powr b = x powr (a * b)" wenzelm@53079: by (simp add: powr_def) hoelzl@51527: hoelzl@51527: lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a" haftmann@57512: by (simp add: powr_powr mult.commute) hoelzl@51527: hoelzl@51527: lemma powr_minus: "x powr (-a) = inverse (x powr a)" wenzelm@53079: by (simp add: powr_def exp_minus [symmetric]) hoelzl@51527: hoelzl@51527: lemma powr_minus_divide: "x powr (-a) = 1/(x powr a)" wenzelm@53079: by (simp add: divide_inverse powr_minus) wenzelm@53079: wenzelm@53079: lemma powr_less_mono: "a < b \ 1 < x \ x powr a < x powr b" wenzelm@53079: by (simp add: powr_def) wenzelm@53079: wenzelm@53079: lemma powr_less_cancel: "x powr a < x powr b \ 1 < x \ a < b" wenzelm@53079: by (simp add: powr_def) wenzelm@53079: wenzelm@53079: lemma powr_less_cancel_iff [simp]: "1 < x \ (x powr a < x powr b) = (a < b)" wenzelm@53079: by (blast intro: powr_less_cancel powr_less_mono) wenzelm@53079: wenzelm@53079: lemma powr_le_cancel_iff [simp]: "1 < x \ (x powr a \ x powr b) = (a \ b)" wenzelm@53079: by (simp add: linorder_not_less [symmetric]) hoelzl@51527: hoelzl@51527: lemma log_ln: "ln x = log (exp(1)) x" wenzelm@53079: by (simp add: log_def) wenzelm@53079: wenzelm@53079: lemma DERIV_log: wenzelm@53079: assumes "x > 0" wenzelm@53079: shows "DERIV (\y. log b y) x :> 1 / (ln b * x)" hoelzl@51527: proof - hoelzl@51527: def lb \ "1 / ln b" hoelzl@51527: moreover have "DERIV (\y. lb * ln y) x :> lb / x" hoelzl@56381: using `x > 0` by (auto intro!: derivative_eq_intros) hoelzl@51527: ultimately show ?thesis hoelzl@51527: by (simp add: log_def) hoelzl@51527: qed hoelzl@51527: hoelzl@56381: lemmas DERIV_log[THEN DERIV_chain2, derivative_intros] hoelzl@51527: wenzelm@53079: lemma powr_log_cancel [simp]: "0 < a \ a \ 1 \ 0 < x \ a powr (log a x) = x" wenzelm@53079: by (simp add: powr_def log_def) wenzelm@53079: wenzelm@53079: lemma log_powr_cancel [simp]: "0 < a \ a \ 1 \ log a (a powr y) = y" wenzelm@53079: by (simp add: log_def powr_def) wenzelm@53079: wenzelm@53079: lemma log_mult: wenzelm@53079: "0 < a \ a \ 1 \ 0 < x \ 0 < y \ wenzelm@53079: log a (x * y) = log a x + log a y" wenzelm@53079: by (simp add: log_def ln_mult divide_inverse distrib_right) wenzelm@53079: wenzelm@53079: lemma log_eq_div_ln_mult_log: wenzelm@53079: "0 < a \ a \ 1 \ 0 < b \ b \ 1 \ 0 < x \ wenzelm@53079: log a x = (ln b/ln a) * log b x" wenzelm@53079: by (simp add: log_def divide_inverse) hoelzl@51527: hoelzl@51527: text{*Base 10 logarithms*} wenzelm@53079: lemma log_base_10_eq1: "0 < x \ log 10 x = (ln (exp 1) / ln 10) * ln x" wenzelm@53079: by (simp add: log_def) wenzelm@53079: wenzelm@53079: lemma log_base_10_eq2: "0 < x \ log 10 x = (log 10 (exp 1)) * ln x" wenzelm@53079: by (simp add: log_def) hoelzl@51527: hoelzl@51527: lemma log_one [simp]: "log a 1 = 0" wenzelm@53079: by (simp add: log_def) hoelzl@51527: hoelzl@51527: lemma log_eq_one [simp]: "[| 0 < a; a \ 1 |] ==> log a a = 1" wenzelm@53079: by (simp add: log_def) wenzelm@53079: wenzelm@53079: lemma log_inverse: "0 < a \ a \ 1 \ 0 < x \ log a (inverse x) = - log a x" wenzelm@53079: apply (rule_tac a1 = "log a x" in add_left_cancel [THEN iffD1]) wenzelm@53079: apply (simp add: log_mult [symmetric]) wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma log_divide: "0 < a \ a \ 1 \ 0 < x \ 0 < y \ log a (x/y) = log a x - log a y" wenzelm@53079: by (simp add: log_mult divide_inverse log_inverse) hoelzl@51527: hoelzl@51527: lemma log_less_cancel_iff [simp]: wenzelm@53079: "1 < a \ 0 < x \ 0 < y \ log a x < log a y \ x < y" wenzelm@53079: apply safe wenzelm@53079: apply (rule_tac [2] powr_less_cancel) wenzelm@53079: apply (drule_tac a = "log a x" in powr_less_mono, auto) wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma log_inj: wenzelm@53079: assumes "1 < b" wenzelm@53079: shows "inj_on (log b) {0 <..}" hoelzl@51527: proof (rule inj_onI, simp) wenzelm@53079: fix x y wenzelm@53079: assume pos: "0 < x" "0 < y" and *: "log b x = log b y" hoelzl@51527: show "x = y" hoelzl@51527: proof (cases rule: linorder_cases) wenzelm@53079: assume "x = y" wenzelm@53079: then show ?thesis by simp wenzelm@53079: next hoelzl@51527: assume "x < y" hence "log b x < log b y" hoelzl@51527: using log_less_cancel_iff[OF `1 < b`] pos by simp wenzelm@53079: then show ?thesis using * by simp hoelzl@51527: next hoelzl@51527: assume "y < x" hence "log b y < log b x" hoelzl@51527: using log_less_cancel_iff[OF `1 < b`] pos by simp wenzelm@53079: then show ?thesis using * by simp wenzelm@53079: qed hoelzl@51527: qed hoelzl@51527: hoelzl@51527: lemma log_le_cancel_iff [simp]: wenzelm@53079: "1 < a \ 0 < x \ 0 < y \ (log a x \ log a y) = (x \ y)" wenzelm@53079: by (simp add: linorder_not_less [symmetric]) hoelzl@51527: hoelzl@51527: lemma zero_less_log_cancel_iff[simp]: "1 < a \ 0 < x \ 0 < log a x \ 1 < x" hoelzl@51527: using log_less_cancel_iff[of a 1 x] by simp hoelzl@51527: hoelzl@51527: lemma zero_le_log_cancel_iff[simp]: "1 < a \ 0 < x \ 0 \ log a x \ 1 \ x" hoelzl@51527: using log_le_cancel_iff[of a 1 x] by simp hoelzl@51527: hoelzl@51527: lemma log_less_zero_cancel_iff[simp]: "1 < a \ 0 < x \ log a x < 0 \ x < 1" hoelzl@51527: using log_less_cancel_iff[of a x 1] by simp hoelzl@51527: hoelzl@51527: lemma log_le_zero_cancel_iff[simp]: "1 < a \ 0 < x \ log a x \ 0 \ x \ 1" hoelzl@51527: using log_le_cancel_iff[of a x 1] by simp hoelzl@51527: hoelzl@51527: lemma one_less_log_cancel_iff[simp]: "1 < a \ 0 < x \ 1 < log a x \ a < x" hoelzl@51527: using log_less_cancel_iff[of a a x] by simp hoelzl@51527: hoelzl@51527: lemma one_le_log_cancel_iff[simp]: "1 < a \ 0 < x \ 1 \ log a x \ a \ x" hoelzl@51527: using log_le_cancel_iff[of a a x] by simp hoelzl@51527: hoelzl@51527: lemma log_less_one_cancel_iff[simp]: "1 < a \ 0 < x \ log a x < 1 \ x < a" hoelzl@51527: using log_less_cancel_iff[of a x a] by simp hoelzl@51527: hoelzl@51527: lemma log_le_one_cancel_iff[simp]: "1 < a \ 0 < x \ log a x \ 1 \ x \ a" hoelzl@51527: using log_le_cancel_iff[of a x a] by simp hoelzl@51527: hoelzl@51527: lemma powr_realpow: "0 < x ==> x powr (real n) = x^n" wenzelm@53079: apply (induct n) wenzelm@53079: apply simp hoelzl@51527: apply (subgoal_tac "real(Suc n) = real n + 1") hoelzl@51527: apply (erule ssubst) hoelzl@51527: apply (subst powr_add, simp, simp) wenzelm@53079: done hoelzl@51527: haftmann@54489: lemma powr_realpow_numeral: "0 < x \ x powr (numeral n :: real) = x ^ (numeral n)" haftmann@54489: unfolding real_of_nat_numeral [symmetric] by (rule powr_realpow) noschinl@52139: nipkow@57180: lemma powr2_sqrt[simp]: "0 < x \ sqrt x powr 2 = x" nipkow@57180: by(simp add: powr_realpow_numeral) nipkow@57180: hoelzl@51527: lemma powr_realpow2: "0 <= x ==> 0 < n ==> x^n = (if (x = 0) then 0 else x powr (real n))" hoelzl@51527: apply (case_tac "x = 0", simp, simp) hoelzl@51527: apply (rule powr_realpow [THEN sym], simp) wenzelm@53079: done hoelzl@51527: hoelzl@51527: lemma powr_int: hoelzl@51527: assumes "x > 0" hoelzl@51527: shows "x powr i = (if i \ 0 then x ^ nat i else 1 / x ^ nat (-i))" wenzelm@53079: proof (cases "i < 0") wenzelm@53079: case True hoelzl@51527: have r: "x powr i = 1 / x powr (-i)" by (simp add: powr_minus field_simps) hoelzl@51527: show ?thesis using `i < 0` `x > 0` by (simp add: r field_simps powr_realpow[symmetric]) wenzelm@53079: next wenzelm@53079: case False wenzelm@53079: then show ?thesis by (simp add: assms powr_realpow[symmetric]) wenzelm@53079: qed hoelzl@51527: haftmann@54489: lemma powr_one: "0 < x \ x powr 1 = x" haftmann@54489: using powr_realpow [of x 1] by simp haftmann@54489: haftmann@54489: lemma powr_numeral: "0 < x \ x powr numeral n = x ^ numeral n" haftmann@54489: by (fact powr_realpow_numeral) haftmann@54489: haftmann@54489: lemma powr_neg_one: "0 < x \ x powr - 1 = 1 / x" haftmann@54489: using powr_int [of x "- 1"] by simp haftmann@54489: haftmann@54489: lemma powr_neg_numeral: "0 < x \ x powr - numeral n = 1 / x ^ numeral n" haftmann@54489: using powr_int [of x "- numeral n"] by simp hoelzl@51527: wenzelm@53079: lemma root_powr_inverse: "0 < n \ 0 < x \ root n x = x powr (1/n)" hoelzl@51527: by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr) hoelzl@51527: hoelzl@56483: lemma ln_powr: "ln (x powr y) = y * ln x" hoelzl@56483: by (simp add: powr_def) hoelzl@56483: nipkow@56952: lemma ln_root: "\ n > 0; b > 0 \ \ ln (root n b) = ln b / n" nipkow@56952: by(simp add: root_powr_inverse ln_powr) nipkow@56952: hoelzl@57275: lemma ln_sqrt: "0 < x \ ln (sqrt x) = ln x / 2" haftmann@57512: by (simp add: ln_powr powr_numeral ln_powr[symmetric] mult.commute) hoelzl@57275: nipkow@56952: lemma log_root: "\ n > 0; a > 0 \ \ log b (root n a) = log b a / n" nipkow@56952: by(simp add: log_def ln_root) nipkow@56952: hoelzl@56483: lemma log_powr: "log b (x powr y) = y * log b x" hoelzl@56483: by (simp add: log_def ln_powr) hoelzl@56483: hoelzl@56483: lemma log_nat_power: "0 < x \ log b (x ^ n) = real n * log b x" hoelzl@56483: by (simp add: log_powr powr_realpow [symmetric]) hoelzl@56483: hoelzl@56483: lemma log_base_change: "0 < a \ a \ 1 \ log b x = log a x / log a b" hoelzl@56483: by (simp add: log_def) hoelzl@56483: hoelzl@56483: lemma log_base_pow: "0 < a \ log (a ^ n) x = log a x / n" hoelzl@56483: by (simp add: log_def ln_realpow) hoelzl@56483: hoelzl@56483: lemma log_base_powr: "log (a powr b) x = log a x / b" hoelzl@56483: by (simp add: log_def ln_powr) hoelzl@51527: nipkow@56952: lemma log_base_root: "\ n > 0; b > 0 \ \ log (root n b) x = n * (log b x)" nipkow@56952: by(simp add: log_def ln_root) nipkow@56952: hoelzl@51527: lemma ln_bound: "1 <= x ==> ln x <= x" hoelzl@51527: apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1") hoelzl@51527: apply simp hoelzl@51527: apply (rule ln_add_one_self_le_self, simp) wenzelm@53079: done hoelzl@51527: hoelzl@51527: lemma powr_mono: "a <= b ==> 1 <= x ==> x powr a <= x powr b" wenzelm@53079: apply (cases "x = 1", simp) wenzelm@53079: apply (cases "a = b", simp) hoelzl@51527: apply (rule order_less_imp_le) hoelzl@51527: apply (rule powr_less_mono, auto) wenzelm@53079: done hoelzl@51527: hoelzl@51527: lemma ge_one_powr_ge_zero: "1 <= x ==> 0 <= a ==> 1 <= x powr a" hoelzl@51527: apply (subst powr_zero_eq_one [THEN sym]) hoelzl@51527: apply (rule powr_mono, assumption+) wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma powr_less_mono2: "0 < a ==> 0 < x ==> x < y ==> x powr a < y powr a" hoelzl@51527: apply (unfold powr_def) hoelzl@51527: apply (rule exp_less_mono) hoelzl@51527: apply (rule mult_strict_left_mono) hoelzl@51527: apply (subst ln_less_cancel_iff, assumption) hoelzl@51527: apply (rule order_less_trans) hoelzl@51527: prefer 2 hoelzl@51527: apply assumption+ wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma powr_less_mono2_neg: "a < 0 ==> 0 < x ==> x < y ==> y powr a < x powr a" hoelzl@51527: apply (unfold powr_def) hoelzl@51527: apply (rule exp_less_mono) hoelzl@51527: apply (rule mult_strict_left_mono_neg) hoelzl@51527: apply (subst ln_less_cancel_iff) hoelzl@51527: apply assumption hoelzl@51527: apply (rule order_less_trans) hoelzl@51527: prefer 2 hoelzl@51527: apply assumption+ wenzelm@53079: done hoelzl@51527: hoelzl@51527: lemma powr_mono2: "0 <= a ==> 0 < x ==> x <= y ==> x powr a <= y powr a" hoelzl@51527: apply (case_tac "a = 0", simp) hoelzl@51527: apply (case_tac "x = y", simp) paulson@54575: apply (metis less_eq_real_def powr_less_mono2) wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma powr_inj: "0 < a \ a \ 1 \ a powr x = a powr y \ x = y" hoelzl@51527: unfolding powr_def exp_inj_iff by simp hoelzl@51527: hoelzl@51527: lemma ln_powr_bound: "1 <= x ==> 0 < a ==> ln x <= (x powr a) / a" haftmann@57512: by (metis less_eq_real_def ln_less_self mult_imp_le_div_pos ln_powr mult.commute paulson@54575: order.strict_trans2 powr_gt_zero zero_less_one) hoelzl@51527: hoelzl@51527: lemma ln_powr_bound2: hoelzl@51527: assumes "1 < x" and "0 < a" hoelzl@51527: shows "(ln x) powr a <= (a powr a) * x" hoelzl@51527: proof - hoelzl@51527: from assms have "ln x <= (x powr (1 / a)) / (1 / a)" paulson@54575: by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff) hoelzl@51527: also have "... = a * (x powr (1 / a))" hoelzl@51527: by simp hoelzl@51527: finally have "(ln x) powr a <= (a * (x powr (1 / a))) powr a" paulson@54575: by (metis assms less_imp_le ln_gt_zero powr_mono2) hoelzl@51527: also have "... = (a powr a) * ((x powr (1 / a)) powr a)" paulson@54575: by (metis assms(2) powr_mult powr_gt_zero) hoelzl@51527: also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)" hoelzl@51527: by (rule powr_powr) paulson@54575: also have "... = x" using assms paulson@54575: by auto hoelzl@51527: finally show ?thesis . hoelzl@51527: qed hoelzl@51527: hoelzl@51527: lemma tendsto_powr [tendsto_intros]: hoelzl@57275: "\(f ---> a) F; (g ---> b) F; a \ 0\ \ ((\x. f x powr g x) ---> a powr b) F" hoelzl@51527: unfolding powr_def by (intro tendsto_intros) hoelzl@51527: hoelzl@51527: lemma continuous_powr: wenzelm@53079: assumes "continuous F f" wenzelm@53079: and "continuous F g" hoelzl@57275: and "f (Lim F (\x. x)) \ 0" hoelzl@51527: shows "continuous F (\x. (f x) powr (g x))" hoelzl@51527: using assms unfolding continuous_def by (rule tendsto_powr) hoelzl@51527: hoelzl@51527: lemma continuous_at_within_powr[continuous_intros]: wenzelm@53079: assumes "continuous (at a within s) f" wenzelm@53079: and "continuous (at a within s) g" hoelzl@57275: and "f a \ 0" hoelzl@51527: shows "continuous (at a within s) (\x. (f x) powr (g x))" hoelzl@51527: using assms unfolding continuous_within by (rule tendsto_powr) hoelzl@51527: hoelzl@51527: lemma isCont_powr[continuous_intros, simp]: hoelzl@57275: assumes "isCont f a" "isCont g a" "f a \ 0" hoelzl@51527: shows "isCont (\x. (f x) powr g x) a" hoelzl@51527: using assms unfolding continuous_at by (rule tendsto_powr) hoelzl@51527: hoelzl@56371: lemma continuous_on_powr[continuous_intros]: hoelzl@57275: assumes "continuous_on s f" "continuous_on s g" and "\x\s. f x \ 0" hoelzl@51527: shows "continuous_on s (\x. (f x) powr (g x))" hoelzl@51527: using assms unfolding continuous_on_def by (fast intro: tendsto_powr) hoelzl@51527: hoelzl@51527: (* FIXME: generalize by replacing d by with g x and g ---> d? *) hoelzl@51527: lemma tendsto_zero_powrI: hoelzl@51527: assumes "eventually (\x. 0 < f x ) F" and "(f ---> 0) F" wenzelm@53079: and "0 < d" hoelzl@51527: shows "((\x. f x powr d) ---> 0) F" hoelzl@51527: proof (rule tendstoI) hoelzl@51527: fix e :: real assume "0 < e" hoelzl@51527: def Z \ "e powr (1 / d)" hoelzl@51527: with `0 < e` have "0 < Z" by simp hoelzl@51527: with assms have "eventually (\x. 0 < f x \ dist (f x) 0 < Z) F" hoelzl@51527: by (intro eventually_conj tendstoD) hoelzl@51527: moreover hoelzl@51527: from assms have "\x. 0 < x \ dist x 0 < Z \ x powr d < Z powr d" hoelzl@51527: by (intro powr_less_mono2) (auto simp: dist_real_def) hoelzl@51527: with assms `0 < e` have "\x. 0 < x \ dist x 0 < Z \ dist (x powr d) 0 < e" hoelzl@51527: unfolding dist_real_def Z_def by (auto simp: powr_powr) hoelzl@51527: ultimately hoelzl@51527: show "eventually (\x. dist (f x powr d) 0 < e) F" by (rule eventually_elim1) hoelzl@51527: qed hoelzl@51527: hoelzl@51527: lemma tendsto_neg_powr: wenzelm@53079: assumes "s < 0" wenzelm@53079: and "LIM x F. f x :> at_top" hoelzl@51527: shows "((\x. f x powr s) ---> 0) F" hoelzl@51527: proof (rule tendstoI) hoelzl@51527: fix e :: real assume "0 < e" hoelzl@51527: def Z \ "e powr (1 / s)" hoelzl@51527: from assms have "eventually (\x. Z < f x) F" hoelzl@51527: by (simp add: filterlim_at_top_dense) hoelzl@51527: moreover hoelzl@51527: from assms have "\x. Z < x \ x powr s < Z powr s" hoelzl@51527: by (auto simp: Z_def intro!: powr_less_mono2_neg) hoelzl@51527: with assms `0 < e` have "\x. Z < x \ dist (x powr s) 0 < e" hoelzl@51527: by (simp add: powr_powr Z_def dist_real_def) hoelzl@51527: ultimately hoelzl@51527: show "eventually (\x. dist (f x powr s) 0 < e) F" by (rule eventually_elim1) hoelzl@51527: qed hoelzl@51527: hoelzl@57275: (* it is funny that this isn't in the library! It could go in Transcendental *) hoelzl@57275: lemma tendsto_exp_limit_at_right: hoelzl@57275: fixes x :: real hoelzl@57275: shows "((\y. (1 + x * y) powr (1 / y)) ---> exp x) (at_right 0)" hoelzl@57275: proof cases hoelzl@57275: assume "x \ 0" hoelzl@57275: hoelzl@57275: have "((\y. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)" hoelzl@57275: by (auto intro!: derivative_eq_intros) hoelzl@57275: then have "((\y. ln (1 + x * y) / y) ---> x) (at 0)" hoelzl@57275: by (auto simp add: has_field_derivative_def field_has_derivative_at) hoelzl@57275: then have *: "((\y. exp (ln (1 + x * y) / y)) ---> exp x) (at 0)" hoelzl@57275: by (rule tendsto_intros) hoelzl@57275: then show ?thesis hoelzl@57275: proof (rule filterlim_mono_eventually) hoelzl@57275: show "eventually (\xa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)" hoelzl@57275: unfolding eventually_at_right[OF zero_less_one] hoelzl@57275: using `x \ 0` by (intro exI[of _ "1 / \x\"]) (auto simp: field_simps powr_def) hoelzl@57275: qed (simp_all add: at_eq_sup_left_right) hoelzl@57275: qed (simp add: tendsto_const) hoelzl@57275: hoelzl@57275: lemma tendsto_exp_limit_at_top: hoelzl@57275: fixes x :: real hoelzl@57275: shows "((\y. (1 + x / y) powr y) ---> exp x) at_top" hoelzl@57275: apply (subst filterlim_at_top_to_right) hoelzl@57275: apply (simp add: inverse_eq_divide) hoelzl@57275: apply (rule tendsto_exp_limit_at_right) hoelzl@57275: done hoelzl@57275: hoelzl@57275: lemma tendsto_exp_limit_sequentially: hoelzl@57275: fixes x :: real hoelzl@57275: shows "(\n. (1 + x / n) ^ n) ----> exp x" hoelzl@57275: proof (rule filterlim_mono_eventually) hoelzl@57275: from reals_Archimedean2 [of "abs x"] obtain n :: nat where *: "real n > abs x" .. hoelzl@57275: hence "eventually (\n :: nat. 0 < 1 + x / real n) at_top" hoelzl@57275: apply (intro eventually_sequentiallyI [of n]) hoelzl@57275: apply (case_tac "x \ 0") hoelzl@57275: apply (rule add_pos_nonneg, auto intro: divide_nonneg_nonneg) hoelzl@57275: apply (subgoal_tac "x / real xa > -1") hoelzl@57275: apply (auto simp add: field_simps) hoelzl@57275: done hoelzl@57275: then show "eventually (\n. (1 + x / n) powr n = (1 + x / n) ^ n) at_top" hoelzl@57275: by (rule eventually_elim1) (erule powr_realpow) hoelzl@57275: show "(\n. (1 + x / real n) powr real n) ----> exp x" hoelzl@57275: by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially]) hoelzl@57275: qed auto hoelzl@57275: huffman@29164: subsection {* Sine and Cosine *} huffman@29164: huffman@44308: definition sin_coeff :: "nat \ real" where huffman@31271: "sin_coeff = (\n. if even n then 0 else -1 ^ ((n - Suc 0) div 2) / real (fact n))" huffman@31271: huffman@44308: definition cos_coeff :: "nat \ real" where huffman@31271: "cos_coeff = (\n. if even n then (-1 ^ (n div 2)) / real (fact n) else 0)" huffman@31271: wenzelm@53079: definition sin :: "real \ real" wenzelm@53079: where "sin = (\x. \n. sin_coeff n * x ^ n)" wenzelm@53079: wenzelm@53079: definition cos :: "real \ real" wenzelm@53079: where "cos = (\x. \n. cos_coeff n * x ^ n)" huffman@31271: huffman@44319: lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0" huffman@44319: unfolding sin_coeff_def by simp huffman@44319: huffman@44319: lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1" huffman@44319: unfolding cos_coeff_def by simp huffman@44319: huffman@44319: lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)" huffman@44319: unfolding cos_coeff_def sin_coeff_def huffman@44319: by (simp del: mult_Suc) huffman@44319: huffman@44319: lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)" huffman@44319: unfolding cos_coeff_def sin_coeff_def hoelzl@56479: by (simp del: mult_Suc, auto simp add: odd_Suc_mult_two_ex) huffman@44319: huffman@31271: lemma summable_sin: "summable (\n. sin_coeff n * x ^ n)" wenzelm@53079: unfolding sin_coeff_def wenzelm@53079: apply (rule summable_comparison_test [OF _ summable_exp [where x="\x\"]]) wenzelm@53079: apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) wenzelm@53079: done huffman@29164: huffman@31271: lemma summable_cos: "summable (\n. cos_coeff n * x ^ n)" wenzelm@53079: unfolding cos_coeff_def wenzelm@53079: apply (rule summable_comparison_test [OF _ summable_exp [where x="\x\"]]) wenzelm@53079: apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) wenzelm@53079: done huffman@29164: huffman@31271: lemma sin_converges: "(\n. sin_coeff n * x ^ n) sums sin(x)" wenzelm@53079: unfolding sin_def by (rule summable_sin [THEN summable_sums]) huffman@29164: huffman@31271: lemma cos_converges: "(\n. cos_coeff n * x ^ n) sums cos(x)" wenzelm@53079: unfolding cos_def by (rule summable_cos [THEN summable_sums]) huffman@29164: huffman@44319: lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff" huffman@44319: by (simp add: diffs_def sin_coeff_Suc real_of_nat_def del: of_nat_Suc) huffman@44319: huffman@44319: lemma diffs_cos_coeff: "diffs cos_coeff = (\n. - sin_coeff n)" hoelzl@56479: by (simp add: diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc) huffman@29164: huffman@29164: text{*Now at last we can get the derivatives of exp, sin and cos*} huffman@29164: huffman@29164: lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)" huffman@44319: unfolding sin_def cos_def huffman@44319: apply (rule DERIV_cong, rule termdiffs [where K="1 + \x\"]) huffman@44319: apply (simp_all add: diffs_sin_coeff diffs_cos_coeff huffman@44319: summable_minus summable_sin summable_cos) huffman@44319: done huffman@29164: hoelzl@56381: declare DERIV_sin[THEN DERIV_chain2, derivative_intros] hoelzl@51527: huffman@29164: lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)" huffman@44319: unfolding cos_def sin_def huffman@44319: apply (rule DERIV_cong, rule termdiffs [where K="1 + \x\"]) huffman@44319: apply (simp_all add: diffs_sin_coeff diffs_cos_coeff diffs_minus huffman@44319: summable_minus summable_sin summable_cos suminf_minus) huffman@44319: done huffman@29164: hoelzl@56381: declare DERIV_cos[THEN DERIV_chain2, derivative_intros] hoelzl@51527: huffman@44311: lemma isCont_sin: "isCont sin x" huffman@44311: by (rule DERIV_sin [THEN DERIV_isCont]) huffman@44311: huffman@44311: lemma isCont_cos: "isCont cos x" huffman@44311: by (rule DERIV_cos [THEN DERIV_isCont]) huffman@44311: huffman@44311: lemma isCont_sin' [simp]: "isCont f a \ isCont (\x. sin (f x)) a" huffman@44311: by (rule isCont_o2 [OF _ isCont_sin]) huffman@44311: huffman@44311: lemma isCont_cos' [simp]: "isCont f a \ isCont (\x. cos (f x)) a" huffman@44311: by (rule isCont_o2 [OF _ isCont_cos]) huffman@44311: huffman@44311: lemma tendsto_sin [tendsto_intros]: huffman@44311: "(f ---> a) F \ ((\x. sin (f x)) ---> sin a) F" huffman@44311: by (rule isCont_tendsto_compose [OF isCont_sin]) huffman@44311: huffman@44311: lemma tendsto_cos [tendsto_intros]: huffman@44311: "(f ---> a) F \ ((\x. cos (f x)) ---> cos a) F" huffman@44311: by (rule isCont_tendsto_compose [OF isCont_cos]) huffman@29164: hoelzl@51478: lemma continuous_sin [continuous_intros]: hoelzl@51478: "continuous F f \ continuous F (\x. sin (f x))" hoelzl@51478: unfolding continuous_def by (rule tendsto_sin) hoelzl@51478: hoelzl@56371: lemma continuous_on_sin [continuous_intros]: hoelzl@51478: "continuous_on s f \ continuous_on s (\x. sin (f x))" hoelzl@51478: unfolding continuous_on_def by (auto intro: tendsto_sin) hoelzl@51478: hoelzl@51478: lemma continuous_cos [continuous_intros]: hoelzl@51478: "continuous F f \ continuous F (\x. cos (f x))" hoelzl@51478: unfolding continuous_def by (rule tendsto_cos) hoelzl@51478: hoelzl@56371: lemma continuous_on_cos [continuous_intros]: hoelzl@51478: "continuous_on s f \ continuous_on s (\x. cos (f x))" hoelzl@51478: unfolding continuous_on_def by (auto intro: tendsto_cos) hoelzl@51478: huffman@29164: subsection {* Properties of Sine and Cosine *} paulson@15077: paulson@15077: lemma sin_zero [simp]: "sin 0 = 0" huffman@44311: unfolding sin_def sin_coeff_def by (simp add: powser_zero) paulson@15077: paulson@15077: lemma cos_zero [simp]: "cos 0 = 1" huffman@44311: unfolding cos_def cos_coeff_def by (simp add: powser_zero) paulson@15077: wenzelm@53015: lemma sin_cos_squared_add [simp]: "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1" huffman@44308: proof - wenzelm@53015: have "\x. DERIV (\x. (sin x)\<^sup>2 + (cos x)\<^sup>2) x :> 0" hoelzl@56381: by (auto intro!: derivative_eq_intros) wenzelm@53015: hence "(sin x)\<^sup>2 + (cos x)\<^sup>2 = (sin 0)\<^sup>2 + (cos 0)\<^sup>2" huffman@44308: by (rule DERIV_isconst_all) wenzelm@53015: thus "(sin x)\<^sup>2 + (cos x)\<^sup>2 = 1" by simp huffman@44308: qed huffman@44308: wenzelm@53015: lemma sin_cos_squared_add2 [simp]: "(cos x)\<^sup>2 + (sin x)\<^sup>2 = 1" haftmann@57512: by (subst add.commute, rule sin_cos_squared_add) paulson@15077: paulson@15077: lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1" huffman@44308: using sin_cos_squared_add2 [unfolded power2_eq_square] . paulson@15077: wenzelm@53015: lemma sin_squared_eq: "(sin x)\<^sup>2 = 1 - (cos x)\<^sup>2" huffman@44308: unfolding eq_diff_eq by (rule sin_cos_squared_add) paulson@15077: wenzelm@53015: lemma cos_squared_eq: "(cos x)\<^sup>2 = 1 - (sin x)\<^sup>2" huffman@44308: unfolding eq_diff_eq by (rule sin_cos_squared_add2) paulson@15077: paulson@15081: lemma abs_sin_le_one [simp]: "\sin x\ \ 1" huffman@44308: by (rule power2_le_imp_le, simp_all add: sin_squared_eq) paulson@15077: paulson@15077: lemma sin_ge_minus_one [simp]: "-1 \ sin x" huffman@44308: using abs_sin_le_one [of x] unfolding abs_le_iff by simp paulson@15077: paulson@15077: lemma sin_le_one [simp]: "sin x \ 1" huffman@44308: using abs_sin_le_one [of x] unfolding abs_le_iff by simp paulson@15077: paulson@15081: lemma abs_cos_le_one [simp]: "\cos x\ \ 1" huffman@44308: by (rule power2_le_imp_le, simp_all add: cos_squared_eq) paulson@15077: paulson@15077: lemma cos_ge_minus_one [simp]: "-1 \ cos x" huffman@44308: using abs_cos_le_one [of x] unfolding abs_le_iff by simp paulson@15077: paulson@15077: lemma cos_le_one [simp]: "cos x \ 1" huffman@44308: using abs_cos_le_one [of x] unfolding abs_le_iff by simp paulson@15077: hoelzl@41970: lemma DERIV_fun_pow: "DERIV g x :> m ==> wenzelm@53079: DERIV (\x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m" hoelzl@56381: by (auto intro!: derivative_eq_intros simp: real_of_nat_def) paulson@15077: paulson@15229: lemma DERIV_fun_exp: wenzelm@53079: "DERIV g x :> m ==> DERIV (\x. exp(g x)) x :> exp(g x) * m" hoelzl@56381: by (auto intro!: derivative_intros) paulson@15077: paulson@15229: lemma DERIV_fun_sin: wenzelm@53079: "DERIV g x :> m ==> DERIV (\x. sin(g x)) x :> cos(g x) * m" hoelzl@56381: by (auto intro!: derivative_intros) paulson@15077: paulson@15229: lemma DERIV_fun_cos: wenzelm@53079: "DERIV g x :> m ==> DERIV (\x. cos(g x)) x :> -sin(g x) * m" hoelzl@56381: by (auto intro!: derivative_eq_intros simp: real_of_nat_def) paulson@15077: huffman@44308: lemma sin_cos_add_lemma: wenzelm@53079: "(sin (x + y) - (sin x * cos y + cos x * sin y))\<^sup>2 + wenzelm@53079: (cos (x + y) - (cos x * cos y - sin x * sin y))\<^sup>2 = 0" huffman@44308: (is "?f x = 0") huffman@44308: proof - huffman@44308: have "\x. DERIV (\x. ?f x) x :> 0" hoelzl@56381: by (auto intro!: derivative_eq_intros simp add: algebra_simps) huffman@44308: hence "?f x = ?f 0" huffman@44308: by (rule DERIV_isconst_all) huffman@44308: thus ?thesis by simp huffman@44308: qed paulson@15077: paulson@15077: lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y" huffman@44308: using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simp paulson@15077: paulson@15077: lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y" huffman@44308: using sin_cos_add_lemma unfolding realpow_two_sum_zero_iff by simp huffman@44308: huffman@44308: lemma sin_cos_minus_lemma: wenzelm@53015: "(sin(-x) + sin(x))\<^sup>2 + (cos(-x) - cos(x))\<^sup>2 = 0" (is "?f x = 0") huffman@44308: proof - huffman@44308: have "\x. DERIV (\x. ?f x) x :> 0" hoelzl@56381: by (auto intro!: derivative_eq_intros simp add: algebra_simps) huffman@44308: hence "?f x = ?f 0" huffman@44308: by (rule DERIV_isconst_all) huffman@44308: thus ?thesis by simp huffman@44308: qed paulson@15077: paulson@15077: lemma sin_minus [simp]: "sin (-x) = -sin(x)" huffman@44308: using sin_cos_minus_lemma [where x=x] by simp paulson@15077: paulson@15077: lemma cos_minus [simp]: "cos (-x) = cos(x)" huffman@44308: using sin_cos_minus_lemma [where x=x] by simp paulson@15077: paulson@15077: lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y" haftmann@54230: using sin_add [of x "- y"] by simp paulson@15077: paulson@15077: lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x" haftmann@57512: by (simp add: sin_diff mult.commute) paulson@15077: paulson@15077: lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y" haftmann@54230: using cos_add [of x "- y"] by simp paulson@15077: paulson@15077: lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x" haftmann@57512: by (simp add: cos_diff mult.commute) paulson@15077: paulson@15077: lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x" huffman@29165: using sin_add [where x=x and y=x] by simp paulson@15077: wenzelm@53015: lemma cos_double: "cos(2* x) = ((cos x)\<^sup>2) - ((sin x)\<^sup>2)" huffman@29165: using cos_add [where x=x and y=x] huffman@29165: by (simp add: power2_eq_square) paulson@15077: hoelzl@57275: lemma sin_x_le_x: assumes x: "x \ 0" shows "sin x \ x" hoelzl@57275: proof - hoelzl@57275: let ?f = "\x. x - sin x" hoelzl@57275: from x have "?f x \ ?f 0" hoelzl@57275: apply (rule DERIV_nonneg_imp_nondecreasing) hoelzl@57275: apply (intro allI impI exI[of _ "1 - cos x" for x]) hoelzl@57275: apply (auto intro!: derivative_eq_intros simp: field_simps) hoelzl@57275: done hoelzl@57275: thus "sin x \ x" by simp hoelzl@57275: qed hoelzl@57275: hoelzl@57275: lemma sin_x_ge_neg_x: assumes x: "x \ 0" shows "sin x \ - x" hoelzl@57275: proof - hoelzl@57275: let ?f = "\x. x + sin x" hoelzl@57275: from x have "?f x \ ?f 0" hoelzl@57275: apply (rule DERIV_nonneg_imp_nondecreasing) hoelzl@57275: apply (intro allI impI exI[of _ "1 + cos x" for x]) hoelzl@57275: apply (auto intro!: derivative_eq_intros simp: field_simps real_0_le_add_iff) hoelzl@57275: done hoelzl@57275: thus "sin x \ -x" by simp hoelzl@57275: qed hoelzl@57275: hoelzl@57275: lemma abs_sin_x_le_abs_x: "\sin x\ \ \x\" hoelzl@57275: using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"] hoelzl@57275: by (auto simp: abs_real_def) paulson@15077: huffman@29164: subsection {* The Constant Pi *} paulson@15077: wenzelm@53079: definition pi :: real wenzelm@53079: where "pi = 2 * (THE x. 0 \ (x::real) & x \ 2 & cos x = 0)" huffman@23043: hoelzl@41970: text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; paulson@15077: hence define pi.*} paulson@15077: paulson@15077: lemma sin_paired: wenzelm@53079: "(\n. -1 ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) sums sin x" paulson@15077: proof - huffman@31271: have "(\n. \k = n * 2..n. 0 < ?f n" huffman@44728: proof huffman@44728: fix n :: nat huffman@44728: let ?k2 = "real (Suc (Suc (4 * n)))" huffman@44728: let ?k3 = "real (Suc (Suc (Suc (4 * n))))" huffman@44728: have "x * x < ?k2 * ?k3" huffman@44728: using assms by (intro mult_strict_mono', simp_all) huffman@44728: hence "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)" huffman@44728: by (intro mult_strict_right_mono zero_less_power `0 < x`) huffman@44728: thus "0 < ?f n" huffman@44728: by (simp del: mult_Suc, nipkow@56544: simp add: less_divide_eq field_simps del: mult_Suc) huffman@44728: qed huffman@44728: have sums: "?f sums sin x" huffman@44728: by (rule sin_paired [THEN sums_group], simp) huffman@44728: show "0 < sin x" huffman@44728: unfolding sums_unique [OF sums] huffman@44728: using sums_summable [OF sums] pos hoelzl@56213: by (rule suminf_pos) huffman@44728: qed paulson@15077: wenzelm@53079: lemma cos_double_less_one: "0 < x \ x < 2 \ cos (2 * x) < 1" wenzelm@53079: using sin_gt_zero [where x = x] by (auto simp add: cos_squared_eq cos_double) wenzelm@53079: wenzelm@53079: lemma cos_paired: "(\n. -1 ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x" paulson@15077: proof - huffman@31271: have "(\n. \k = n * 2.. real" hoelzl@56193: shows "\summable f; hoelzl@56193: \d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\ hoelzl@56193: \ setsum f {..n. - (-1 ^ n / real (fact (2 * n)) * 2 ^ (2 * n))) sums - cos 2" haftmann@53602: by (rule sums_minus) haftmann@53602: then have *: "(\n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n)))) sums - cos 2" haftmann@53602: by simp haftmann@53602: then have **: "summable (\n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))" haftmann@53602: by (rule sums_summable) hoelzl@56193: have "0 < (\nnn. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))" haftmann@53602: proof - haftmann@53602: { fix d haftmann@53602: have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) haftmann@53602: < real (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) * haftmann@53602: fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))" haftmann@53602: by (simp only: real_of_nat_mult) (auto intro!: mult_strict_mono fact_less_mono_nat) haftmann@53602: then have "4 * real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))) haftmann@53602: < real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))" haftmann@53602: by (simp only: fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"]) haftmann@53602: then have "4 * inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))))))) haftmann@53602: < inverse (real (fact (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))))" haftmann@53602: by (simp add: inverse_eq_divide less_divide_eq) haftmann@53602: } haftmann@53602: note *** = this haftmann@54230: have [simp]: "\x y::real. 0 < x - y \ y < x" by arith haftmann@53602: from ** show ?thesis by (rule sumr_pos_lt_pair) haftmann@57512: (simp add: divide_inverse mult.assoc [symmetric] ***) haftmann@53602: qed haftmann@53602: ultimately have "0 < (\n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))" haftmann@53602: by (rule order_less_trans) haftmann@53602: moreover from * have "- cos 2 = (\n. - (-1 ^ n * 2 ^ (2 * n) / real (fact (2 * n))))" haftmann@53602: by (rule sums_unique) haftmann@53602: ultimately have "0 < - cos 2" by simp haftmann@53602: then show ?thesis by simp haftmann@53602: qed huffman@23053: huffman@23053: lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq] huffman@23053: lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le] paulson@15077: wenzelm@53079: lemma cos_is_zero: "EX! x. 0 \ x & x \ 2 \ cos x = 0" huffman@44730: proof (rule ex_ex1I) huffman@44730: show "\x. 0 \ x & x \ 2 & cos x = 0" huffman@44730: by (rule IVT2, simp_all) huffman@44730: next huffman@44730: fix x y huffman@44730: assume x: "0 \ x \ x \ 2 \ cos x = 0" huffman@44730: assume y: "0 \ y \ y \ 2 \ cos y = 0" hoelzl@56181: have [simp]: "\x. cos differentiable (at x)" hoelzl@56181: unfolding real_differentiable_def by (auto intro: DERIV_cos) huffman@44730: from x y show "x = y" huffman@44730: apply (cut_tac less_linear [of x y], auto) huffman@44730: apply (drule_tac f = cos in Rolle) huffman@44730: apply (drule_tac [5] f = cos in Rolle) huffman@44730: apply (auto dest!: DERIV_cos [THEN DERIV_unique]) huffman@44730: apply (metis order_less_le_trans less_le sin_gt_zero) huffman@44730: apply (metis order_less_le_trans less_le sin_gt_zero) huffman@44730: done huffman@44730: qed hoelzl@31880: huffman@23053: lemma pi_half: "pi/2 = (THE x. 0 \ x & x \ 2 & cos x = 0)" wenzelm@53079: by (simp add: pi_def) paulson@15077: paulson@15077: lemma cos_pi_half [simp]: "cos (pi / 2) = 0" wenzelm@53079: by (simp add: pi_half cos_is_zero [THEN theI']) huffman@23053: huffman@23053: lemma pi_half_gt_zero [simp]: "0 < pi / 2" wenzelm@53079: apply (rule order_le_neq_trans) wenzelm@53079: apply (simp add: pi_half cos_is_zero [THEN theI']) paulson@54575: apply (metis cos_pi_half cos_zero zero_neq_one) wenzelm@53079: done paulson@15077: huffman@23053: lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric] huffman@23053: lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le] paulson@15077: huffman@23053: lemma pi_half_less_two [simp]: "pi / 2 < 2" wenzelm@53079: apply (rule order_le_neq_trans) wenzelm@53079: apply (simp add: pi_half cos_is_zero [THEN theI']) paulson@54575: apply (metis cos_pi_half cos_two_neq_zero) wenzelm@53079: done huffman@23053: huffman@23053: lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq] huffman@23053: lemmas pi_half_le_two [simp] = pi_half_less_two [THEN order_less_imp_le] paulson@15077: paulson@15077: lemma pi_gt_zero [simp]: "0 < pi" wenzelm@53079: using pi_half_gt_zero by simp huffman@23053: huffman@23053: lemma pi_ge_zero [simp]: "0 \ pi" wenzelm@53079: by (rule pi_gt_zero [THEN order_less_imp_le]) paulson@15077: paulson@15077: lemma pi_neq_zero [simp]: "pi \ 0" wenzelm@53079: by (rule pi_gt_zero [THEN less_imp_neq, symmetric]) paulson@15077: huffman@23053: lemma pi_not_less_zero [simp]: "\ pi < 0" wenzelm@53079: by (simp add: linorder_not_less) paulson@15077: huffman@29165: lemma minus_pi_half_less_zero: "-(pi/2) < 0" wenzelm@53079: by simp paulson@15077: hoelzl@29803: lemma m2pi_less_pi: "- (2 * pi) < pi" wenzelm@53079: by simp hoelzl@29803: paulson@15077: lemma sin_pi_half [simp]: "sin(pi/2) = 1" wenzelm@53079: using sin_cos_squared_add2 [where x = "pi/2"] wenzelm@53079: using sin_gt_zero [OF pi_half_gt_zero pi_half_less_two] wenzelm@53079: by (simp add: power2_eq_1_iff) paulson@15077: paulson@15077: lemma cos_pi [simp]: "cos pi = -1" wenzelm@53079: using cos_add [where x = "pi/2" and y = "pi/2"] by simp paulson@15077: paulson@15077: lemma sin_pi [simp]: "sin pi = 0" wenzelm@53079: using sin_add [where x = "pi/2" and y = "pi/2"] by simp paulson@15077: paulson@15077: lemma sin_cos_eq: "sin x = cos (pi/2 - x)" wenzelm@53079: by (simp add: cos_diff) paulson@15077: paulson@15077: lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)" wenzelm@53079: by (simp add: cos_add) paulson@15077: paulson@15077: lemma cos_sin_eq: "cos x = sin (pi/2 - x)" wenzelm@53079: by (simp add: sin_diff) paulson@15077: paulson@15077: lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x" wenzelm@53079: by (simp add: sin_add) paulson@15077: paulson@15077: lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x" wenzelm@53079: by (simp add: sin_add) paulson@15077: paulson@15077: lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x" wenzelm@53079: by (simp add: cos_add) paulson@15077: paulson@15077: lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x" wenzelm@53079: by (simp add: sin_add cos_double) paulson@15077: paulson@15077: lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x" wenzelm@53079: by (simp add: cos_add cos_double) paulson@15077: paulson@15077: lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n" wenzelm@53079: by (induct n) (auto simp add: real_of_nat_Suc distrib_right) paulson@15077: paulson@15383: lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n" haftmann@57512: by (metis cos_npi mult.commute) paulson@15383: paulson@15077: lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0" wenzelm@53079: by (induct n) (auto simp add: real_of_nat_Suc distrib_right) paulson@15077: paulson@15077: lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0" haftmann@57512: by (simp add: mult.commute [of pi]) paulson@15077: paulson@15077: lemma cos_two_pi [simp]: "cos (2 * pi) = 1" wenzelm@53079: by (simp add: cos_double) paulson@15077: paulson@15077: lemma sin_two_pi [simp]: "sin (2 * pi) = 0" wenzelm@53079: by simp paulson@15077: paulson@15077: lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x" paulson@54575: by (metis sin_gt_zero order_less_trans pi_half_less_two) paulson@15077: hoelzl@41970: lemma sin_less_zero: wenzelm@53079: assumes "- pi/2 < x" and "x < 0" wenzelm@53079: shows "sin x < 0" paulson@15077: proof - hoelzl@41970: have "0 < sin (- x)" using assms by (simp only: sin_gt_zero2) paulson@15077: thus ?thesis by simp paulson@15077: qed paulson@15077: paulson@15077: lemma pi_less_4: "pi < 4" wenzelm@53079: using pi_half_less_two by auto paulson@15077: paulson@15077: lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x" wenzelm@53079: apply (cut_tac pi_less_4) wenzelm@53079: apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all) wenzelm@53079: apply (cut_tac cos_is_zero, safe) wenzelm@53079: apply (rename_tac y z) wenzelm@53079: apply (drule_tac x = y in spec) wenzelm@53079: apply (drule_tac x = "pi/2" in spec, simp) wenzelm@53079: done paulson@15077: paulson@15077: lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x" wenzelm@53079: apply (rule_tac x = x and y = 0 in linorder_cases) paulson@54575: apply (metis cos_gt_zero cos_minus minus_less_iff neg_0_less_iff_less) wenzelm@53079: apply (auto intro: cos_gt_zero) wenzelm@53079: done hoelzl@41970: paulson@15077: lemma cos_ge_zero: "[| -(pi/2) \ x; x \ pi/2 |] ==> 0 \ cos x" wenzelm@53079: apply (auto simp add: order_le_less cos_gt_zero_pi) wenzelm@53079: apply (subgoal_tac "x = pi/2", auto) wenzelm@53079: done paulson@15077: paulson@15077: lemma sin_gt_zero_pi: "[| 0 < x; x < pi |] ==> 0 < sin x" wenzelm@53079: by (simp add: sin_cos_eq cos_gt_zero_pi) hoelzl@29803: hoelzl@29803: lemma pi_ge_two: "2 \ pi" hoelzl@29803: proof (rule ccontr) hoelzl@29803: assume "\ 2 \ pi" hence "pi < 2" by auto hoelzl@29803: have "\y > pi. y < 2 \ y < 2 * pi" hoelzl@29803: proof (cases "2 < 2 * pi") hoelzl@29803: case True with dense[OF `pi < 2`] show ?thesis by auto hoelzl@29803: next hoelzl@29803: case False have "pi < 2 * pi" by auto hoelzl@29803: from dense[OF this] and False show ?thesis by auto hoelzl@29803: qed hoelzl@29803: then obtain y where "pi < y" and "y < 2" and "y < 2 * pi" by blast hoelzl@29803: hence "0 < sin y" using sin_gt_zero by auto hoelzl@41970: moreover hoelzl@29803: have "sin y < 0" using sin_gt_zero_pi[of "y - pi"] `pi < y` and `y < 2 * pi` sin_periodic_pi[of "y - pi"] by auto hoelzl@29803: ultimately show False by auto hoelzl@29803: qed hoelzl@29803: paulson@15077: lemma sin_ge_zero: "[| 0 \ x; x \ pi |] ==> 0 \ sin x" wenzelm@53079: by (auto simp add: order_le_less sin_gt_zero_pi) paulson@15077: huffman@44745: text {* FIXME: This proof is almost identical to lemma @{text cos_is_zero}. huffman@44745: It should be possible to factor out some of the common parts. *} huffman@44745: paulson@15077: lemma cos_total: "[| -1 \ y; y \ 1 |] ==> EX! x. 0 \ x & x \ pi & (cos x = y)" huffman@44745: proof (rule ex_ex1I) huffman@44745: assume y: "-1 \ y" "y \ 1" huffman@44745: show "\x. 0 \ x & x \ pi & cos x = y" huffman@44745: by (rule IVT2, simp_all add: y) huffman@44745: next huffman@44745: fix a b huffman@44745: assume a: "0 \ a \ a \ pi \ cos a = y" huffman@44745: assume b: "0 \ b \ b \ pi \ cos b = y" hoelzl@56181: have [simp]: "\x. cos differentiable (at x)" hoelzl@56181: unfolding real_differentiable_def by (auto intro: DERIV_cos) huffman@44745: from a b show "a = b" huffman@44745: apply (cut_tac less_linear [of a b], auto) huffman@44745: apply (drule_tac f = cos in Rolle) huffman@44745: apply (drule_tac [5] f = cos in Rolle) huffman@44745: apply (auto dest!: DERIV_cos [THEN DERIV_unique]) huffman@44745: apply (metis order_less_le_trans less_le sin_gt_zero_pi) huffman@44745: apply (metis order_less_le_trans less_le sin_gt_zero_pi) huffman@44745: done huffman@44745: qed paulson@15077: paulson@15077: lemma sin_total: paulson@15077: "[| -1 \ y; y \ 1 |] ==> EX! x. -(pi/2) \ x & x \ pi/2 & (sin x = y)" paulson@15077: apply (rule ccontr) paulson@15077: apply (subgoal_tac "\x. (- (pi/2) \ x & x \ pi/2 & (sin x = y)) = (0 \ (x + pi/2) & (x + pi/2) \ pi & (cos (x + pi/2) = -y))") wenzelm@18585: apply (erule contrapos_np) huffman@45309: apply simp hoelzl@41970: apply (cut_tac y="-y" in cos_total, simp) apply simp paulson@15077: apply (erule ex1E) paulson@15229: apply (rule_tac a = "x - (pi/2)" in ex1I) haftmann@57512: apply (simp (no_asm) add: add.assoc) paulson@15077: apply (rotate_tac 3) huffman@45309: apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all add: cos_add) paulson@15077: done paulson@15077: paulson@15077: lemma reals_Archimedean4: paulson@15077: "[| 0 < y; 0 \ x |] ==> \n. real n * y \ x & x < real (Suc n) * y" paulson@15077: apply (auto dest!: reals_Archimedean3) hoelzl@41970: apply (drule_tac x = x in spec, clarify) paulson@15077: apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y") hoelzl@41970: prefer 2 apply (erule LeastI) hoelzl@41970: apply (case_tac "LEAST m::nat. x < real m * y", simp) blanchet@55417: apply (rename_tac m) blanchet@55417: apply (subgoal_tac "~ x < real m * y") hoelzl@41970: prefer 2 apply (rule not_less_Least, simp, force) paulson@15077: done paulson@15077: hoelzl@41970: (* Pre Isabelle99-2 proof was simpler- numerals arithmetic paulson@15077: now causes some unwanted re-arrangements of literals! *) paulson@15229: lemma cos_zero_lemma: hoelzl@41970: "[| 0 \ x; cos x = 0 |] ==> paulson@15077: \n::nat. ~even n & x = real n * (pi/2)" paulson@15077: apply (drule pi_gt_zero [THEN reals_Archimedean4], safe) hoelzl@41970: apply (subgoal_tac "0 \ x - real n * pi & paulson@15086: (x - real n * pi) \ pi & (cos (x - real n * pi) = 0) ") nipkow@29667: apply (auto simp add: algebra_simps real_of_nat_Suc) nipkow@29667: prefer 2 apply (simp add: cos_diff) paulson@15077: apply (simp add: cos_diff) paulson@15077: apply (subgoal_tac "EX! x. 0 \ x & x \ pi & cos x = 0") paulson@15077: apply (rule_tac [2] cos_total, safe) paulson@15077: apply (drule_tac x = "x - real n * pi" in spec) paulson@15077: apply (drule_tac x = "pi/2" in spec) paulson@15077: apply (simp add: cos_diff) paulson@15229: apply (rule_tac x = "Suc (2 * n)" in exI) nipkow@29667: apply (simp add: real_of_nat_Suc algebra_simps, auto) paulson@15077: done paulson@15077: paulson@15229: lemma sin_zero_lemma: hoelzl@41970: "[| 0 \ x; sin x = 0 |] ==> paulson@15077: \n::nat. even n & x = real n * (pi/2)" paulson@15077: apply (subgoal_tac "\n::nat. ~ even n & x + pi/2 = real n * (pi/2) ") paulson@15077: apply (clarify, rule_tac x = "n - 1" in exI) webertj@49962: apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc distrib_right) paulson@15085: apply (rule cos_zero_lemma) huffman@45309: apply (simp_all add: cos_add) paulson@15077: done paulson@15077: paulson@15077: paulson@15229: lemma cos_zero_iff: hoelzl@41970: "(cos x = 0) = hoelzl@41970: ((\n::nat. ~even n & (x = real n * (pi/2))) | paulson@15077: (\n::nat. ~even n & (x = -(real n * (pi/2)))))" paulson@15077: apply (rule iffI) paulson@15077: apply (cut_tac linorder_linear [of 0 x], safe) paulson@15077: apply (drule cos_zero_lemma, assumption+) hoelzl@41970: apply (cut_tac x="-x" in cos_zero_lemma, simp, simp) hoelzl@41970: apply (force simp add: minus_equation_iff [of x]) webertj@49962: apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc distrib_right) haftmann@54230: apply (auto simp add: cos_diff cos_add) paulson@15077: done paulson@15077: paulson@15077: (* ditto: but to a lesser extent *) paulson@15229: lemma sin_zero_iff: hoelzl@41970: "(sin x = 0) = hoelzl@41970: ((\n::nat. even n & (x = real n * (pi/2))) | paulson@15077: (\n::nat. even n & (x = -(real n * (pi/2)))))" paulson@15077: apply (rule iffI) paulson@15077: apply (cut_tac linorder_linear [of 0 x], safe) paulson@15077: apply (drule sin_zero_lemma, assumption+) paulson@15077: apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe) hoelzl@41970: apply (force simp add: minus_equation_iff [of x]) nipkow@15539: apply (auto simp add: even_mult_two_ex) paulson@15077: done paulson@15077: wenzelm@53079: lemma cos_monotone_0_pi: wenzelm@53079: assumes "0 \ y" and "y < x" and "x \ pi" hoelzl@29803: shows "cos x < cos y" hoelzl@29803: proof - wenzelm@33549: have "- (x - y) < 0" using assms by auto hoelzl@29803: hoelzl@29803: from MVT2[OF `y < x` DERIV_cos[THEN impI, THEN allI]] wenzelm@53079: obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z" wenzelm@53079: by auto wenzelm@33549: hence "0 < z" and "z < pi" using assms by auto hoelzl@29803: hence "0 < sin z" using sin_gt_zero_pi by auto wenzelm@53079: hence "cos x - cos y < 0" wenzelm@53079: unfolding cos_diff minus_mult_commute[symmetric] wenzelm@53079: using `- (x - y) < 0` by (rule mult_pos_neg2) hoelzl@29803: thus ?thesis by auto hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma cos_monotone_0_pi': wenzelm@53079: assumes "0 \ y" and "y \ x" and "x \ pi" wenzelm@53079: shows "cos x \ cos y" hoelzl@29803: proof (cases "y < x") wenzelm@53079: case True wenzelm@53079: show ?thesis wenzelm@53079: using cos_monotone_0_pi[OF `0 \ y` True `x \ pi`] by auto hoelzl@29803: next wenzelm@53079: case False wenzelm@53079: hence "y = x" using `y \ x` by auto hoelzl@29803: thus ?thesis by auto hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma cos_monotone_minus_pi_0: wenzelm@53079: assumes "-pi \ y" and "y < x" and "x \ 0" hoelzl@29803: shows "cos y < cos x" hoelzl@29803: proof - wenzelm@53079: have "0 \ -x" and "-x < -y" and "-y \ pi" wenzelm@53079: using assms by auto wenzelm@53079: from cos_monotone_0_pi[OF this] show ?thesis wenzelm@53079: unfolding cos_minus . hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma cos_monotone_minus_pi_0': wenzelm@53079: assumes "-pi \ y" and "y \ x" and "x \ 0" wenzelm@53079: shows "cos y \ cos x" hoelzl@29803: proof (cases "y < x") wenzelm@53079: case True wenzelm@53079: show ?thesis using cos_monotone_minus_pi_0[OF `-pi \ y` True `x \ 0`] wenzelm@53079: by auto hoelzl@29803: next wenzelm@53079: case False wenzelm@53079: hence "y = x" using `y \ x` by auto hoelzl@29803: thus ?thesis by auto hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma sin_monotone_2pi': wenzelm@53079: assumes "- (pi / 2) \ y" and "y \ x" and "x \ pi / 2" wenzelm@53079: shows "sin y \ sin x" hoelzl@29803: proof - wenzelm@33549: have "0 \ y + pi / 2" and "y + pi / 2 \ x + pi / 2" and "x + pi /2 \ pi" wenzelm@33549: using pi_ge_two and assms by auto wenzelm@53079: from cos_monotone_0_pi'[OF this] show ?thesis wenzelm@53079: unfolding minus_sin_cos_eq[symmetric] by auto hoelzl@29803: qed paulson@15077: wenzelm@53079: huffman@29164: subsection {* Tangent *} paulson@15077: wenzelm@53079: definition tan :: "real \ real" wenzelm@53079: where "tan = (\x. sin x / cos x)" huffman@23043: paulson@15077: lemma tan_zero [simp]: "tan 0 = 0" huffman@44311: by (simp add: tan_def) paulson@15077: paulson@15077: lemma tan_pi [simp]: "tan pi = 0" huffman@44311: by (simp add: tan_def) paulson@15077: paulson@15077: lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0" huffman@44311: by (simp add: tan_def) paulson@15077: paulson@15077: lemma tan_minus [simp]: "tan (-x) = - tan x" huffman@44311: by (simp add: tan_def) paulson@15077: paulson@15077: lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x" huffman@44311: by (simp add: tan_def) paulson@15077: hoelzl@41970: lemma lemma_tan_add1: huffman@44311: "\cos x \ 0; cos y \ 0\ \ 1 - tan x * tan y = cos (x + y)/(cos x * cos y)" huffman@44311: by (simp add: tan_def cos_add field_simps) paulson@15077: hoelzl@41970: lemma add_tan_eq: huffman@44311: "\cos x \ 0; cos y \ 0\ \ tan x + tan y = sin(x + y)/(cos x * cos y)" huffman@44311: by (simp add: tan_def sin_add field_simps) paulson@15077: paulson@15229: lemma tan_add: hoelzl@41970: "[| cos x \ 0; cos y \ 0; cos (x + y) \ 0 |] paulson@15077: ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))" huffman@44311: by (simp add: add_tan_eq lemma_tan_add1, simp add: tan_def) paulson@15077: paulson@15229: lemma tan_double: hoelzl@41970: "[| cos x \ 0; cos (2 * x) \ 0 |] wenzelm@53076: ==> tan (2 * x) = (2 * tan x) / (1 - (tan x)\<^sup>2)" huffman@44311: using tan_add [of x x] by (simp add: power2_eq_square) paulson@15077: paulson@15077: lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x" wenzelm@53079: by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi) hoelzl@41970: hoelzl@41970: lemma tan_less_zero: wenzelm@53079: assumes lb: "- pi/2 < x" and "x < 0" wenzelm@53079: shows "tan x < 0" paulson@15077: proof - hoelzl@41970: have "0 < tan (- x)" using assms by (simp only: tan_gt_zero) paulson@15077: thus ?thesis by simp paulson@15077: qed paulson@15077: huffman@44756: lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)" huffman@44756: unfolding tan_def sin_double cos_double sin_squared_eq huffman@44756: by (simp add: power2_eq_square) hoelzl@29803: wenzelm@53015: lemma DERIV_tan [simp]: "cos x \ 0 \ DERIV tan x :> inverse ((cos x)\<^sup>2)" huffman@44311: unfolding tan_def hoelzl@56381: by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square) huffman@44311: huffman@44311: lemma isCont_tan: "cos x \ 0 \ isCont tan x" huffman@44311: by (rule DERIV_tan [THEN DERIV_isCont]) huffman@44311: huffman@44311: lemma isCont_tan' [simp]: huffman@44311: "\isCont f a; cos (f a) \ 0\ \ isCont (\x. tan (f x)) a" huffman@44311: by (rule isCont_o2 [OF _ isCont_tan]) huffman@44311: huffman@44311: lemma tendsto_tan [tendsto_intros]: huffman@44311: "\(f ---> a) F; cos a \ 0\ \ ((\x. tan (f x)) ---> tan a) F" huffman@44311: by (rule isCont_tendsto_compose [OF isCont_tan]) huffman@44311: hoelzl@51478: lemma continuous_tan: hoelzl@51478: "continuous F f \ cos (f (Lim F (\x. x))) \ 0 \ continuous F (\x. tan (f x))" hoelzl@51478: unfolding continuous_def by (rule tendsto_tan) hoelzl@51478: hoelzl@51478: lemma isCont_tan'' [continuous_intros]: hoelzl@51478: "continuous (at x) f \ cos (f x) \ 0 \ continuous (at x) (\x. tan (f x))" hoelzl@51478: unfolding continuous_at by (rule tendsto_tan) hoelzl@51478: hoelzl@51478: lemma continuous_within_tan [continuous_intros]: hoelzl@51478: "continuous (at x within s) f \ cos (f x) \ 0 \ continuous (at x within s) (\x. tan (f x))" hoelzl@51478: unfolding continuous_within by (rule tendsto_tan) hoelzl@51478: hoelzl@56371: lemma continuous_on_tan [continuous_intros]: hoelzl@51478: "continuous_on s f \ (\x\s. cos (f x) \ 0) \ continuous_on s (\x. tan (f x))" hoelzl@51478: unfolding continuous_on_def by (auto intro: tendsto_tan) hoelzl@51478: wenzelm@53079: lemma LIM_cos_div_sin: "(\x. cos(x)/sin(x)) -- pi/2 --> 0" huffman@44311: by (rule LIM_cong_limit, (rule tendsto_intros)+, simp_all) paulson@15077: paulson@15077: lemma lemma_tan_total: "0 < y ==> \x. 0 < x & x < pi/2 & y < tan x" wenzelm@53079: apply (cut_tac LIM_cos_div_sin) wenzelm@53079: apply (simp only: LIM_eq) wenzelm@53079: apply (drule_tac x = "inverse y" in spec, safe, force) wenzelm@53079: apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe) wenzelm@53079: apply (rule_tac x = "(pi/2) - e" in exI) wenzelm@53079: apply (simp (no_asm_simp)) wenzelm@53079: apply (drule_tac x = "(pi/2) - e" in spec) wenzelm@53079: apply (auto simp add: tan_def sin_diff cos_diff) wenzelm@53079: apply (rule inverse_less_iff_less [THEN iffD1]) wenzelm@53079: apply (auto simp add: divide_inverse) wenzelm@53079: apply (rule mult_pos_pos) wenzelm@53079: apply (subgoal_tac [3] "0 < sin e & 0 < cos e") haftmann@57512: apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult.commute) wenzelm@53079: done paulson@15077: paulson@15077: lemma tan_total_pos: "0 \ y ==> \x. 0 \ x & x < pi/2 & tan x = y" wenzelm@53079: apply (frule order_le_imp_less_or_eq, safe) wenzelm@53079: prefer 2 apply force wenzelm@53079: apply (drule lemma_tan_total, safe) wenzelm@53079: apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl) wenzelm@53079: apply (auto intro!: DERIV_tan [THEN DERIV_isCont]) wenzelm@53079: apply (drule_tac y = xa in order_le_imp_less_or_eq) wenzelm@53079: apply (auto dest: cos_gt_zero) wenzelm@53079: done paulson@15077: paulson@15077: lemma lemma_tan_total1: "\x. -(pi/2) < x & x < (pi/2) & tan x = y" wenzelm@53079: apply (cut_tac linorder_linear [of 0 y], safe) wenzelm@53079: apply (drule tan_total_pos) wenzelm@53079: apply (cut_tac [2] y="-y" in tan_total_pos, safe) wenzelm@53079: apply (rule_tac [3] x = "-x" in exI) wenzelm@53079: apply (auto del: exI intro!: exI) wenzelm@53079: done paulson@15077: paulson@15077: lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y" wenzelm@53079: apply (cut_tac y = y in lemma_tan_total1, auto) thomas@57492: apply hypsubst_thin wenzelm@53079: apply (cut_tac x = xa and y = y in linorder_less_linear, auto) wenzelm@53079: apply (subgoal_tac [2] "\z. y < z & z < xa & DERIV tan z :> 0") wenzelm@53079: apply (subgoal_tac "\z. xa < z & z < y & DERIV tan z :> 0") wenzelm@53079: apply (rule_tac [4] Rolle) wenzelm@53079: apply (rule_tac [2] Rolle) wenzelm@53079: apply (auto del: exI intro!: DERIV_tan DERIV_isCont exI hoelzl@56181: simp add: real_differentiable_def) wenzelm@53079: txt{*Now, simulate TRYALL*} wenzelm@53079: apply (rule_tac [!] DERIV_tan asm_rl) wenzelm@53079: apply (auto dest!: DERIV_unique [OF _ DERIV_tan] wenzelm@53079: simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym]) wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma tan_monotone: wenzelm@53079: assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2" hoelzl@29803: shows "tan y < tan x" hoelzl@29803: proof - wenzelm@53079: have "\x'. y \ x' \ x' \ x \ DERIV tan x' :> inverse ((cos x')\<^sup>2)" hoelzl@29803: proof (rule allI, rule impI) wenzelm@53079: fix x' :: real wenzelm@53079: assume "y \ x' \ x' \ x" wenzelm@33549: hence "-(pi/2) < x'" and "x' < pi/2" using assms by auto hoelzl@29803: from cos_gt_zero_pi[OF this] hoelzl@29803: have "cos x' \ 0" by auto wenzelm@53076: thus "DERIV tan x' :> inverse ((cos x')\<^sup>2)" by (rule DERIV_tan) hoelzl@29803: qed hoelzl@41970: from MVT2[OF `y < x` this] wenzelm@53079: obtain z where "y < z" and "z < x" wenzelm@53079: and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<^sup>2)" by auto wenzelm@33549: hence "- (pi / 2) < z" and "z < pi / 2" using assms by auto hoelzl@29803: hence "0 < cos z" using cos_gt_zero_pi by auto wenzelm@53015: hence inv_pos: "0 < inverse ((cos z)\<^sup>2)" by auto hoelzl@29803: have "0 < x - y" using `y < x` by auto nipkow@56544: with inv_pos have "0 < tan x - tan y" unfolding tan_diff by auto hoelzl@29803: thus ?thesis by auto hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma tan_monotone': wenzelm@53079: assumes "- (pi / 2) < y" wenzelm@53079: and "y < pi / 2" wenzelm@53079: and "- (pi / 2) < x" wenzelm@53079: and "x < pi / 2" hoelzl@29803: shows "(y < x) = (tan y < tan x)" hoelzl@29803: proof wenzelm@53079: assume "y < x" wenzelm@53079: thus "tan y < tan x" wenzelm@53079: using tan_monotone and `- (pi / 2) < y` and `x < pi / 2` by auto hoelzl@29803: next hoelzl@29803: assume "tan y < tan x" hoelzl@29803: show "y < x" hoelzl@29803: proof (rule ccontr) hoelzl@29803: assume "\ y < x" hence "x \ y" by auto hoelzl@41970: hence "tan x \ tan y" hoelzl@29803: proof (cases "x = y") hoelzl@29803: case True thus ?thesis by auto hoelzl@29803: next hoelzl@29803: case False hence "x < y" using `x \ y` by auto hoelzl@29803: from tan_monotone[OF `- (pi/2) < x` this `y < pi / 2`] show ?thesis by auto hoelzl@29803: qed hoelzl@29803: thus False using `tan y < tan x` by auto hoelzl@29803: qed hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)" wenzelm@53079: unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto hoelzl@29803: hoelzl@41970: lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x" hoelzl@29803: by (simp add: tan_def) hoelzl@29803: wenzelm@53079: lemma tan_periodic_nat[simp]: wenzelm@53079: fixes n :: nat wenzelm@53079: shows "tan (x + real n * pi) = tan x" hoelzl@29803: proof (induct n arbitrary: x) wenzelm@53079: case 0 wenzelm@53079: then show ?case by simp wenzelm@53079: next hoelzl@29803: case (Suc n) wenzelm@53079: have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi" wenzelm@53079: unfolding Suc_eq_plus1 real_of_nat_add real_of_one distrib_right by auto hoelzl@29803: show ?case unfolding split_pi_off using Suc by auto wenzelm@53079: qed hoelzl@29803: hoelzl@29803: lemma tan_periodic_int[simp]: fixes i :: int shows "tan (x + real i * pi) = tan x" hoelzl@29803: proof (cases "0 \ i") wenzelm@53079: case True wenzelm@53079: hence i_nat: "real i = real (nat i)" by auto hoelzl@29803: show ?thesis unfolding i_nat by auto hoelzl@29803: next wenzelm@53079: case False wenzelm@53079: hence i_nat: "real i = - real (nat (-i))" by auto wenzelm@53079: have "tan x = tan (x + real i * pi - real i * pi)" wenzelm@53079: by auto wenzelm@53079: also have "\ = tan (x + real i * pi)" wenzelm@53079: unfolding i_nat mult_minus_left diff_minus_eq_add by (rule tan_periodic_nat) hoelzl@29803: finally show ?thesis by auto hoelzl@29803: qed hoelzl@29803: huffman@47108: lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x" huffman@47108: using tan_periodic_int[of _ "numeral n" ] unfolding real_numeral . huffman@23043: huffman@23043: subsection {* Inverse Trigonometric Functions *} huffman@23043: wenzelm@53079: definition arcsin :: "real => real" wenzelm@53079: where "arcsin y = (THE x. -(pi/2) \ x & x \ pi/2 & sin x = y)" wenzelm@53079: wenzelm@53079: definition arccos :: "real => real" wenzelm@53079: where "arccos y = (THE x. 0 \ x & x \ pi & cos x = y)" wenzelm@53079: wenzelm@53079: definition arctan :: "real => real" wenzelm@53079: where "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)" huffman@23043: paulson@15229: lemma arcsin: wenzelm@53079: "-1 \ y \ y \ 1 \ wenzelm@53079: -(pi/2) \ arcsin y & arcsin y \ pi/2 & sin(arcsin y) = y" wenzelm@53079: unfolding arcsin_def by (rule theI' [OF sin_total]) huffman@23011: huffman@23011: lemma arcsin_pi: wenzelm@53079: "-1 \ y \ y \ 1 \ -(pi/2) \ arcsin y & arcsin y \ pi & sin(arcsin y) = y" wenzelm@53079: apply (drule (1) arcsin) wenzelm@53079: apply (force intro: order_trans) wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma sin_arcsin [simp]: "-1 \ y \ y \ 1 \ sin(arcsin y) = y" wenzelm@53079: by (blast dest: arcsin) wenzelm@53079: wenzelm@53079: lemma arcsin_bounded: "-1 \ y \ y \ 1 \ -(pi/2) \ arcsin y & arcsin y \ pi/2" wenzelm@53079: by (blast dest: arcsin) wenzelm@53079: wenzelm@53079: lemma arcsin_lbound: "-1 \ y \ y \ 1 \ -(pi/2) \ arcsin y" wenzelm@53079: by (blast dest: arcsin) wenzelm@53079: wenzelm@53079: lemma arcsin_ubound: "-1 \ y \ y \ 1 \ arcsin y \ pi/2" wenzelm@53079: by (blast dest: arcsin) paulson@15077: paulson@15077: lemma arcsin_lt_bounded: paulson@15077: "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2" wenzelm@53079: apply (frule order_less_imp_le) wenzelm@53079: apply (frule_tac y = y in order_less_imp_le) wenzelm@53079: apply (frule arcsin_bounded) wenzelm@53079: apply (safe, simp) wenzelm@53079: apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq) wenzelm@53079: apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe) wenzelm@53079: apply (drule_tac [!] f = sin in arg_cong, auto) wenzelm@53079: done paulson@15077: paulson@15077: lemma arcsin_sin: "[|-(pi/2) \ x; x \ pi/2 |] ==> arcsin(sin x) = x" wenzelm@53079: apply (unfold arcsin_def) wenzelm@53079: apply (rule the1_equality) wenzelm@53079: apply (rule sin_total, auto) wenzelm@53079: done paulson@15077: huffman@22975: lemma arccos: hoelzl@41970: "[| -1 \ y; y \ 1 |] huffman@22975: ==> 0 \ arccos y & arccos y \ pi & cos(arccos y) = y" wenzelm@53079: unfolding arccos_def by (rule theI' [OF cos_total]) paulson@15077: huffman@22975: lemma cos_arccos [simp]: "[| -1 \ y; y \ 1 |] ==> cos(arccos y) = y" wenzelm@53079: by (blast dest: arccos) hoelzl@41970: huffman@22975: lemma arccos_bounded: "[| -1 \ y; y \ 1 |] ==> 0 \ arccos y & arccos y \ pi" wenzelm@53079: by (blast dest: arccos) paulson@15077: huffman@22975: lemma arccos_lbound: "[| -1 \ y; y \ 1 |] ==> 0 \ arccos y" wenzelm@53079: by (blast dest: arccos) paulson@15077: huffman@22975: lemma arccos_ubound: "[| -1 \ y; y \ 1 |] ==> arccos y \ pi" wenzelm@53079: by (blast dest: arccos) paulson@15077: huffman@22975: lemma arccos_lt_bounded: hoelzl@41970: "[| -1 < y; y < 1 |] huffman@22975: ==> 0 < arccos y & arccos y < pi" wenzelm@53079: apply (frule order_less_imp_le) wenzelm@53079: apply (frule_tac y = y in order_less_imp_le) wenzelm@53079: apply (frule arccos_bounded, auto) wenzelm@53079: apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq) wenzelm@53079: apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto) wenzelm@53079: apply (drule_tac [!] f = cos in arg_cong, auto) wenzelm@53079: done paulson@15077: huffman@22975: lemma arccos_cos: "[|0 \ x; x \ pi |] ==> arccos(cos x) = x" wenzelm@53079: apply (simp add: arccos_def) wenzelm@53079: apply (auto intro!: the1_equality cos_total) wenzelm@53079: done paulson@15077: huffman@22975: lemma arccos_cos2: "[|x \ 0; -pi \ x |] ==> arccos(cos x) = -x" wenzelm@53079: apply (simp add: arccos_def) wenzelm@53079: apply (auto intro!: the1_equality cos_total) wenzelm@53079: done paulson@15077: wenzelm@53015: lemma cos_arcsin: "\-1 \ x; x \ 1\ \ cos (arcsin x) = sqrt (1 - x\<^sup>2)" wenzelm@53079: apply (subgoal_tac "x\<^sup>2 \ 1") wenzelm@53079: apply (rule power2_eq_imp_eq) wenzelm@53079: apply (simp add: cos_squared_eq) wenzelm@53079: apply (rule cos_ge_zero) wenzelm@53079: apply (erule (1) arcsin_lbound) wenzelm@53079: apply (erule (1) arcsin_ubound) wenzelm@53079: apply simp wenzelm@53079: apply (subgoal_tac "\x\\<^sup>2 \ 1\<^sup>2", simp) wenzelm@53079: apply (rule power_mono, simp, simp) wenzelm@53079: done huffman@23045: wenzelm@53015: lemma sin_arccos: "\-1 \ x; x \ 1\ \ sin (arccos x) = sqrt (1 - x\<^sup>2)" wenzelm@53079: apply (subgoal_tac "x\<^sup>2 \ 1") wenzelm@53079: apply (rule power2_eq_imp_eq) wenzelm@53079: apply (simp add: sin_squared_eq) wenzelm@53079: apply (rule sin_ge_zero) wenzelm@53079: apply (erule (1) arccos_lbound) wenzelm@53079: apply (erule (1) arccos_ubound) wenzelm@53079: apply simp wenzelm@53079: apply (subgoal_tac "\x\\<^sup>2 \ 1\<^sup>2", simp) wenzelm@53079: apply (rule power_mono, simp, simp) wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma arctan [simp]: "- (pi/2) < arctan y & arctan y < pi/2 & tan (arctan y) = y" wenzelm@53079: unfolding arctan_def by (rule theI' [OF tan_total]) wenzelm@53079: wenzelm@53079: lemma tan_arctan: "tan (arctan y) = y" wenzelm@53079: by auto paulson@15077: paulson@15077: lemma arctan_bounded: "- (pi/2) < arctan y & arctan y < pi/2" wenzelm@53079: by (auto simp only: arctan) paulson@15077: paulson@15077: lemma arctan_lbound: "- (pi/2) < arctan y" wenzelm@53079: by auto paulson@15077: paulson@15077: lemma arctan_ubound: "arctan y < pi/2" wenzelm@53079: by (auto simp only: arctan) paulson@15077: huffman@44746: lemma arctan_unique: wenzelm@53079: assumes "-(pi/2) < x" wenzelm@53079: and "x < pi/2" wenzelm@53079: and "tan x = y" huffman@44746: shows "arctan y = x" huffman@44746: using assms arctan [of y] tan_total [of y] by (fast elim: ex1E) huffman@44746: wenzelm@53079: lemma arctan_tan: "-(pi/2) < x \ x < pi/2 \ arctan (tan x) = x" wenzelm@53079: by (rule arctan_unique) simp_all paulson@15077: paulson@15077: lemma arctan_zero_zero [simp]: "arctan 0 = 0" wenzelm@53079: by (rule arctan_unique) simp_all huffman@44746: huffman@44746: lemma arctan_minus: "arctan (- x) = - arctan x" huffman@44746: apply (rule arctan_unique) huffman@44746: apply (simp only: neg_less_iff_less arctan_ubound) huffman@44746: apply (metis minus_less_iff arctan_lbound) huffman@44746: apply simp huffman@44746: done paulson@15077: huffman@44725: lemma cos_arctan_not_zero [simp]: "cos (arctan x) \ 0" huffman@44725: by (intro less_imp_neq [symmetric] cos_gt_zero_pi huffman@44725: arctan_lbound arctan_ubound) huffman@44725: wenzelm@53015: lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x\<^sup>2)" huffman@44725: proof (rule power2_eq_imp_eq) wenzelm@53015: have "0 < 1 + x\<^sup>2" by (simp add: add_pos_nonneg) wenzelm@53015: show "0 \ 1 / sqrt (1 + x\<^sup>2)" by simp huffman@44725: show "0 \ cos (arctan x)" huffman@44725: by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound) wenzelm@53015: have "(cos (arctan x))\<^sup>2 * (1 + (tan (arctan x))\<^sup>2) = 1" webertj@49962: unfolding tan_def by (simp add: distrib_left power_divide) wenzelm@53015: thus "(cos (arctan x))\<^sup>2 = (1 / sqrt (1 + x\<^sup>2))\<^sup>2" wenzelm@53015: using `0 < 1 + x\<^sup>2` by (simp add: power_divide eq_divide_eq) huffman@44725: qed huffman@44725: wenzelm@53015: lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x\<^sup>2)" huffman@44725: using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]] huffman@44725: using tan_arctan [of x] unfolding tan_def cos_arctan huffman@44725: by (simp add: eq_divide_eq) paulson@15077: wenzelm@53076: lemma tan_sec: "cos x \ 0 ==> 1 + (tan x)\<^sup>2 = (inverse (cos x))\<^sup>2" wenzelm@53079: apply (rule power_inverse [THEN subst]) lp15@56217: apply (rule_tac c1 = "(cos x)\<^sup>2" in mult_right_cancel [THEN iffD1]) wenzelm@53079: apply (auto dest: field_power_not_zero wenzelm@53079: simp add: power_mult_distrib distrib_right power_divide tan_def haftmann@57512: mult.assoc power_inverse [symmetric]) wenzelm@53079: done paulson@15077: huffman@44746: lemma arctan_less_iff: "arctan x < arctan y \ x < y" huffman@44746: by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan) huffman@44746: huffman@44746: lemma arctan_le_iff: "arctan x \ arctan y \ x \ y" huffman@44746: by (simp only: not_less [symmetric] arctan_less_iff) huffman@44746: huffman@44746: lemma arctan_eq_iff: "arctan x = arctan y \ x = y" huffman@44746: by (simp only: eq_iff [where 'a=real] arctan_le_iff) huffman@44746: huffman@44746: lemma zero_less_arctan_iff [simp]: "0 < arctan x \ 0 < x" huffman@44746: using arctan_less_iff [of 0 x] by simp huffman@44746: huffman@44746: lemma arctan_less_zero_iff [simp]: "arctan x < 0 \ x < 0" huffman@44746: using arctan_less_iff [of x 0] by simp huffman@44746: huffman@44746: lemma zero_le_arctan_iff [simp]: "0 \ arctan x \ 0 \ x" huffman@44746: using arctan_le_iff [of 0 x] by simp huffman@44746: huffman@44746: lemma arctan_le_zero_iff [simp]: "arctan x \ 0 \ x \ 0" huffman@44746: using arctan_le_iff [of x 0] by simp huffman@44746: huffman@44746: lemma arctan_eq_zero_iff [simp]: "arctan x = 0 \ x = 0" huffman@44746: using arctan_eq_iff [of x 0] by simp huffman@44746: hoelzl@51482: lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin" hoelzl@51482: proof - hoelzl@51482: have "continuous_on (sin ` {- pi / 2 .. pi / 2}) arcsin" hoelzl@56371: by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin) hoelzl@51482: also have "sin ` {- pi / 2 .. pi / 2} = {-1 .. 1}" hoelzl@51482: proof safe wenzelm@53079: fix x :: real wenzelm@53079: assume "x \ {-1..1}" wenzelm@53079: then show "x \ sin ` {- pi / 2..pi / 2}" wenzelm@53079: using arcsin_lbound arcsin_ubound hoelzl@56479: by (intro image_eqI[where x="arcsin x"]) auto hoelzl@51482: qed simp hoelzl@51482: finally show ?thesis . hoelzl@51482: qed hoelzl@51482: hoelzl@56371: lemma continuous_on_arcsin [continuous_intros]: hoelzl@51482: "continuous_on s f \ (\x\s. -1 \ f x \ f x \ 1) \ continuous_on s (\x. arcsin (f x))" hoelzl@51482: using continuous_on_compose[of s f, OF _ continuous_on_subset[OF continuous_on_arcsin']] hoelzl@51482: by (auto simp: comp_def subset_eq) hoelzl@51482: hoelzl@51482: lemma isCont_arcsin: "-1 < x \ x < 1 \ isCont arcsin x" hoelzl@51482: using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"] hoelzl@51482: by (auto simp: continuous_on_eq_continuous_at subset_eq) hoelzl@51482: hoelzl@51482: lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos" hoelzl@51482: proof - hoelzl@51482: have "continuous_on (cos ` {0 .. pi}) arccos" hoelzl@56371: by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos) hoelzl@51482: also have "cos ` {0 .. pi} = {-1 .. 1}" hoelzl@51482: proof safe wenzelm@53079: fix x :: real wenzelm@53079: assume "x \ {-1..1}" wenzelm@53079: then show "x \ cos ` {0..pi}" wenzelm@53079: using arccos_lbound arccos_ubound wenzelm@53079: by (intro image_eqI[where x="arccos x"]) auto hoelzl@51482: qed simp hoelzl@51482: finally show ?thesis . hoelzl@51482: qed hoelzl@51482: hoelzl@56371: lemma continuous_on_arccos [continuous_intros]: hoelzl@51482: "continuous_on s f \ (\x\s. -1 \ f x \ f x \ 1) \ continuous_on s (\x. arccos (f x))" hoelzl@51482: using continuous_on_compose[of s f, OF _ continuous_on_subset[OF continuous_on_arccos']] hoelzl@51482: by (auto simp: comp_def subset_eq) hoelzl@51482: hoelzl@51482: lemma isCont_arccos: "-1 < x \ x < 1 \ isCont arccos x" hoelzl@51482: using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"] hoelzl@51482: by (auto simp: continuous_on_eq_continuous_at subset_eq) huffman@23045: huffman@23045: lemma isCont_arctan: "isCont arctan x" wenzelm@53079: apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify) wenzelm@53079: apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify) wenzelm@53079: apply (subgoal_tac "isCont arctan (tan (arctan x))", simp) wenzelm@53079: apply (erule (1) isCont_inverse_function2 [where f=tan]) wenzelm@53079: apply (metis arctan_tan order_le_less_trans order_less_le_trans) wenzelm@53079: apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans less_le) wenzelm@53079: done huffman@23045: hoelzl@51478: lemma tendsto_arctan [tendsto_intros]: "(f ---> x) F \ ((\x. arctan (f x)) ---> arctan x) F" hoelzl@51478: by (rule isCont_tendsto_compose [OF isCont_arctan]) hoelzl@51478: hoelzl@51478: lemma continuous_arctan [continuous_intros]: "continuous F f \ continuous F (\x. arctan (f x))" hoelzl@51478: unfolding continuous_def by (rule tendsto_arctan) hoelzl@51478: hoelzl@56371: lemma continuous_on_arctan [continuous_intros]: "continuous_on s f \ continuous_on s (\x. arctan (f x))" hoelzl@51478: unfolding continuous_on_def by (auto intro: tendsto_arctan) wenzelm@53079: huffman@23045: lemma DERIV_arcsin: wenzelm@53015: "\-1 < x; x < 1\ \ DERIV arcsin x :> inverse (sqrt (1 - x\<^sup>2))" wenzelm@53079: apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"]) wenzelm@53079: apply (rule DERIV_cong [OF DERIV_sin]) wenzelm@53079: apply (simp add: cos_arcsin) wenzelm@53079: apply (subgoal_tac "\x\\<^sup>2 < 1\<^sup>2", simp) wenzelm@53079: apply (rule power_strict_mono, simp, simp, simp) wenzelm@53079: apply assumption wenzelm@53079: apply assumption wenzelm@53079: apply simp wenzelm@53079: apply (erule (1) isCont_arcsin) wenzelm@53079: done huffman@23045: huffman@23045: lemma DERIV_arccos: wenzelm@53015: "\-1 < x; x < 1\ \ DERIV arccos x :> inverse (- sqrt (1 - x\<^sup>2))" wenzelm@53079: apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"]) wenzelm@53079: apply (rule DERIV_cong [OF DERIV_cos]) wenzelm@53079: apply (simp add: sin_arccos) wenzelm@53079: apply (subgoal_tac "\x\\<^sup>2 < 1\<^sup>2", simp) wenzelm@53079: apply (rule power_strict_mono, simp, simp, simp) wenzelm@53079: apply assumption wenzelm@53079: apply assumption wenzelm@53079: apply simp wenzelm@53079: apply (erule (1) isCont_arccos) wenzelm@53079: done huffman@23045: wenzelm@53015: lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<^sup>2)" wenzelm@53079: apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"]) wenzelm@53079: apply (rule DERIV_cong [OF DERIV_tan]) wenzelm@53079: apply (rule cos_arctan_not_zero) wenzelm@53079: apply (simp add: power_inverse tan_sec [symmetric]) wenzelm@53079: apply (subgoal_tac "0 < 1 + x\<^sup>2", simp) wenzelm@53079: apply (simp add: add_pos_nonneg) wenzelm@53079: apply (simp, simp, simp, rule isCont_arctan) wenzelm@53079: done huffman@23045: hoelzl@31880: declare hoelzl@56381: DERIV_arcsin[THEN DERIV_chain2, derivative_intros] hoelzl@56381: DERIV_arccos[THEN DERIV_chain2, derivative_intros] hoelzl@56381: DERIV_arctan[THEN DERIV_chain2, derivative_intros] hoelzl@31880: hoelzl@50346: lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- pi/2))" hoelzl@50346: by (rule filterlim_at_bot_at_right[where Q="\x. - pi/2 < x \ x < pi/2" and P="\x. True" and g=arctan]) hoelzl@56479: (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1 hoelzl@50346: intro!: tan_monotone exI[of _ "pi/2"]) hoelzl@50346: hoelzl@50346: lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))" hoelzl@50346: by (rule filterlim_at_top_at_left[where Q="\x. - pi/2 < x \ x < pi/2" and P="\x. True" and g=arctan]) hoelzl@56479: (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1 hoelzl@50346: intro!: tan_monotone exI[of _ "pi/2"]) hoelzl@50346: hoelzl@50346: lemma tendsto_arctan_at_top: "(arctan ---> (pi/2)) at_top" hoelzl@50346: proof (rule tendstoI) wenzelm@53079: fix e :: real wenzelm@53079: assume "0 < e" hoelzl@50346: def y \ "pi/2 - min (pi/2) e" hoelzl@50346: then have y: "0 \ y" "y < pi/2" "pi/2 \ e + y" hoelzl@50346: using `0 < e` by auto hoelzl@50346: hoelzl@50346: show "eventually (\x. dist (arctan x) (pi / 2) < e) at_top" hoelzl@50346: proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI) wenzelm@53079: fix x wenzelm@53079: assume "tan y < x" hoelzl@50346: then have "arctan (tan y) < arctan x" hoelzl@50346: by (simp add: arctan_less_iff) hoelzl@50346: with y have "y < arctan x" hoelzl@50346: by (subst (asm) arctan_tan) simp_all hoelzl@50346: with arctan_ubound[of x, arith] y `0 < e` hoelzl@50346: show "dist (arctan x) (pi / 2) < e" hoelzl@50346: by (simp add: dist_real_def) hoelzl@50346: qed hoelzl@50346: qed hoelzl@50346: hoelzl@50346: lemma tendsto_arctan_at_bot: "(arctan ---> - (pi/2)) at_bot" wenzelm@53079: unfolding filterlim_at_bot_mirror arctan_minus wenzelm@53079: by (intro tendsto_minus tendsto_arctan_at_top) wenzelm@53079: hoelzl@50346: huffman@23043: subsection {* More Theorems about Sin and Cos *} huffman@23043: huffman@23052: lemma cos_45: "cos (pi / 4) = sqrt 2 / 2" huffman@23052: proof - huffman@23052: let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)" huffman@23052: have nonneg: "0 \ ?c" huffman@45308: by (simp add: cos_ge_zero) huffman@23052: have "0 = cos (pi / 4 + pi / 4)" huffman@23052: by simp wenzelm@53015: also have "cos (pi / 4 + pi / 4) = ?c\<^sup>2 - ?s\<^sup>2" huffman@23052: by (simp only: cos_add power2_eq_square) wenzelm@53015: also have "\ = 2 * ?c\<^sup>2 - 1" huffman@23052: by (simp add: sin_squared_eq) wenzelm@53015: finally have "?c\<^sup>2 = (sqrt 2 / 2)\<^sup>2" huffman@23052: by (simp add: power_divide) huffman@23052: thus ?thesis huffman@23052: using nonneg by (rule power2_eq_imp_eq) simp huffman@23052: qed huffman@23052: huffman@23052: lemma cos_30: "cos (pi / 6) = sqrt 3 / 2" huffman@23052: proof - huffman@23052: let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)" huffman@23052: have pos_c: "0 < ?c" huffman@23052: by (rule cos_gt_zero, simp, simp) huffman@23052: have "0 = cos (pi / 6 + pi / 6 + pi / 6)" huffman@23066: by simp huffman@23052: also have "\ = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s" huffman@23052: by (simp only: cos_add sin_add) wenzelm@53015: also have "\ = ?c * (?c\<^sup>2 - 3 * ?s\<^sup>2)" nipkow@29667: by (simp add: algebra_simps power2_eq_square) wenzelm@53015: finally have "?c\<^sup>2 = (sqrt 3 / 2)\<^sup>2" huffman@23052: using pos_c by (simp add: sin_squared_eq power_divide) huffman@23052: thus ?thesis huffman@23052: using pos_c [THEN order_less_imp_le] huffman@23052: by (rule power2_eq_imp_eq) simp huffman@23052: qed huffman@23052: huffman@23052: lemma sin_45: "sin (pi / 4) = sqrt 2 / 2" wenzelm@53079: by (simp add: sin_cos_eq cos_45) huffman@23052: huffman@23052: lemma sin_60: "sin (pi / 3) = sqrt 3 / 2" wenzelm@53079: by (simp add: sin_cos_eq cos_30) huffman@23052: huffman@23052: lemma cos_60: "cos (pi / 3) = 1 / 2" wenzelm@53079: apply (rule power2_eq_imp_eq) wenzelm@53079: apply (simp add: cos_squared_eq sin_60 power_divide) wenzelm@53079: apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all) wenzelm@53079: done huffman@23052: huffman@23052: lemma sin_30: "sin (pi / 6) = 1 / 2" wenzelm@53079: by (simp add: sin_cos_eq cos_60) huffman@23052: huffman@23052: lemma tan_30: "tan (pi / 6) = 1 / sqrt 3" wenzelm@53079: unfolding tan_def by (simp add: sin_30 cos_30) huffman@23052: huffman@23052: lemma tan_45: "tan (pi / 4) = 1" wenzelm@53079: unfolding tan_def by (simp add: sin_45 cos_45) huffman@23052: huffman@23052: lemma tan_60: "tan (pi / 3) = sqrt 3" wenzelm@53079: unfolding tan_def by (simp add: sin_60 cos_60) huffman@23052: paulson@15383: lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n" paulson@15383: proof - paulson@15383: have "sin ((real n + 1/2) * pi) = cos (real n * pi)" nipkow@29667: by (auto simp add: algebra_simps sin_add) paulson@15383: thus ?thesis webertj@49962: by (simp add: real_of_nat_Suc distrib_right add_divide_distrib haftmann@57512: mult.commute [of pi]) paulson@15383: qed paulson@15077: paulson@15077: lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1" haftmann@57512: by (simp add: cos_double mult.assoc power_add [symmetric] numeral_2_eq_2) paulson@15077: paulson@15077: lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0" wenzelm@53079: apply (subgoal_tac "cos (pi + pi/2) = 0", simp) wenzelm@53079: apply (subst cos_add, simp) wenzelm@53079: done paulson@15077: paulson@15077: lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0" haftmann@57512: by (auto simp add: mult.assoc) paulson@15077: paulson@15077: lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1" wenzelm@53079: apply (subgoal_tac "sin (pi + pi/2) = - 1", simp) wenzelm@53079: apply (subst sin_add, simp) wenzelm@53079: done paulson@15077: paulson@15077: lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0" wenzelm@53079: apply (simp only: cos_add sin_add real_of_nat_Suc distrib_right distrib_left add_divide_distrib) wenzelm@53079: apply auto wenzelm@53079: done wenzelm@53079: wenzelm@53079: lemma DERIV_cos_add [simp]: "DERIV (\x. cos (x + k)) xa :> - sin (xa + k)" hoelzl@56381: by (auto intro!: derivative_eq_intros) paulson@15077: paulson@15081: lemma sin_zero_abs_cos_one: "sin x = 0 ==> \cos x\ = 1" wenzelm@53079: by (auto simp add: sin_zero_iff even_mult_two_ex) paulson@15077: paulson@15077: lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0" wenzelm@53079: using sin_cos_squared_add3 [where x = x] by auto wenzelm@53079: paulson@15077: hoelzl@29803: subsection {* Machins formula *} hoelzl@29803: huffman@44746: lemma arctan_one: "arctan 1 = pi / 4" huffman@44746: by (rule arctan_unique, simp_all add: tan_45 m2pi_less_pi) huffman@44746: wenzelm@53079: lemma tan_total_pi4: wenzelm@53079: assumes "\x\ < 1" wenzelm@53079: shows "\z. - (pi / 4) < z \ z < pi / 4 \ tan z = x" huffman@44746: proof huffman@44746: show "- (pi / 4) < arctan x \ arctan x < pi / 4 \ tan (arctan x) = x" huffman@44746: unfolding arctan_one [symmetric] arctan_minus [symmetric] huffman@44746: unfolding arctan_less_iff using assms by auto hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma arctan_add: wenzelm@53079: assumes "\x\ \ 1" and "\y\ < 1" hoelzl@29803: shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))" huffman@44746: proof (rule arctan_unique [symmetric]) huffman@44746: have "- (pi / 4) \ arctan x" and "- (pi / 4) < arctan y" huffman@44746: unfolding arctan_one [symmetric] arctan_minus [symmetric] huffman@44746: unfolding arctan_le_iff arctan_less_iff using assms by auto huffman@44746: from add_le_less_mono [OF this] huffman@44746: show 1: "- (pi / 2) < arctan x + arctan y" by simp huffman@44746: have "arctan x \ pi / 4" and "arctan y < pi / 4" huffman@44746: unfolding arctan_one [symmetric] huffman@44746: unfolding arctan_le_iff arctan_less_iff using assms by auto huffman@44746: from add_le_less_mono [OF this] huffman@44746: show 2: "arctan x + arctan y < pi / 2" by simp huffman@44746: show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)" huffman@44746: using cos_gt_zero_pi [OF 1 2] by (simp add: tan_add) hoelzl@29803: qed hoelzl@29803: hoelzl@29803: theorem machin: "pi / 4 = 4 * arctan (1/5) - arctan (1 / 239)" hoelzl@29803: proof - hoelzl@29803: have "\1 / 5\ < (1 :: real)" by auto hoelzl@29803: from arctan_add[OF less_imp_le[OF this] this] hoelzl@29803: have "2 * arctan (1 / 5) = arctan (5 / 12)" by auto hoelzl@29803: moreover hoelzl@29803: have "\5 / 12\ < (1 :: real)" by auto hoelzl@29803: from arctan_add[OF less_imp_le[OF this] this] hoelzl@29803: have "2 * arctan (5 / 12) = arctan (120 / 119)" by auto hoelzl@41970: moreover hoelzl@29803: have "\1\ \ (1::real)" and "\1 / 239\ < (1::real)" by auto hoelzl@29803: from arctan_add[OF this] hoelzl@29803: have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)" by auto hoelzl@29803: ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)" by auto huffman@44746: thus ?thesis unfolding arctan_one by algebra hoelzl@29803: qed huffman@44746: wenzelm@53079: hoelzl@29803: subsection {* Introducing the arcus tangens power series *} hoelzl@29803: wenzelm@53079: lemma monoseq_arctan_series: wenzelm@53079: fixes x :: real wenzelm@53079: assumes "\x\ \ 1" wenzelm@53079: shows "monoseq (\ n. 1 / real (n*2+1) * x^(n*2+1))" (is "monoseq ?a") wenzelm@53079: proof (cases "x = 0") wenzelm@53079: case True wenzelm@53079: thus ?thesis unfolding monoseq_def One_nat_def by auto hoelzl@29803: next hoelzl@29803: case False hoelzl@29803: have "norm x \ 1" and "x \ 1" and "-1 \ x" using assms by auto hoelzl@29803: show "monoseq ?a" hoelzl@29803: proof - wenzelm@53079: { wenzelm@53079: fix n wenzelm@53079: fix x :: real wenzelm@53079: assume "0 \ x" and "x \ 1" wenzelm@53079: have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \ wenzelm@53079: 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" hoelzl@29803: proof (rule mult_mono) wenzelm@53079: show "1 / real (Suc (Suc n * 2)) \ 1 / real (Suc (n * 2))" wenzelm@53079: by (rule frac_le) simp_all wenzelm@53079: show "0 \ 1 / real (Suc (n * 2))" wenzelm@53079: by auto wenzelm@53079: show "x ^ Suc (Suc n * 2) \ x ^ Suc (n * 2)" wenzelm@53079: by (rule power_decreasing) (simp_all add: `0 \ x` `x \ 1`) wenzelm@53079: show "0 \ x ^ Suc (Suc n * 2)" wenzelm@53079: by (rule zero_le_power) (simp add: `0 \ x`) hoelzl@29803: qed hoelzl@29803: } note mono = this hoelzl@41970: hoelzl@29803: show ?thesis hoelzl@29803: proof (cases "0 \ x") hoelzl@29803: case True from mono[OF this `x \ 1`, THEN allI] wenzelm@53079: show ?thesis unfolding Suc_eq_plus1[symmetric] wenzelm@53079: by (rule mono_SucI2) hoelzl@29803: next wenzelm@53079: case False wenzelm@53079: hence "0 \ -x" and "-x \ 1" using `-1 \ x` by auto hoelzl@29803: from mono[OF this] wenzelm@53079: have "\n. 1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \ wenzelm@53079: 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" using `0 \ -x` by auto nipkow@31790: thus ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI]) hoelzl@29803: qed hoelzl@29803: qed hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma zeroseq_arctan_series: wenzelm@53079: fixes x :: real wenzelm@53079: assumes "\x\ \ 1" wenzelm@53079: shows "(\ n. 1 / real (n*2+1) * x^(n*2+1)) ----> 0" (is "?a ----> 0") wenzelm@53079: proof (cases "x = 0") wenzelm@53079: case True wenzelm@53079: thus ?thesis wenzelm@53079: unfolding One_nat_def by (auto simp add: tendsto_const) hoelzl@29803: next hoelzl@29803: case False hoelzl@29803: have "norm x \ 1" and "x \ 1" and "-1 \ x" using assms by auto hoelzl@29803: show "?a ----> 0" hoelzl@29803: proof (cases "\x\ < 1") wenzelm@53079: case True wenzelm@53079: hence "norm x < 1" by auto huffman@44568: from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF `norm x < 1`, THEN LIMSEQ_Suc]] huffman@30082: have "(\n. 1 / real (n + 1) * x ^ (n + 1)) ----> 0" nipkow@31790: unfolding inverse_eq_divide Suc_eq_plus1 by simp huffman@30082: then show ?thesis using pos2 by (rule LIMSEQ_linear) hoelzl@29803: next wenzelm@53079: case False wenzelm@53079: hence "x = -1 \ x = 1" using `\x\ \ 1` by auto wenzelm@53079: hence n_eq: "\ n. x ^ (n * 2 + 1) = x" wenzelm@53079: unfolding One_nat_def by auto huffman@44568: from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]] nipkow@31790: show ?thesis unfolding n_eq Suc_eq_plus1 by auto hoelzl@29803: qed hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma summable_arctan_series: wenzelm@53079: fixes x :: real and n :: nat wenzelm@53079: assumes "\x\ \ 1" wenzelm@53079: shows "summable (\ k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" wenzelm@53079: (is "summable (?c x)") hoelzl@29803: by (rule summable_Leibniz(1), rule zeroseq_arctan_series[OF assms], rule monoseq_arctan_series[OF assms]) hoelzl@29803: wenzelm@53079: lemma less_one_imp_sqr_less_one: wenzelm@53079: fixes x :: real wenzelm@53079: assumes "\x\ < 1" wenzelm@53079: shows "x\<^sup>2 < 1" hoelzl@29803: proof - paulson@54573: have "\x\<^sup>2\ < 1" paulson@54573: by (metis abs_power2 assms pos2 power2_abs power_0 power_strict_decreasing zero_eq_power2 zero_less_abs_iff) hoelzl@29803: thus ?thesis using zero_le_power2 by auto hoelzl@41970: qed hoelzl@29803: wenzelm@53079: lemma DERIV_arctan_series: wenzelm@53079: assumes "\ x \ < 1" wenzelm@53079: shows "DERIV (\ x'. \ k. (-1)^k * (1 / real (k*2+1) * x' ^ (k*2+1))) x :> (\ k. (-1)^k * x^(k*2))" wenzelm@53079: (is "DERIV ?arctan _ :> ?Int") hoelzl@29803: proof - wenzelm@53079: let ?f = "\n. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0" wenzelm@53079: wenzelm@53079: have n_even: "\n :: nat. even n \ 2 * (n div 2) = n" wenzelm@53079: by presburger wenzelm@53079: then have if_eq: "\n x'. ?f n * real (Suc n) * x'^n = wenzelm@53079: (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)" wenzelm@53079: by auto wenzelm@53079: wenzelm@53079: { wenzelm@53079: fix x :: real wenzelm@53079: assume "\x\ < 1" wenzelm@53079: hence "x\<^sup>2 < 1" by (rule less_one_imp_sqr_less_one) wenzelm@53076: have "summable (\ n. -1 ^ n * (x\<^sup>2) ^n)" wenzelm@53076: by (rule summable_Leibniz(1), auto intro!: LIMSEQ_realpow_zero monoseq_realpow `x\<^sup>2 < 1` order_less_imp_le[OF `x\<^sup>2 < 1`]) hoelzl@29803: hence "summable (\ n. -1 ^ n * x^(2*n))" unfolding power_mult . hoelzl@29803: } note summable_Integral = this hoelzl@29803: wenzelm@53079: { wenzelm@53079: fix f :: "nat \ real" wenzelm@53079: have "\x. f sums x = (\ n. if even n then f (n div 2) else 0) sums x" hoelzl@29803: proof wenzelm@53079: fix x :: real wenzelm@53079: assume "f sums x" hoelzl@29803: from sums_if[OF sums_zero this] wenzelm@53079: show "(\n. if even n then f (n div 2) else 0) sums x" wenzelm@53079: by auto hoelzl@29803: next wenzelm@53079: fix x :: real wenzelm@53079: assume "(\ n. if even n then f (n div 2) else 0) sums x" haftmann@57512: from LIMSEQ_linear[OF this[unfolded sums_def] pos2, unfolded sum_split_even_odd[unfolded mult.commute]] hoelzl@29803: show "f sums x" unfolding sums_def by auto hoelzl@29803: qed hoelzl@29803: hence "op sums f = op sums (\ n. if even n then f (n div 2) else 0)" .. hoelzl@29803: } note sums_even = this hoelzl@29803: wenzelm@53079: have Int_eq: "(\n. ?f n * real (Suc n) * x^n) = ?Int" haftmann@57512: unfolding if_eq mult.commute[of _ 2] suminf_def sums_even[of "\ n. -1 ^ n * x ^ (2 * n)", symmetric] hoelzl@29803: by auto hoelzl@29803: wenzelm@53079: { wenzelm@53079: fix x :: real wenzelm@53079: have if_eq': "\n. (if even n then -1 ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n = hoelzl@29803: (if even n then -1 ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)" hoelzl@29803: using n_even by auto wenzelm@53079: have idx_eq: "\n. n * 2 + 1 = Suc (2 * n)" by auto wenzelm@53079: have "(\n. ?f n * x^(Suc n)) = ?arctan x" wenzelm@53079: unfolding if_eq' idx_eq suminf_def sums_even[of "\ n. -1 ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric] hoelzl@29803: by auto hoelzl@29803: } note arctan_eq = this hoelzl@29803: hoelzl@29803: have "DERIV (\ x. \ n. ?f n * x^(Suc n)) x :> (\ n. ?f n * real (Suc n) * x^n)" hoelzl@29803: proof (rule DERIV_power_series') hoelzl@29803: show "x \ {- 1 <..< 1}" using `\ x \ < 1` by auto wenzelm@53079: { wenzelm@53079: fix x' :: real wenzelm@53079: assume x'_bounds: "x' \ {- 1 <..< 1}" hoelzl@29803: hence "\x'\ < 1" by auto hoelzl@29803: hoelzl@29803: let ?S = "\ n. (-1)^n * x'^(2 * n)" hoelzl@29803: show "summable (\ n. ?f n * real (Suc n) * x'^n)" unfolding if_eq wenzelm@32960: by (rule sums_summable[where l="0 + ?S"], rule sums_if, rule sums_zero, rule summable_sums, rule summable_Integral[OF `\x'\ < 1`]) hoelzl@29803: } hoelzl@29803: qed auto hoelzl@29803: thus ?thesis unfolding Int_eq arctan_eq . hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma arctan_series: wenzelm@53079: assumes "\ x \ \ 1" wenzelm@53079: shows "arctan x = (\k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" wenzelm@53079: (is "_ = suminf (\ n. ?c x n)") hoelzl@29803: proof - wenzelm@53079: let ?c' = "\x n. (-1)^n * x^(n*2)" wenzelm@53079: wenzelm@53079: { wenzelm@53079: fix r x :: real wenzelm@53079: assume "0 < r" and "r < 1" and "\ x \ < r" hoelzl@29803: have "\x\ < 1" using `r < 1` and `\x\ < r` by auto wenzelm@53079: from DERIV_arctan_series[OF this] have "DERIV (\ x. suminf (?c x)) x :> (suminf (?c' x))" . hoelzl@29803: } note DERIV_arctan_suminf = this hoelzl@29803: wenzelm@53079: { wenzelm@53079: fix x :: real wenzelm@53079: assume "\x\ \ 1" wenzelm@53079: note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]] wenzelm@53079: } note arctan_series_borders = this wenzelm@53079: wenzelm@53079: { wenzelm@53079: fix x :: real wenzelm@53079: assume "\x\ < 1" wenzelm@53079: have "arctan x = (\k. ?c x k)" hoelzl@29803: proof - wenzelm@53079: obtain r where "\x\ < r" and "r < 1" wenzelm@53079: using dense[OF `\x\ < 1`] by blast wenzelm@53079: hence "0 < r" and "-r < x" and "x < r" by auto wenzelm@53079: wenzelm@53079: have suminf_eq_arctan_bounded: "\x a b. \ -r < a ; b < r ; a < b ; a \ x ; x \ b \ \ wenzelm@53079: suminf (?c x) - arctan x = suminf (?c a) - arctan a" wenzelm@53079: proof - wenzelm@53079: fix x a b wenzelm@53079: assume "-r < a" and "b < r" and "a < b" and "a \ x" and "x \ b" wenzelm@53079: hence "\x\ < r" by auto wenzelm@53079: show "suminf (?c x) - arctan x = suminf (?c a) - arctan a" wenzelm@53079: proof (rule DERIV_isconst2[of "a" "b"]) wenzelm@53079: show "a < b" and "a \ x" and "x \ b" wenzelm@53079: using `a < b` `a \ x` `x \ b` by auto wenzelm@53079: have "\x. -r < x \ x < r \ DERIV (\ x. suminf (?c x) - arctan x) x :> 0" wenzelm@53079: proof (rule allI, rule impI) wenzelm@53079: fix x wenzelm@53079: assume "-r < x \ x < r" wenzelm@53079: hence "\x\ < r" by auto wenzelm@53079: hence "\x\ < 1" using `r < 1` by auto wenzelm@53079: have "\ - (x\<^sup>2) \ < 1" wenzelm@53079: using less_one_imp_sqr_less_one[OF `\x\ < 1`] by auto wenzelm@53079: hence "(\ n. (- (x\<^sup>2)) ^ n) sums (1 / (1 - (- (x\<^sup>2))))" wenzelm@53079: unfolding real_norm_def[symmetric] by (rule geometric_sums) wenzelm@53079: hence "(?c' x) sums (1 / (1 - (- (x\<^sup>2))))" haftmann@57512: unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto wenzelm@53079: hence suminf_c'_eq_geom: "inverse (1 + x\<^sup>2) = suminf (?c' x)" wenzelm@53079: using sums_unique unfolding inverse_eq_divide by auto wenzelm@53079: have "DERIV (\ x. suminf (?c x)) x :> (inverse (1 + x\<^sup>2))" wenzelm@53079: unfolding suminf_c'_eq_geom wenzelm@53079: by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\x\ < r`]) lp15@56261: from DERIV_diff [OF this DERIV_arctan] wenzelm@53079: show "DERIV (\ x. suminf (?c x) - arctan x) x :> 0" haftmann@54230: by auto wenzelm@53079: qed wenzelm@53079: hence DERIV_in_rball: "\ y. a \ y \ y \ b \ DERIV (\ x. suminf (?c x) - arctan x) y :> 0" wenzelm@53079: using `-r < a` `b < r` by auto wenzelm@53079: thus "\ y. a < y \ y < b \ DERIV (\ x. suminf (?c x) - arctan x) y :> 0" wenzelm@53079: using `\x\ < r` by auto wenzelm@53079: show "\ y. a \ y \ y \ b \ isCont (\ x. suminf (?c x) - arctan x) y" wenzelm@53079: using DERIV_in_rball DERIV_isCont by auto wenzelm@32960: qed hoelzl@29803: qed wenzelm@53079: wenzelm@53079: have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0" wenzelm@53079: unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero wenzelm@53079: by auto wenzelm@53079: wenzelm@53079: have "suminf (?c x) - arctan x = 0" wenzelm@53079: proof (cases "x = 0") wenzelm@53079: case True wenzelm@53079: thus ?thesis using suminf_arctan_zero by auto wenzelm@53079: next wenzelm@53079: case False wenzelm@53079: hence "0 < \x\" and "- \x\ < \x\" by auto wenzelm@53079: have "suminf (?c (-\x\)) - arctan (-\x\) = suminf (?c 0) - arctan 0" wenzelm@53079: by (rule suminf_eq_arctan_bounded[where x="0" and a="-\x\" and b="\x\", symmetric]) wenzelm@53079: (simp_all only: `\x\ < r` `-\x\ < \x\` neg_less_iff_less) wenzelm@53079: moreover wenzelm@53079: have "suminf (?c x) - arctan x = suminf (?c (-\x\)) - arctan (-\x\)" wenzelm@53079: by (rule suminf_eq_arctan_bounded[where x="x" and a="-\x\" and b="\x\"]) paulson@54573: (simp_all only: `\x\ < r` `-\x\ < \x\` neg_less_iff_less) wenzelm@53079: ultimately wenzelm@53079: show ?thesis using suminf_arctan_zero by auto wenzelm@53079: qed wenzelm@53079: thus ?thesis by auto hoelzl@29803: qed wenzelm@53079: } note when_less_one = this hoelzl@29803: hoelzl@29803: show "arctan x = suminf (\ n. ?c x n)" hoelzl@29803: proof (cases "\x\ < 1") wenzelm@53079: case True wenzelm@53079: thus ?thesis by (rule when_less_one) wenzelm@53079: next wenzelm@53079: case False wenzelm@53079: hence "\x\ = 1" using `\x\ \ 1` by auto wenzelm@53079: let ?a = "\x n. \1 / real (n*2+1) * x^(n*2+1)\" hoelzl@56193: let ?diff = "\ x n. \ arctan x - (\ i" wenzelm@53079: { wenzelm@53079: fix n :: nat hoelzl@29803: have "0 < (1 :: real)" by auto hoelzl@29803: moreover wenzelm@53079: { wenzelm@53079: fix x :: real wenzelm@53079: assume "0 < x" and "x < 1" wenzelm@53079: hence "\x\ \ 1" and "\x\ < 1" by auto wenzelm@53079: from `0 < x` have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)" wenzelm@53079: by auto wenzelm@32960: note bounds = mp[OF arctan_series_borders(2)[OF `\x\ \ 1`] this, unfolded when_less_one[OF `\x\ < 1`, symmetric], THEN spec] wenzelm@53079: have "0 < 1 / real (n*2+1) * x^(n*2+1)" wenzelm@53079: by (rule mult_pos_pos, auto simp only: zero_less_power[OF `0 < x`], auto) wenzelm@53079: hence a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)" wenzelm@53079: by (rule abs_of_pos) hoelzl@29803: have "?diff x n \ ?a x n" wenzelm@32960: proof (cases "even n") wenzelm@53079: case True wenzelm@53079: hence sgn_pos: "(-1)^n = (1::real)" by auto wenzelm@53079: from `even n` obtain m where "2 * m = n" wenzelm@53079: unfolding even_mult_two_ex by auto wenzelm@32960: from bounds[of m, unfolded this atLeastAtMost_iff] hoelzl@56193: have "\arctan x - (\i \ (\ii = ?c x n" unfolding One_nat_def by auto wenzelm@32960: also have "\ = ?a x n" unfolding sgn_pos a_pos by auto wenzelm@32960: finally show ?thesis . wenzelm@32960: next wenzelm@53079: case False wenzelm@53079: hence sgn_neg: "(-1)^n = (-1::real)" by auto wenzelm@53079: from `odd n` obtain m where m_def: "2 * m + 1 = n" wenzelm@53079: unfolding odd_Suc_mult_two_ex by auto wenzelm@32960: hence m_plus: "2 * (m + 1) = n + 1" by auto wenzelm@32960: from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2] hoelzl@56193: have "\arctan x - (\i \ (\ii = - ?c x n" unfolding One_nat_def by auto wenzelm@32960: also have "\ = ?a x n" unfolding sgn_neg a_pos by auto wenzelm@32960: finally show ?thesis . wenzelm@32960: qed hoelzl@29803: hence "0 \ ?a x n - ?diff x n" by auto hoelzl@29803: } hoelzl@29803: hence "\ x \ { 0 <..< 1 }. 0 \ ?a x n - ?diff x n" by auto hoelzl@29803: moreover have "\x. isCont (\ x. ?a x n - ?diff x n) x" haftmann@54230: unfolding diff_conv_add_uminus divide_inverse wenzelm@53079: by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan haftmann@54230: isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum haftmann@54230: simp del: add_uminus_conv_diff) wenzelm@53079: ultimately have "0 \ ?a 1 n - ?diff 1 n" wenzelm@53079: by (rule LIM_less_bound) hoelzl@29803: hence "?diff 1 n \ ?a 1 n" by auto hoelzl@29803: } huffman@30082: have "?a 1 ----> 0" huffman@44568: unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def huffman@44568: by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat) hoelzl@29803: have "?diff 1 ----> 0" hoelzl@29803: proof (rule LIMSEQ_I) wenzelm@53079: fix r :: real wenzelm@53079: assume "0 < r" wenzelm@53079: obtain N :: nat where N_I: "\n. N \ n \ ?a 1 n < r" wenzelm@53079: using LIMSEQ_D[OF `?a 1 ----> 0` `0 < r`] by auto wenzelm@53079: { wenzelm@53079: fix n wenzelm@53079: assume "N \ n" from `?diff 1 n \ ?a 1 n` N_I[OF this] wenzelm@53079: have "norm (?diff 1 n - 0) < r" by auto wenzelm@53079: } hoelzl@29803: thus "\ N. \ n \ N. norm (?diff 1 n - 0) < r" by blast hoelzl@29803: qed huffman@44710: from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus] hoelzl@29803: have "(?c 1) sums (arctan 1)" unfolding sums_def by auto hoelzl@29803: hence "arctan 1 = (\ i. ?c 1 i)" by (rule sums_unique) hoelzl@41970: hoelzl@29803: show ?thesis wenzelm@53079: proof (cases "x = 1") wenzelm@53079: case True wenzelm@53079: then show ?thesis by (simp add: `arctan 1 = (\ i. ?c 1 i)`) wenzelm@53079: next wenzelm@53079: case False wenzelm@53079: hence "x = -1" using `\x\ = 1` by auto hoelzl@41970: hoelzl@29803: have "- (pi / 2) < 0" using pi_gt_zero by auto hoelzl@29803: have "- (2 * pi) < 0" using pi_gt_zero by auto hoelzl@41970: wenzelm@53079: have c_minus_minus: "\i. ?c (- 1) i = - ?c 1 i" wenzelm@53079: unfolding One_nat_def by auto wenzelm@53079: wenzelm@53079: have "arctan (- 1) = arctan (tan (-(pi / 4)))" wenzelm@53079: unfolding tan_45 tan_minus .. wenzelm@53079: also have "\ = - (pi / 4)" wenzelm@53079: by (rule arctan_tan, auto simp add: order_less_trans[OF `- (pi / 2) < 0` pi_gt_zero]) wenzelm@53079: also have "\ = - (arctan (tan (pi / 4)))" wenzelm@53079: unfolding neg_equal_iff_equal by (rule arctan_tan[symmetric], auto simp add: order_less_trans[OF `- (2 * pi) < 0` pi_gt_zero]) wenzelm@53079: also have "\ = - (arctan 1)" wenzelm@53079: unfolding tan_45 .. wenzelm@53079: also have "\ = - (\ i. ?c 1 i)" wenzelm@53079: using `arctan 1 = (\ i. ?c 1 i)` by auto wenzelm@53079: also have "\ = (\ i. ?c (- 1) i)" wenzelm@53079: using suminf_minus[OF sums_summable[OF `(?c 1) sums (arctan 1)`]] wenzelm@53079: unfolding c_minus_minus by auto hoelzl@29803: finally show ?thesis using `x = -1` by auto hoelzl@29803: qed hoelzl@29803: qed hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma arctan_half: wenzelm@53079: fixes x :: real wenzelm@53076: shows "arctan x = 2 * arctan (x / (1 + sqrt(1 + x\<^sup>2)))" hoelzl@29803: proof - wenzelm@53079: obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x" wenzelm@53079: using tan_total by blast wenzelm@53079: hence low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2" wenzelm@53079: by auto wenzelm@53079: hoelzl@29803: have "0 < cos y" using cos_gt_zero_pi[OF low high] . wenzelm@53079: hence "cos y \ 0" and cos_sqrt: "sqrt ((cos y)\<^sup>2) = cos y" wenzelm@53079: by auto wenzelm@53079: wenzelm@53079: have "1 + (tan y)\<^sup>2 = 1 + (sin y)\<^sup>2 / (cos y)\<^sup>2" wenzelm@53079: unfolding tan_def power_divide .. wenzelm@53079: also have "\ = (cos y)\<^sup>2 / (cos y)\<^sup>2 + (sin y)\<^sup>2 / (cos y)\<^sup>2" wenzelm@53079: using `cos y \ 0` by auto wenzelm@53079: also have "\ = 1 / (cos y)\<^sup>2" wenzelm@53079: unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 .. wenzelm@53076: finally have "1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2" . hoelzl@29803: wenzelm@53079: have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)" hoelzl@56571: unfolding tan_def using `cos y \ 0` by (simp add: field_simps) wenzelm@53079: also have "\ = tan y / (1 + 1 / cos y)" wenzelm@53079: using `cos y \ 0` unfolding add_divide_distrib by auto wenzelm@53079: also have "\ = tan y / (1 + 1 / sqrt ((cos y)\<^sup>2))" wenzelm@53079: unfolding cos_sqrt .. wenzelm@53079: also have "\ = tan y / (1 + sqrt (1 / (cos y)\<^sup>2))" wenzelm@53079: unfolding real_sqrt_divide by auto wenzelm@53079: finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)\<^sup>2))" wenzelm@53079: unfolding `1 + (tan y)\<^sup>2 = 1 / (cos y)\<^sup>2` . wenzelm@53079: wenzelm@53079: have "arctan x = y" wenzelm@53079: using arctan_tan low high y_eq by auto wenzelm@53079: also have "\ = 2 * (arctan (tan (y/2)))" wenzelm@53079: using arctan_tan[OF low2 high2] by auto wenzelm@53079: also have "\ = 2 * (arctan (sin y / (cos y + 1)))" wenzelm@53079: unfolding tan_half by auto wenzelm@53079: finally show ?thesis wenzelm@53079: unfolding eq `tan y = x` . hoelzl@29803: qed hoelzl@29803: wenzelm@53079: lemma arctan_monotone: "x < y \ arctan x < arctan y" wenzelm@53079: by (simp only: arctan_less_iff) wenzelm@53079: wenzelm@53079: lemma arctan_monotone': "x \ y \ arctan x \ arctan y" wenzelm@53079: by (simp only: arctan_le_iff) huffman@44746: huffman@44746: lemma arctan_inverse: wenzelm@53079: assumes "x \ 0" wenzelm@53079: shows "arctan (1 / x) = sgn x * pi / 2 - arctan x" huffman@44746: proof (rule arctan_unique) huffman@44746: show "- (pi / 2) < sgn x * pi / 2 - arctan x" huffman@44746: using arctan_bounded [of x] assms huffman@44746: unfolding sgn_real_def huffman@44746: apply (auto simp add: algebra_simps) huffman@44746: apply (drule zero_less_arctan_iff [THEN iffD2]) huffman@44746: apply arith huffman@44746: done huffman@44746: show "sgn x * pi / 2 - arctan x < pi / 2" huffman@44746: using arctan_bounded [of "- x"] assms huffman@44746: unfolding sgn_real_def arctan_minus haftmann@54489: by (auto simp add: algebra_simps) huffman@44746: show "tan (sgn x * pi / 2 - arctan x) = 1 / x" huffman@44746: unfolding tan_inverse [of "arctan x", unfolded tan_arctan] huffman@44746: unfolding sgn_real_def hoelzl@56479: by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff) hoelzl@29803: qed hoelzl@29803: hoelzl@29803: theorem pi_series: "pi / 4 = (\ k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM") hoelzl@29803: proof - huffman@44746: have "pi / 4 = arctan 1" using arctan_one by auto hoelzl@29803: also have "\ = ?SUM" using arctan_series[of 1] by auto hoelzl@29803: finally show ?thesis by auto hoelzl@29803: qed paulson@15077: wenzelm@53079: huffman@22978: subsection {* Existence of Polar Coordinates *} paulson@15077: wenzelm@53015: lemma cos_x_y_le_one: "\x / sqrt (x\<^sup>2 + y\<^sup>2)\ \ 1" wenzelm@53079: apply (rule power2_le_imp_le [OF _ zero_le_one]) wenzelm@53079: apply (simp add: power_divide divide_le_eq not_sum_power2_lt_zero) wenzelm@53079: done paulson@15077: huffman@22978: lemma cos_arccos_abs: "\y\ \ 1 \ cos (arccos y) = y" wenzelm@53079: by (simp add: abs_le_iff) paulson@15077: wenzelm@53015: lemma sin_arccos_abs: "\y\ \ 1 \ sin (arccos y) = sqrt (1 - y\<^sup>2)" wenzelm@53079: by (simp add: sin_arccos abs_le_iff) paulson@15077: huffman@22978: lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one] paulson@15228: huffman@23045: lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one] paulson@15077: paulson@15077: lemma polar_Ex: "\r a. x = r * cos a & y = r * sin a" paulson@54573: proof - paulson@54573: have polar_ex1: "\y. 0 < y \ \r a. x = r * cos a & y = r * sin a" paulson@54573: apply (rule_tac x = "sqrt (x\<^sup>2 + y\<^sup>2)" in exI) paulson@54573: apply (rule_tac x = "arccos (x / sqrt (x\<^sup>2 + y\<^sup>2))" in exI) paulson@54573: apply (simp add: cos_arccos_lemma1 sin_arccos_lemma1 power_divide paulson@54573: real_sqrt_mult [symmetric] right_diff_distrib) paulson@54573: done paulson@54573: show ?thesis paulson@54573: proof (cases "0::real" y rule: linorder_cases) paulson@54573: case less paulson@54573: then show ?thesis by (rule polar_ex1) paulson@54573: next paulson@54573: case equal paulson@54573: then show ?thesis paulson@54573: by (force simp add: intro!: cos_zero sin_zero) paulson@54573: next paulson@54573: case greater paulson@54573: then show ?thesis paulson@54573: using polar_ex1 [where y="-y"] paulson@54573: by auto (metis cos_minus minus_minus minus_mult_right sin_minus) paulson@54573: qed paulson@54573: qed paulson@15077: huffman@30082: end