huffman@47325: (* Title: HOL/Transfer.thy huffman@47325: Author: Brian Huffman, TU Muenchen kuncar@51956: Author: Ondrej Kuncar, TU Muenchen huffman@47325: *) huffman@47325: huffman@47325: header {* Generic theorem transfer using relations *} huffman@47325: huffman@47325: theory Transfer blanchet@56654: imports Hilbert_Choice BNF_FP_Base Metis Option huffman@47325: begin huffman@47325: kuncar@56677: (* We include Option here although it's not needed here. kuncar@56524: By doing this, we avoid a diamond problem for BNF and kuncar@56524: FP sugar interpretation defined in this file. *) kuncar@56524: huffman@47325: subsection {* Relator for function space *} huffman@47325: kuncar@53011: locale lifting_syntax kuncar@53011: begin blanchet@55945: notation rel_fun (infixr "===>" 55) kuncar@53011: notation map_fun (infixr "--->" 55) kuncar@53011: end kuncar@53011: kuncar@53011: context kuncar@53011: begin kuncar@53011: interpretation lifting_syntax . kuncar@53011: blanchet@55945: lemma rel_funD2: blanchet@55945: assumes "rel_fun A B f g" and "A x x" kuncar@47937: shows "B (f x) (g x)" blanchet@55945: using assms by (rule rel_funD) kuncar@47937: blanchet@55945: lemma rel_funE: blanchet@55945: assumes "rel_fun A B f g" and "A x y" huffman@47325: obtains "B (f x) (g y)" blanchet@55945: using assms by (simp add: rel_fun_def) huffman@47325: blanchet@55945: lemmas rel_fun_eq = fun.rel_eq huffman@47325: blanchet@55945: lemma rel_fun_eq_rel: blanchet@55945: shows "rel_fun (op =) R = (\f g. \x. R (f x) (g x))" blanchet@55945: by (simp add: rel_fun_def) huffman@47325: huffman@47325: huffman@47325: subsection {* Transfer method *} huffman@47325: huffman@47789: text {* Explicit tag for relation membership allows for huffman@47789: backward proof methods. *} huffman@47325: huffman@47325: definition Rel :: "('a \ 'b \ bool) \ 'a \ 'b \ bool" huffman@47325: where "Rel r \ r" huffman@47325: huffman@49975: text {* Handling of equality relations *} huffman@49975: huffman@49975: definition is_equality :: "('a \ 'a \ bool) \ bool" huffman@49975: where "is_equality R \ R = (op =)" huffman@49975: kuncar@51437: lemma is_equality_eq: "is_equality (op =)" kuncar@51437: unfolding is_equality_def by simp kuncar@51437: huffman@52354: text {* Reverse implication for monotonicity rules *} huffman@52354: huffman@52354: definition rev_implies where huffman@52354: "rev_implies x y \ (y \ x)" huffman@52354: huffman@47325: text {* Handling of meta-logic connectives *} huffman@47325: huffman@47325: definition transfer_forall where huffman@47325: "transfer_forall \ All" huffman@47325: huffman@47325: definition transfer_implies where huffman@47325: "transfer_implies \ op \" huffman@47325: huffman@47355: definition transfer_bforall :: "('a \ bool) \ ('a \ bool) \ bool" huffman@47355: where "transfer_bforall \ (\P Q. \x. P x \ Q x)" huffman@47355: huffman@47325: lemma transfer_forall_eq: "(\x. P x) \ Trueprop (transfer_forall (\x. P x))" huffman@47325: unfolding atomize_all transfer_forall_def .. huffman@47325: huffman@47325: lemma transfer_implies_eq: "(A \ B) \ Trueprop (transfer_implies A B)" huffman@47325: unfolding atomize_imp transfer_implies_def .. huffman@47325: huffman@47355: lemma transfer_bforall_unfold: huffman@47355: "Trueprop (transfer_bforall P (\x. Q x)) \ (\x. P x \ Q x)" huffman@47355: unfolding transfer_bforall_def atomize_imp atomize_all .. huffman@47355: huffman@47658: lemma transfer_start: "\P; Rel (op =) P Q\ \ Q" huffman@47325: unfolding Rel_def by simp huffman@47325: huffman@47658: lemma transfer_start': "\P; Rel (op \) P Q\ \ Q" huffman@47325: unfolding Rel_def by simp huffman@47325: huffman@47635: lemma transfer_prover_start: "\x = x'; Rel R x' y\ \ Rel R x y" huffman@47618: by simp huffman@47618: huffman@52358: lemma untransfer_start: "\Q; Rel (op =) P Q\ \ P" huffman@52358: unfolding Rel_def by simp huffman@52358: huffman@47325: lemma Rel_eq_refl: "Rel (op =) x x" huffman@47325: unfolding Rel_def .. huffman@47325: huffman@47789: lemma Rel_app: huffman@47523: assumes "Rel (A ===> B) f g" and "Rel A x y" huffman@47789: shows "Rel B (f x) (g y)" blanchet@55945: using assms unfolding Rel_def rel_fun_def by fast huffman@47523: huffman@47789: lemma Rel_abs: huffman@47523: assumes "\x y. Rel A x y \ Rel B (f x) (g y)" huffman@47789: shows "Rel (A ===> B) (\x. f x) (\y. g y)" blanchet@55945: using assms unfolding Rel_def rel_fun_def by fast huffman@47523: huffman@47325: subsection {* Predicates on relations, i.e. ``class constraints'' *} huffman@47325: kuncar@56518: definition left_total :: "('a \ 'b \ bool) \ bool" kuncar@56518: where "left_total R \ (\x. \y. R x y)" kuncar@56518: kuncar@56518: definition left_unique :: "('a \ 'b \ bool) \ bool" kuncar@56518: where "left_unique R \ (\x y z. R x z \ R y z \ x = y)" kuncar@56518: huffman@47325: definition right_total :: "('a \ 'b \ bool) \ bool" huffman@47325: where "right_total R \ (\y. \x. R x y)" huffman@47325: huffman@47325: definition right_unique :: "('a \ 'b \ bool) \ bool" huffman@47325: where "right_unique R \ (\x y z. R x y \ R x z \ y = z)" huffman@47325: huffman@47325: definition bi_total :: "('a \ 'b \ bool) \ bool" huffman@47325: where "bi_total R \ (\x. \y. R x y) \ (\y. \x. R x y)" huffman@47325: huffman@47325: definition bi_unique :: "('a \ 'b \ bool) \ bool" huffman@47325: where "bi_unique R \ huffman@47325: (\x y z. R x y \ R x z \ y = z) \ huffman@47325: (\x y z. R x z \ R y z \ x = y)" huffman@47325: kuncar@56518: lemma left_uniqueI: "(\x y z. \ A x z; A y z \ \ x = y) \ left_unique A" kuncar@56518: unfolding left_unique_def by blast kuncar@56518: kuncar@56518: lemma left_uniqueD: "\ left_unique A; A x z; A y z \ \ x = y" kuncar@56518: unfolding left_unique_def by blast kuncar@56518: kuncar@56518: lemma left_totalI: kuncar@56518: "(\x. \y. R x y) \ left_total R" kuncar@56518: unfolding left_total_def by blast kuncar@56518: kuncar@56518: lemma left_totalE: kuncar@56518: assumes "left_total R" kuncar@56518: obtains "(\x. \y. R x y)" kuncar@56518: using assms unfolding left_total_def by blast kuncar@56518: Andreas@53927: lemma bi_uniqueDr: "\ bi_unique A; A x y; A x z \ \ y = z" Andreas@53927: by(simp add: bi_unique_def) Andreas@53927: Andreas@53927: lemma bi_uniqueDl: "\ bi_unique A; A x y; A z y \ \ x = z" Andreas@53927: by(simp add: bi_unique_def) Andreas@53927: Andreas@53927: lemma right_uniqueI: "(\x y z. \ A x y; A x z \ \ y = z) \ right_unique A" blanchet@56085: unfolding right_unique_def by fast Andreas@53927: Andreas@53927: lemma right_uniqueD: "\ right_unique A; A x y; A x z \ \ y = z" blanchet@56085: unfolding right_unique_def by fast Andreas@53927: kuncar@56524: lemma right_total_alt_def2: huffman@47325: "right_total R \ ((R ===> op \) ===> op \) All All" blanchet@55945: unfolding right_total_def rel_fun_def huffman@47325: apply (rule iffI, fast) huffman@47325: apply (rule allI) huffman@47325: apply (drule_tac x="\x. True" in spec) huffman@47325: apply (drule_tac x="\y. \x. R x y" in spec) huffman@47325: apply fast huffman@47325: done huffman@47325: kuncar@56524: lemma right_unique_alt_def2: huffman@47325: "right_unique R \ (R ===> R ===> op \) (op =) (op =)" blanchet@55945: unfolding right_unique_def rel_fun_def by auto huffman@47325: kuncar@56524: lemma bi_total_alt_def2: huffman@47325: "bi_total R \ ((R ===> op =) ===> op =) All All" blanchet@55945: unfolding bi_total_def rel_fun_def huffman@47325: apply (rule iffI, fast) huffman@47325: apply safe huffman@47325: apply (drule_tac x="\x. \y. R x y" in spec) huffman@47325: apply (drule_tac x="\y. True" in spec) huffman@47325: apply fast huffman@47325: apply (drule_tac x="\x. True" in spec) huffman@47325: apply (drule_tac x="\y. \x. R x y" in spec) huffman@47325: apply fast huffman@47325: done huffman@47325: kuncar@56524: lemma bi_unique_alt_def2: huffman@47325: "bi_unique R \ (R ===> R ===> op =) (op =) (op =)" blanchet@55945: unfolding bi_unique_def rel_fun_def by auto huffman@47325: kuncar@56518: lemma [simp]: kuncar@56518: shows left_unique_conversep: "left_unique A\\ \ right_unique A" kuncar@56518: and right_unique_conversep: "right_unique A\\ \ left_unique A" kuncar@56518: by(auto simp add: left_unique_def right_unique_def) kuncar@56518: kuncar@56518: lemma [simp]: kuncar@56518: shows left_total_conversep: "left_total A\\ \ right_total A" kuncar@56518: and right_total_conversep: "right_total A\\ \ left_total A" kuncar@56518: by(simp_all add: left_total_def right_total_def) kuncar@56518: Andreas@53944: lemma bi_unique_conversep [simp]: "bi_unique R\\ = bi_unique R" Andreas@53944: by(auto simp add: bi_unique_def) Andreas@53944: Andreas@53944: lemma bi_total_conversep [simp]: "bi_total R\\ = bi_total R" Andreas@53944: by(auto simp add: bi_total_def) Andreas@53944: kuncar@56524: lemma right_unique_alt_def: "right_unique R = (conversep R OO R \ op=)" unfolding right_unique_def by blast kuncar@56524: lemma left_unique_alt_def: "left_unique R = (R OO (conversep R) \ op=)" unfolding left_unique_def by blast kuncar@56524: kuncar@56524: lemma right_total_alt_def: "right_total R = (conversep R OO R \ op=)" unfolding right_total_def by blast kuncar@56524: lemma left_total_alt_def: "left_total R = (R OO conversep R \ op=)" unfolding left_total_def by blast kuncar@56524: kuncar@56524: lemma bi_total_alt_def: "bi_total A = (left_total A \ right_total A)" kuncar@56518: unfolding left_total_def right_total_def bi_total_def by blast kuncar@56518: kuncar@56524: lemma bi_unique_alt_def: "bi_unique A = (left_unique A \ right_unique A)" kuncar@56518: unfolding left_unique_def right_unique_def bi_unique_def by blast kuncar@56518: kuncar@56518: lemma bi_totalI: "left_total R \ right_total R \ bi_total R" kuncar@56524: unfolding bi_total_alt_def .. kuncar@56518: kuncar@56518: lemma bi_uniqueI: "left_unique R \ right_unique R \ bi_unique R" kuncar@56524: unfolding bi_unique_alt_def .. kuncar@56524: kuncar@56524: end kuncar@56524: kuncar@56524: subsection {* Equality restricted by a predicate *} kuncar@56524: kuncar@56524: definition eq_onp :: "('a \ bool) \ 'a \ 'a \ bool" kuncar@56524: where "eq_onp R = (\x y. R x \ x = y)" kuncar@56524: blanchet@57398: lemma eq_onp_Grp: "eq_onp P = BNF_Def.Grp (Collect P) id" kuncar@56524: unfolding eq_onp_def Grp_def by auto kuncar@56524: kuncar@56524: lemma eq_onp_to_eq: kuncar@56524: assumes "eq_onp P x y" kuncar@56524: shows "x = y" kuncar@56524: using assms by (simp add: eq_onp_def) kuncar@56524: kuncar@56677: lemma eq_onp_top_eq_eq: "eq_onp top = op=" kuncar@56677: by (simp add: eq_onp_def) kuncar@56677: kuncar@56524: lemma eq_onp_same_args: kuncar@56524: shows "eq_onp P x x = P x" kuncar@56524: using assms by (auto simp add: eq_onp_def) kuncar@56524: kuncar@56524: lemma Ball_Collect: "Ball A P = (A \ (Collect P))" blanchet@57260: by auto kuncar@56518: kuncar@56524: ML_file "Tools/Transfer/transfer.ML" kuncar@56524: setup Transfer.setup kuncar@56524: declare refl [transfer_rule] kuncar@56524: kuncar@56524: hide_const (open) Rel kuncar@56524: kuncar@56524: context kuncar@56524: begin kuncar@56524: interpretation lifting_syntax . kuncar@56524: kuncar@56524: text {* Handling of domains *} kuncar@56524: kuncar@56524: lemma Domainp_iff: "Domainp T x \ (\y. T x y)" kuncar@56524: by auto kuncar@56524: kuncar@56524: lemma Domaimp_refl[transfer_domain_rule]: kuncar@56524: "Domainp T = Domainp T" .. kuncar@56524: kuncar@56524: lemma Domainp_prod_fun_eq[relator_domain]: kuncar@56524: "Domainp (op= ===> T) = (\f. \x. (Domainp T) (f x))" kuncar@56524: by (auto intro: choice simp: Domainp_iff rel_fun_def fun_eq_iff) kuncar@56518: huffman@47660: text {* Properties are preserved by relation composition. *} huffman@47660: huffman@47660: lemma OO_def: "R OO S = (\x z. \y. R x y \ S y z)" huffman@47660: by auto huffman@47660: huffman@47660: lemma bi_total_OO: "\bi_total A; bi_total B\ \ bi_total (A OO B)" blanchet@56085: unfolding bi_total_def OO_def by fast huffman@47660: huffman@47660: lemma bi_unique_OO: "\bi_unique A; bi_unique B\ \ bi_unique (A OO B)" blanchet@56085: unfolding bi_unique_def OO_def by blast huffman@47660: huffman@47660: lemma right_total_OO: huffman@47660: "\right_total A; right_total B\ \ right_total (A OO B)" blanchet@56085: unfolding right_total_def OO_def by fast huffman@47660: huffman@47660: lemma right_unique_OO: huffman@47660: "\right_unique A; right_unique B\ \ right_unique (A OO B)" blanchet@56085: unfolding right_unique_def OO_def by fast huffman@47660: kuncar@56518: lemma left_total_OO: "left_total R \ left_total S \ left_total (R OO S)" kuncar@56518: unfolding left_total_def OO_def by fast kuncar@56518: kuncar@56518: lemma left_unique_OO: "left_unique R \ left_unique S \ left_unique (R OO S)" kuncar@56518: unfolding left_unique_def OO_def by blast kuncar@56518: huffman@47325: huffman@47325: subsection {* Properties of relators *} huffman@47325: kuncar@56518: lemma left_total_eq[transfer_rule]: "left_total op=" kuncar@56518: unfolding left_total_def by blast kuncar@56518: kuncar@56518: lemma left_unique_eq[transfer_rule]: "left_unique op=" kuncar@56518: unfolding left_unique_def by blast kuncar@56518: kuncar@56518: lemma right_total_eq [transfer_rule]: "right_total op=" huffman@47325: unfolding right_total_def by simp huffman@47325: kuncar@56518: lemma right_unique_eq [transfer_rule]: "right_unique op=" huffman@47325: unfolding right_unique_def by simp huffman@47325: kuncar@56518: lemma bi_total_eq[transfer_rule]: "bi_total (op =)" huffman@47325: unfolding bi_total_def by simp huffman@47325: kuncar@56518: lemma bi_unique_eq[transfer_rule]: "bi_unique (op =)" huffman@47325: unfolding bi_unique_def by simp huffman@47325: kuncar@56518: lemma left_total_fun[transfer_rule]: kuncar@56518: "\left_unique A; left_total B\ \ left_total (A ===> B)" kuncar@56518: unfolding left_total_def rel_fun_def kuncar@56518: apply (rule allI, rename_tac f) kuncar@56518: apply (rule_tac x="\y. SOME z. B (f (THE x. A x y)) z" in exI) kuncar@56518: apply clarify kuncar@56518: apply (subgoal_tac "(THE x. A x y) = x", simp) kuncar@56518: apply (rule someI_ex) kuncar@56518: apply (simp) kuncar@56518: apply (rule the_equality) kuncar@56518: apply assumption kuncar@56518: apply (simp add: left_unique_def) kuncar@56518: done kuncar@56518: kuncar@56518: lemma left_unique_fun[transfer_rule]: kuncar@56518: "\left_total A; left_unique B\ \ left_unique (A ===> B)" kuncar@56518: unfolding left_total_def left_unique_def rel_fun_def kuncar@56518: by (clarify, rule ext, fast) kuncar@56518: huffman@47325: lemma right_total_fun [transfer_rule]: huffman@47325: "\right_unique A; right_total B\ \ right_total (A ===> B)" blanchet@55945: unfolding right_total_def rel_fun_def huffman@47325: apply (rule allI, rename_tac g) huffman@47325: apply (rule_tac x="\x. SOME z. B z (g (THE y. A x y))" in exI) huffman@47325: apply clarify huffman@47325: apply (subgoal_tac "(THE y. A x y) = y", simp) huffman@47325: apply (rule someI_ex) huffman@47325: apply (simp) huffman@47325: apply (rule the_equality) huffman@47325: apply assumption huffman@47325: apply (simp add: right_unique_def) huffman@47325: done huffman@47325: huffman@47325: lemma right_unique_fun [transfer_rule]: huffman@47325: "\right_total A; right_unique B\ \ right_unique (A ===> B)" blanchet@55945: unfolding right_total_def right_unique_def rel_fun_def huffman@47325: by (clarify, rule ext, fast) huffman@47325: kuncar@56518: lemma bi_total_fun[transfer_rule]: huffman@47325: "\bi_unique A; bi_total B\ \ bi_total (A ===> B)" kuncar@56524: unfolding bi_unique_alt_def bi_total_alt_def kuncar@56518: by (blast intro: right_total_fun left_total_fun) huffman@47325: kuncar@56518: lemma bi_unique_fun[transfer_rule]: huffman@47325: "\bi_total A; bi_unique B\ \ bi_unique (A ===> B)" kuncar@56524: unfolding bi_unique_alt_def bi_total_alt_def kuncar@56518: by (blast intro: right_unique_fun left_unique_fun) huffman@47325: kuncar@56543: end kuncar@56543: kuncar@56543: ML_file "Tools/Transfer/transfer_bnf.ML" kuncar@56543: kuncar@56543: declare pred_fun_def [simp] kuncar@56543: declare rel_fun_eq [relator_eq] kuncar@56543: huffman@47635: subsection {* Transfer rules *} huffman@47325: kuncar@56543: context kuncar@56543: begin kuncar@56543: interpretation lifting_syntax . kuncar@56543: kuncar@53952: lemma Domainp_forall_transfer [transfer_rule]: kuncar@53952: assumes "right_total A" kuncar@53952: shows "((A ===> op =) ===> op =) kuncar@53952: (transfer_bforall (Domainp A)) transfer_forall" kuncar@53952: using assms unfolding right_total_def blanchet@55945: unfolding transfer_forall_def transfer_bforall_def rel_fun_def Domainp_iff blanchet@56085: by fast kuncar@53952: huffman@47684: text {* Transfer rules using implication instead of equality on booleans. *} huffman@47684: huffman@52354: lemma transfer_forall_transfer [transfer_rule]: huffman@52354: "bi_total A \ ((A ===> op =) ===> op =) transfer_forall transfer_forall" huffman@52354: "right_total A \ ((A ===> op =) ===> implies) transfer_forall transfer_forall" huffman@52354: "right_total A \ ((A ===> implies) ===> implies) transfer_forall transfer_forall" huffman@52354: "bi_total A \ ((A ===> op =) ===> rev_implies) transfer_forall transfer_forall" huffman@52354: "bi_total A \ ((A ===> rev_implies) ===> rev_implies) transfer_forall transfer_forall" blanchet@55945: unfolding transfer_forall_def rev_implies_def rel_fun_def right_total_def bi_total_def blanchet@56085: by fast+ huffman@52354: huffman@52354: lemma transfer_implies_transfer [transfer_rule]: huffman@52354: "(op = ===> op = ===> op = ) transfer_implies transfer_implies" huffman@52354: "(rev_implies ===> implies ===> implies ) transfer_implies transfer_implies" huffman@52354: "(rev_implies ===> op = ===> implies ) transfer_implies transfer_implies" huffman@52354: "(op = ===> implies ===> implies ) transfer_implies transfer_implies" huffman@52354: "(op = ===> op = ===> implies ) transfer_implies transfer_implies" huffman@52354: "(implies ===> rev_implies ===> rev_implies) transfer_implies transfer_implies" huffman@52354: "(implies ===> op = ===> rev_implies) transfer_implies transfer_implies" huffman@52354: "(op = ===> rev_implies ===> rev_implies) transfer_implies transfer_implies" huffman@52354: "(op = ===> op = ===> rev_implies) transfer_implies transfer_implies" blanchet@55945: unfolding transfer_implies_def rev_implies_def rel_fun_def by auto huffman@52354: huffman@47684: lemma eq_imp_transfer [transfer_rule]: huffman@47684: "right_unique A \ (A ===> A ===> op \) (op =) (op =)" kuncar@56524: unfolding right_unique_alt_def2 . huffman@47684: kuncar@56518: text {* Transfer rules using equality. *} kuncar@56518: kuncar@56518: lemma left_unique_transfer [transfer_rule]: kuncar@56518: assumes "right_total A" kuncar@56518: assumes "right_total B" kuncar@56518: assumes "bi_unique A" kuncar@56518: shows "((A ===> B ===> op=) ===> implies) left_unique left_unique" kuncar@56518: using assms unfolding left_unique_def[abs_def] right_total_def bi_unique_def rel_fun_def kuncar@56518: by metis kuncar@56518: huffman@47636: lemma eq_transfer [transfer_rule]: huffman@47325: assumes "bi_unique A" huffman@47325: shows "(A ===> A ===> op =) (op =) (op =)" blanchet@55945: using assms unfolding bi_unique_def rel_fun_def by auto huffman@47325: kuncar@51956: lemma right_total_Ex_transfer[transfer_rule]: kuncar@51956: assumes "right_total A" kuncar@51956: shows "((A ===> op=) ===> op=) (Bex (Collect (Domainp A))) Ex" blanchet@55945: using assms unfolding right_total_def Bex_def rel_fun_def Domainp_iff[abs_def] blanchet@56085: by fast kuncar@51956: kuncar@51956: lemma right_total_All_transfer[transfer_rule]: kuncar@51956: assumes "right_total A" kuncar@51956: shows "((A ===> op =) ===> op =) (Ball (Collect (Domainp A))) All" blanchet@55945: using assms unfolding right_total_def Ball_def rel_fun_def Domainp_iff[abs_def] blanchet@56085: by fast kuncar@51956: huffman@47636: lemma All_transfer [transfer_rule]: huffman@47325: assumes "bi_total A" huffman@47325: shows "((A ===> op =) ===> op =) All All" blanchet@55945: using assms unfolding bi_total_def rel_fun_def by fast huffman@47325: huffman@47636: lemma Ex_transfer [transfer_rule]: huffman@47325: assumes "bi_total A" huffman@47325: shows "((A ===> op =) ===> op =) Ex Ex" blanchet@55945: using assms unfolding bi_total_def rel_fun_def by fast huffman@47325: huffman@47636: lemma If_transfer [transfer_rule]: "(op = ===> A ===> A ===> A) If If" blanchet@55945: unfolding rel_fun_def by simp huffman@47325: huffman@47636: lemma Let_transfer [transfer_rule]: "(A ===> (A ===> B) ===> B) Let Let" blanchet@55945: unfolding rel_fun_def by simp huffman@47612: huffman@47636: lemma id_transfer [transfer_rule]: "(A ===> A) id id" blanchet@55945: unfolding rel_fun_def by simp huffman@47625: huffman@47636: lemma comp_transfer [transfer_rule]: huffman@47325: "((B ===> C) ===> (A ===> B) ===> (A ===> C)) (op \) (op \)" blanchet@55945: unfolding rel_fun_def by simp huffman@47325: huffman@47636: lemma fun_upd_transfer [transfer_rule]: huffman@47325: assumes [transfer_rule]: "bi_unique A" huffman@47325: shows "((A ===> B) ===> A ===> B ===> A ===> B) fun_upd fun_upd" huffman@47635: unfolding fun_upd_def [abs_def] by transfer_prover huffman@47325: blanchet@55415: lemma case_nat_transfer [transfer_rule]: blanchet@55415: "(A ===> (op = ===> A) ===> op = ===> A) case_nat case_nat" blanchet@55945: unfolding rel_fun_def by (simp split: nat.split) huffman@47627: blanchet@55415: lemma rec_nat_transfer [transfer_rule]: blanchet@55415: "(A ===> (op = ===> A ===> A) ===> op = ===> A) rec_nat rec_nat" blanchet@55945: unfolding rel_fun_def by (clarsimp, rename_tac n, induct_tac n, simp_all) huffman@47924: huffman@47924: lemma funpow_transfer [transfer_rule]: huffman@47924: "(op = ===> (A ===> A) ===> (A ===> A)) compow compow" huffman@47924: unfolding funpow_def by transfer_prover huffman@47924: kuncar@53952: lemma mono_transfer[transfer_rule]: kuncar@53952: assumes [transfer_rule]: "bi_total A" kuncar@53952: assumes [transfer_rule]: "(A ===> A ===> op=) op\ op\" kuncar@53952: assumes [transfer_rule]: "(B ===> B ===> op=) op\ op\" kuncar@53952: shows "((A ===> B) ===> op=) mono mono" kuncar@53952: unfolding mono_def[abs_def] by transfer_prover kuncar@53952: kuncar@53952: lemma right_total_relcompp_transfer[transfer_rule]: kuncar@53952: assumes [transfer_rule]: "right_total B" kuncar@53952: shows "((A ===> B ===> op=) ===> (B ===> C ===> op=) ===> A ===> C ===> op=) kuncar@53952: (\R S x z. \y\Collect (Domainp B). R x y \ S y z) op OO" kuncar@53952: unfolding OO_def[abs_def] by transfer_prover kuncar@53952: kuncar@53952: lemma relcompp_transfer[transfer_rule]: kuncar@53952: assumes [transfer_rule]: "bi_total B" kuncar@53952: shows "((A ===> B ===> op=) ===> (B ===> C ===> op=) ===> A ===> C ===> op=) op OO op OO" kuncar@53952: unfolding OO_def[abs_def] by transfer_prover huffman@47627: kuncar@53952: lemma right_total_Domainp_transfer[transfer_rule]: kuncar@53952: assumes [transfer_rule]: "right_total B" kuncar@53952: shows "((A ===> B ===> op=) ===> A ===> op=) (\T x. \y\Collect(Domainp B). T x y) Domainp" kuncar@53952: apply(subst(2) Domainp_iff[abs_def]) by transfer_prover kuncar@53952: kuncar@53952: lemma Domainp_transfer[transfer_rule]: kuncar@53952: assumes [transfer_rule]: "bi_total B" kuncar@53952: shows "((A ===> B ===> op=) ===> A ===> op=) Domainp Domainp" kuncar@53952: unfolding Domainp_iff[abs_def] by transfer_prover kuncar@53952: kuncar@53952: lemma reflp_transfer[transfer_rule]: kuncar@53952: "bi_total A \ ((A ===> A ===> op=) ===> op=) reflp reflp" kuncar@53952: "right_total A \ ((A ===> A ===> implies) ===> implies) reflp reflp" kuncar@53952: "right_total A \ ((A ===> A ===> op=) ===> implies) reflp reflp" kuncar@53952: "bi_total A \ ((A ===> A ===> rev_implies) ===> rev_implies) reflp reflp" kuncar@53952: "bi_total A \ ((A ===> A ===> op=) ===> rev_implies) reflp reflp" blanchet@55945: using assms unfolding reflp_def[abs_def] rev_implies_def bi_total_def right_total_def rel_fun_def kuncar@53952: by fast+ kuncar@53952: kuncar@53952: lemma right_unique_transfer [transfer_rule]: kuncar@53952: assumes [transfer_rule]: "right_total A" kuncar@53952: assumes [transfer_rule]: "right_total B" kuncar@53952: assumes [transfer_rule]: "bi_unique B" kuncar@53952: shows "((A ===> B ===> op=) ===> implies) right_unique right_unique" blanchet@55945: using assms unfolding right_unique_def[abs_def] right_total_def bi_unique_def rel_fun_def kuncar@53952: by metis huffman@47325: kuncar@56524: lemma rel_fun_eq_eq_onp: "(op= ===> eq_onp P) = eq_onp (\f. \x. P(f x))" kuncar@56524: unfolding eq_onp_def rel_fun_def by auto kuncar@56524: kuncar@56524: lemma rel_fun_eq_onp_rel: kuncar@56524: shows "((eq_onp R) ===> S) = (\f g. \x. R x \ S (f x) (g x))" kuncar@56524: by (auto simp add: eq_onp_def rel_fun_def) kuncar@56524: kuncar@56524: lemma eq_onp_transfer [transfer_rule]: kuncar@56524: assumes [transfer_rule]: "bi_unique A" kuncar@56524: shows "((A ===> op=) ===> A ===> A ===> op=) eq_onp eq_onp" kuncar@56524: unfolding eq_onp_def[abs_def] by transfer_prover kuncar@56524: huffman@47325: end kuncar@53011: kuncar@53011: end