nipkow@15524: (* Title: HOL/Orderings.thy nipkow@15524: ID: $Id$ nipkow@15524: Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson nipkow@15524: *) nipkow@15524: haftmann@21329: header {* Syntactic and abstract orders *} nipkow@15524: nipkow@15524: theory Orderings haftmann@23881: imports Set Fun haftmann@23263: uses haftmann@23263: (*"~~/src/Provers/quasi.ML"*) haftmann@23263: "~~/src/Provers/order.ML" nipkow@15524: begin nipkow@15524: haftmann@22841: subsection {* Partial orders *} nipkow@15524: haftmann@22841: class order = ord + haftmann@22316: assumes less_le: "x \ y \ x \ y \ x \ y" haftmann@22384: and order_refl [iff]: "x \ x" haftmann@22384: and order_trans: "x \ y \ y \ z \ x \ z" haftmann@22841: assumes antisym: "x \ y \ y \ x \ x = y" haftmann@22841: haftmann@21248: begin haftmann@21248: nipkow@15524: text {* Reflexivity. *} nipkow@15524: haftmann@22841: lemma eq_refl: "x = y \ x \<^loc>\ y" nipkow@15524: -- {* This form is useful with the classical reasoner. *} nipkow@23212: by (erule ssubst) (rule order_refl) nipkow@15524: haftmann@22841: lemma less_irrefl [iff]: "\ x \<^loc>< x" nipkow@23212: by (simp add: less_le) nipkow@15524: haftmann@22841: lemma le_less: "x \<^loc>\ y \ x \<^loc>< y \ x = y" nipkow@15524: -- {* NOT suitable for iff, since it can cause PROOF FAILED. *} nipkow@23212: by (simp add: less_le) blast nipkow@15524: haftmann@22841: lemma le_imp_less_or_eq: "x \<^loc>\ y \ x \<^loc>< y \ x = y" nipkow@23212: unfolding less_le by blast nipkow@15524: haftmann@22841: lemma less_imp_le: "x \<^loc>< y \ x \<^loc>\ y" nipkow@23212: unfolding less_le by blast haftmann@21248: haftmann@22841: lemma less_imp_neq: "x \<^loc>< y \ x \ y" nipkow@23212: by (erule contrapos_pn, erule subst, rule less_irrefl) haftmann@21329: haftmann@21329: haftmann@21329: text {* Useful for simplification, but too risky to include by default. *} haftmann@21329: haftmann@22841: lemma less_imp_not_eq: "x \<^loc>< y \ (x = y) \ False" nipkow@23212: by auto haftmann@21329: haftmann@22841: lemma less_imp_not_eq2: "x \<^loc>< y \ (y = x) \ False" nipkow@23212: by auto haftmann@21329: haftmann@21329: haftmann@21329: text {* Transitivity rules for calculational reasoning *} haftmann@21329: haftmann@22841: lemma neq_le_trans: "a \ b \ a \<^loc>\ b \ a \<^loc>< b" nipkow@23212: by (simp add: less_le) haftmann@21329: haftmann@22841: lemma le_neq_trans: "a \<^loc>\ b \ a \ b \ a \<^loc>< b" nipkow@23212: by (simp add: less_le) haftmann@21329: nipkow@15524: nipkow@15524: text {* Asymmetry. *} nipkow@15524: haftmann@22841: lemma less_not_sym: "x \<^loc>< y \ \ (y \<^loc>< x)" nipkow@23212: by (simp add: less_le antisym) nipkow@15524: haftmann@22841: lemma less_asym: "x \<^loc>< y \ (\ P \ y \<^loc>< x) \ P" nipkow@23212: by (drule less_not_sym, erule contrapos_np) simp nipkow@15524: haftmann@22841: lemma eq_iff: "x = y \ x \<^loc>\ y \ y \<^loc>\ x" nipkow@23212: by (blast intro: antisym) nipkow@15524: haftmann@22841: lemma antisym_conv: "y \<^loc>\ x \ x \<^loc>\ y \ x = y" nipkow@23212: by (blast intro: antisym) nipkow@15524: haftmann@22841: lemma less_imp_neq: "x \<^loc>< y \ x \ y" nipkow@23212: by (erule contrapos_pn, erule subst, rule less_irrefl) haftmann@21248: haftmann@21083: nipkow@15524: text {* Transitivity. *} nipkow@15524: haftmann@22841: lemma less_trans: "x \<^loc>< y \ y \<^loc>< z \ x \<^loc>< z" nipkow@23212: by (simp add: less_le) (blast intro: order_trans antisym) nipkow@15524: haftmann@22841: lemma le_less_trans: "x \<^loc>\ y \ y \<^loc>< z \ x \<^loc>< z" nipkow@23212: by (simp add: less_le) (blast intro: order_trans antisym) nipkow@15524: haftmann@22841: lemma less_le_trans: "x \<^loc>< y \ y \<^loc>\ z \ x \<^loc>< z" nipkow@23212: by (simp add: less_le) (blast intro: order_trans antisym) nipkow@15524: nipkow@15524: nipkow@15524: text {* Useful for simplification, but too risky to include by default. *} nipkow@15524: haftmann@22841: lemma less_imp_not_less: "x \<^loc>< y \ (\ y \<^loc>< x) \ True" nipkow@23212: by (blast elim: less_asym) nipkow@15524: haftmann@22841: lemma less_imp_triv: "x \<^loc>< y \ (y \<^loc>< x \ P) \ True" nipkow@23212: by (blast elim: less_asym) nipkow@15524: haftmann@21248: haftmann@21083: text {* Transitivity rules for calculational reasoning *} nipkow@15524: haftmann@22841: lemma less_asym': "a \<^loc>< b \ b \<^loc>< a \ P" nipkow@23212: by (rule less_asym) haftmann@21248: haftmann@22916: haftmann@22916: text {* Reverse order *} haftmann@22916: haftmann@22916: lemma order_reverse: haftmann@23018: "order (\x y. y \<^loc>\ x) (\x y. y \<^loc>< x)" nipkow@23212: by unfold_locales nipkow@23212: (simp add: less_le, auto intro: antisym order_trans) haftmann@22916: haftmann@21248: end nipkow@15524: haftmann@21329: haftmann@21329: subsection {* Linear (total) orders *} haftmann@21329: haftmann@22316: class linorder = order + haftmann@21216: assumes linear: "x \ y \ y \ x" haftmann@21248: begin haftmann@21248: haftmann@22841: lemma less_linear: "x \<^loc>< y \ x = y \ y \<^loc>< x" nipkow@23212: unfolding less_le using less_le linear by blast haftmann@21248: haftmann@22841: lemma le_less_linear: "x \<^loc>\ y \ y \<^loc>< x" nipkow@23212: by (simp add: le_less less_linear) haftmann@21248: haftmann@21248: lemma le_cases [case_names le ge]: haftmann@22841: "(x \<^loc>\ y \ P) \ (y \<^loc>\ x \ P) \ P" nipkow@23212: using linear by blast haftmann@21248: haftmann@22384: lemma linorder_cases [case_names less equal greater]: nipkow@23212: "(x \<^loc>< y \ P) \ (x = y \ P) \ (y \<^loc>< x \ P) \ P" nipkow@23212: using less_linear by blast haftmann@21248: haftmann@22841: lemma not_less: "\ x \<^loc>< y \ y \<^loc>\ x" nipkow@23212: apply (simp add: less_le) nipkow@23212: using linear apply (blast intro: antisym) nipkow@23212: done nipkow@23212: nipkow@23212: lemma not_less_iff_gr_or_eq: nipkow@23212: "\(x \<^loc>< y) \ (x \<^loc>> y | x = y)" nipkow@23212: apply(simp add:not_less le_less) nipkow@23212: apply blast nipkow@23212: done nipkow@15524: haftmann@22841: lemma not_le: "\ x \<^loc>\ y \ y \<^loc>< x" nipkow@23212: apply (simp add: less_le) nipkow@23212: using linear apply (blast intro: antisym) nipkow@23212: done nipkow@15524: haftmann@22841: lemma neq_iff: "x \ y \ x \<^loc>< y \ y \<^loc>< x" nipkow@23212: by (cut_tac x = x and y = y in less_linear, auto) nipkow@15524: haftmann@22841: lemma neqE: "x \ y \ (x \<^loc>< y \ R) \ (y \<^loc>< x \ R) \ R" nipkow@23212: by (simp add: neq_iff) blast nipkow@15524: haftmann@22841: lemma antisym_conv1: "\ x \<^loc>< y \ x \<^loc>\ y \ x = y" nipkow@23212: by (blast intro: antisym dest: not_less [THEN iffD1]) nipkow@15524: haftmann@22841: lemma antisym_conv2: "x \<^loc>\ y \ \ x \<^loc>< y \ x = y" nipkow@23212: by (blast intro: antisym dest: not_less [THEN iffD1]) nipkow@15524: haftmann@22841: lemma antisym_conv3: "\ y \<^loc>< x \ \ x \<^loc>< y \ x = y" nipkow@23212: by (blast intro: antisym dest: not_less [THEN iffD1]) nipkow@15524: paulson@16796: text{*Replacing the old Nat.leI*} haftmann@22841: lemma leI: "\ x \<^loc>< y \ y \<^loc>\ x" nipkow@23212: unfolding not_less . paulson@16796: haftmann@22841: lemma leD: "y \<^loc>\ x \ \ x \<^loc>< y" nipkow@23212: unfolding not_less . paulson@16796: paulson@16796: (*FIXME inappropriate name (or delete altogether)*) haftmann@22841: lemma not_leE: "\ y \<^loc>\ x \ x \<^loc>< y" nipkow@23212: unfolding not_le . haftmann@21248: haftmann@22916: haftmann@22916: text {* Reverse order *} haftmann@22916: haftmann@22916: lemma linorder_reverse: haftmann@23018: "linorder (\x y. y \<^loc>\ x) (\x y. y \<^loc>< x)" nipkow@23212: by unfold_locales nipkow@23212: (simp add: less_le, auto intro: antisym order_trans simp add: linear) haftmann@22916: haftmann@22916: haftmann@23881: text {* min/max *} haftmann@23881: haftmann@23881: text {* for historic reasons, definitions are done in context ord *} haftmann@23881: haftmann@23881: definition (in ord) haftmann@23881: min :: "'a \ 'a \ 'a" where haftmann@23948: [code unfold, code inline del]: "min a b = (if a \<^loc>\ b then a else b)" haftmann@23881: haftmann@23881: definition (in ord) haftmann@23881: max :: "'a \ 'a \ 'a" where haftmann@23948: [code unfold, code inline del]: "max a b = (if a \<^loc>\ b then b else a)" haftmann@22384: haftmann@21383: lemma min_le_iff_disj: haftmann@22841: "min x y \<^loc>\ z \ x \<^loc>\ z \ y \<^loc>\ z" nipkow@23212: unfolding min_def using linear by (auto intro: order_trans) haftmann@21383: haftmann@21383: lemma le_max_iff_disj: haftmann@22841: "z \<^loc>\ max x y \ z \<^loc>\ x \ z \<^loc>\ y" nipkow@23212: unfolding max_def using linear by (auto intro: order_trans) haftmann@21383: haftmann@21383: lemma min_less_iff_disj: haftmann@22841: "min x y \<^loc>< z \ x \<^loc>< z \ y \<^loc>< z" nipkow@23212: unfolding min_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: haftmann@21383: lemma less_max_iff_disj: haftmann@22841: "z \<^loc>< max x y \ z \<^loc>< x \ z \<^loc>< y" nipkow@23212: unfolding max_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: haftmann@21383: lemma min_less_iff_conj [simp]: haftmann@22841: "z \<^loc>< min x y \ z \<^loc>< x \ z \<^loc>< y" nipkow@23212: unfolding min_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: haftmann@21383: lemma max_less_iff_conj [simp]: haftmann@22841: "max x y \<^loc>< z \ x \<^loc>< z \ y \<^loc>< z" nipkow@23212: unfolding max_def le_less using less_linear by (auto intro: less_trans) haftmann@21383: paulson@24286: lemma split_min [noatp]: haftmann@22841: "P (min i j) \ (i \<^loc>\ j \ P i) \ (\ i \<^loc>\ j \ P j)" nipkow@23212: by (simp add: min_def) haftmann@21383: paulson@24286: lemma split_max [noatp]: haftmann@22841: "P (max i j) \ (i \<^loc>\ j \ P j) \ (\ i \<^loc>\ j \ P i)" nipkow@23212: by (simp add: max_def) haftmann@21383: haftmann@21248: end haftmann@21248: haftmann@23948: haftmann@21083: subsection {* Reasoning tools setup *} haftmann@21083: haftmann@21091: ML {* haftmann@21091: local haftmann@21091: haftmann@21091: fun decomp_gen sort thy (Trueprop $ t) = haftmann@21248: let haftmann@21248: fun of_sort t = haftmann@21248: let haftmann@21248: val T = type_of t haftmann@21248: in haftmann@21091: (* exclude numeric types: linear arithmetic subsumes transitivity *) haftmann@21248: T <> HOLogic.natT andalso T <> HOLogic.intT haftmann@21248: andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort) haftmann@21248: end; haftmann@22916: fun dec (Const (@{const_name Not}, _) $ t) = (case dec t haftmann@21248: of NONE => NONE haftmann@21248: | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) haftmann@22916: | dec (Const (@{const_name "op ="}, _) $ t1 $ t2) = haftmann@21248: if of_sort t1 haftmann@21248: then SOME (t1, "=", t2) haftmann@21248: else NONE haftmann@23881: | dec (Const (@{const_name HOL.less_eq}, _) $ t1 $ t2) = haftmann@21248: if of_sort t1 haftmann@21248: then SOME (t1, "<=", t2) haftmann@21248: else NONE haftmann@23881: | dec (Const (@{const_name HOL.less}, _) $ t1 $ t2) = haftmann@21248: if of_sort t1 haftmann@21248: then SOME (t1, "<", t2) haftmann@21248: else NONE haftmann@21248: | dec _ = NONE; haftmann@21091: in dec t end; haftmann@21091: haftmann@21091: in haftmann@21091: haftmann@22841: (* sorry - there is no preorder class haftmann@21248: structure Quasi_Tac = Quasi_Tac_Fun ( haftmann@21248: struct haftmann@21248: val le_trans = thm "order_trans"; haftmann@21248: val le_refl = thm "order_refl"; haftmann@21248: val eqD1 = thm "order_eq_refl"; haftmann@21248: val eqD2 = thm "sym" RS thm "order_eq_refl"; haftmann@21248: val less_reflE = thm "order_less_irrefl" RS thm "notE"; haftmann@21248: val less_imp_le = thm "order_less_imp_le"; haftmann@21248: val le_neq_trans = thm "order_le_neq_trans"; haftmann@21248: val neq_le_trans = thm "order_neq_le_trans"; haftmann@21248: val less_imp_neq = thm "less_imp_neq"; haftmann@22738: val decomp_trans = decomp_gen ["Orderings.preorder"]; haftmann@22738: val decomp_quasi = decomp_gen ["Orderings.preorder"]; haftmann@22841: end);*) haftmann@21091: haftmann@21091: structure Order_Tac = Order_Tac_Fun ( haftmann@21248: struct haftmann@24422: val less_reflE = @{thm less_irrefl} RS @{thm notE}; haftmann@24422: val le_refl = @{thm order_refl}; haftmann@24422: val less_imp_le = @{thm less_imp_le}; haftmann@24422: val not_lessI = @{thm not_less} RS @{thm iffD2}; haftmann@24422: val not_leI = @{thm not_le} RS @{thm iffD2}; haftmann@24422: val not_lessD = @{thm not_less} RS @{thm iffD1}; haftmann@24422: val not_leD = @{thm not_le} RS @{thm iffD1}; haftmann@24422: val eqI = @{thm antisym}; haftmann@24422: val eqD1 = @{thm eq_refl}; haftmann@24422: val eqD2 = @{thm sym} RS @{thm eq_refl}; haftmann@24422: val less_trans = @{thm less_trans}; haftmann@24422: val less_le_trans = @{thm less_le_trans}; haftmann@24422: val le_less_trans = @{thm le_less_trans}; haftmann@24422: val le_trans = @{thm order_trans}; haftmann@24422: val le_neq_trans = @{thm le_neq_trans}; haftmann@24422: val neq_le_trans = @{thm neq_le_trans}; haftmann@24422: val less_imp_neq = @{thm less_imp_neq}; haftmann@24422: val eq_neq_eq_imp_neq = @{thm eq_neq_eq_imp_neq}; haftmann@24422: val not_sym = @{thm not_sym}; haftmann@21248: val decomp_part = decomp_gen ["Orderings.order"]; haftmann@21248: val decomp_lin = decomp_gen ["Orderings.linorder"]; haftmann@21248: end); haftmann@21091: haftmann@21091: end; haftmann@21091: *} haftmann@21091: haftmann@21083: setup {* haftmann@21083: let haftmann@21083: haftmann@21083: fun prp t thm = (#prop (rep_thm thm) = t); nipkow@15524: haftmann@21083: fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = haftmann@21083: let val prems = prems_of_ss ss; haftmann@22916: val less = Const (@{const_name less}, T); haftmann@21083: val t = HOLogic.mk_Trueprop(le $ s $ r); haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => haftmann@21083: let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => NONE haftmann@24422: | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})) haftmann@21083: end haftmann@24422: | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv})) haftmann@21083: end haftmann@21083: handle THM _ => NONE; nipkow@15524: haftmann@21083: fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = haftmann@21083: let val prems = prems_of_ss ss; haftmann@22916: val le = Const (@{const_name less_eq}, T); haftmann@21083: val t = HOLogic.mk_Trueprop(le $ r $ s); haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => haftmann@21083: let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) haftmann@21083: in case find_first (prp t) prems of haftmann@21083: NONE => NONE haftmann@24422: | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})) haftmann@21083: end haftmann@24422: | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2})) haftmann@21083: end haftmann@21083: handle THM _ => NONE; nipkow@15524: haftmann@21248: fun add_simprocs procs thy = haftmann@21248: (Simplifier.change_simpset_of thy (fn ss => ss haftmann@21248: addsimprocs (map (fn (name, raw_ts, proc) => haftmann@21248: Simplifier.simproc thy name raw_ts proc)) procs); thy); haftmann@21248: fun add_solver name tac thy = haftmann@21248: (Simplifier.change_simpset_of thy (fn ss => ss addSolver haftmann@21248: (mk_solver name (K tac))); thy); haftmann@21083: haftmann@21083: in haftmann@21248: add_simprocs [ haftmann@21248: ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le), haftmann@21248: ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less) haftmann@21248: ] haftmann@21248: #> add_solver "Trans_linear" Order_Tac.linear_tac haftmann@21248: #> add_solver "Trans_partial" Order_Tac.partial_tac haftmann@21248: (* Adding the transitivity reasoners also as safe solvers showed a slight haftmann@21248: speed up, but the reasoning strength appears to be not higher (at least haftmann@21248: no breaking of additional proofs in the entire HOL distribution, as haftmann@21248: of 5 March 2004, was observed). *) haftmann@21083: end haftmann@21083: *} nipkow@15524: nipkow@15524: haftmann@24422: subsection {* Dense orders *} haftmann@24422: haftmann@24422: class dense_linear_order = linorder + haftmann@24422: assumes gt_ex: "\y. x \ y" haftmann@24422: and lt_ex: "\y. y \ x" haftmann@24422: and dense: "x \ y \ (\z. x \ z \ z \ y)" haftmann@24422: (*see further theory Dense_Linear_Order*) haftmann@24422: haftmann@24422: lemma interval_empty_iff: haftmann@24422: fixes x y z :: "'a\dense_linear_order" haftmann@24422: shows "{y. x < y \ y < z} = {} \ \ x < z" haftmann@24422: by (auto dest: dense) haftmann@24422: haftmann@24422: subsection {* Name duplicates *} haftmann@24422: haftmann@24422: lemmas order_less_le = less_le haftmann@24422: lemmas order_eq_refl = order_class.eq_refl haftmann@24422: lemmas order_less_irrefl = order_class.less_irrefl haftmann@24422: lemmas order_le_less = order_class.le_less haftmann@24422: lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq haftmann@24422: lemmas order_less_imp_le = order_class.less_imp_le haftmann@24422: lemmas order_less_imp_not_eq = order_class.less_imp_not_eq haftmann@24422: lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 haftmann@24422: lemmas order_neq_le_trans = order_class.neq_le_trans haftmann@24422: lemmas order_le_neq_trans = order_class.le_neq_trans haftmann@24422: haftmann@24422: lemmas order_antisym = antisym haftmann@24422: lemmas order_less_not_sym = order_class.less_not_sym haftmann@24422: lemmas order_less_asym = order_class.less_asym haftmann@24422: lemmas order_eq_iff = order_class.eq_iff haftmann@24422: lemmas order_antisym_conv = order_class.antisym_conv haftmann@24422: lemmas order_less_trans = order_class.less_trans haftmann@24422: lemmas order_le_less_trans = order_class.le_less_trans haftmann@24422: lemmas order_less_le_trans = order_class.less_le_trans haftmann@24422: lemmas order_less_imp_not_less = order_class.less_imp_not_less haftmann@24422: lemmas order_less_imp_triv = order_class.less_imp_triv haftmann@24422: lemmas order_less_asym' = order_class.less_asym' haftmann@24422: haftmann@24422: lemmas linorder_linear = linear haftmann@24422: lemmas linorder_less_linear = linorder_class.less_linear haftmann@24422: lemmas linorder_le_less_linear = linorder_class.le_less_linear haftmann@24422: lemmas linorder_le_cases = linorder_class.le_cases haftmann@24422: lemmas linorder_not_less = linorder_class.not_less haftmann@24422: lemmas linorder_not_le = linorder_class.not_le haftmann@24422: lemmas linorder_neq_iff = linorder_class.neq_iff haftmann@24422: lemmas linorder_neqE = linorder_class.neqE haftmann@24422: lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 haftmann@24422: lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 haftmann@24422: lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 haftmann@24422: haftmann@24422: lemmas min_le_iff_disj = linorder_class.min_le_iff_disj haftmann@24422: lemmas le_max_iff_disj = linorder_class.le_max_iff_disj haftmann@24422: lemmas min_less_iff_disj = linorder_class.min_less_iff_disj haftmann@24422: lemmas less_max_iff_disj = linorder_class.less_max_iff_disj haftmann@24422: lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj haftmann@24422: lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj haftmann@24422: lemmas split_min = linorder_class.split_min haftmann@24422: lemmas split_max = linorder_class.split_max haftmann@24422: haftmann@24422: haftmann@21083: subsection {* Bounded quantifiers *} haftmann@21083: haftmann@21083: syntax wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) haftmann@21083: wenzelm@21180: "_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: syntax (xsymbols) wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: wenzelm@21180: "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: syntax (HOL) wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: syntax (HTML output) wenzelm@21180: "_All_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\_<_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: wenzelm@21180: "_All_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\_>_./ _)" [0, 0, 10] 10) wenzelm@21180: "_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) wenzelm@21180: "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) haftmann@21083: haftmann@21083: translations haftmann@21083: "ALL x "ALL x. x < y \ P" haftmann@21083: "EX x "EX x. x < y \ P" haftmann@21083: "ALL x<=y. P" => "ALL x. x <= y \ P" haftmann@21083: "EX x<=y. P" => "EX x. x <= y \ P" haftmann@21083: "ALL x>y. P" => "ALL x. x > y \ P" haftmann@21083: "EX x>y. P" => "EX x. x > y \ P" haftmann@21083: "ALL x>=y. P" => "ALL x. x >= y \ P" haftmann@21083: "EX x>=y. P" => "EX x. x >= y \ P" haftmann@21083: haftmann@21083: print_translation {* haftmann@21083: let haftmann@22916: val All_binder = Syntax.binder_name @{const_syntax All}; haftmann@22916: val Ex_binder = Syntax.binder_name @{const_syntax Ex}; wenzelm@22377: val impl = @{const_syntax "op -->"}; wenzelm@22377: val conj = @{const_syntax "op &"}; haftmann@22916: val less = @{const_syntax less}; haftmann@22916: val less_eq = @{const_syntax less_eq}; wenzelm@21180: wenzelm@21180: val trans = wenzelm@21524: [((All_binder, impl, less), ("_All_less", "_All_greater")), wenzelm@21524: ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")), wenzelm@21524: ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")), wenzelm@21524: ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))]; wenzelm@21180: krauss@22344: fun matches_bound v t = krauss@22344: case t of (Const ("_bound", _) $ Free (v', _)) => (v = v') krauss@22344: | _ => false krauss@22344: fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) krauss@22344: fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P wenzelm@21180: wenzelm@21180: fun tr' q = (q, wenzelm@21180: fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] => wenzelm@21180: (case AList.lookup (op =) trans (q, c, d) of wenzelm@21180: NONE => raise Match wenzelm@21180: | SOME (l, g) => krauss@22344: if matches_bound v t andalso not (contains_var v u) then mk v l u P krauss@22344: else if matches_bound v u andalso not (contains_var v t) then mk v g t P krauss@22344: else raise Match) wenzelm@21180: | _ => raise Match); wenzelm@21524: in [tr' All_binder, tr' Ex_binder] end haftmann@21083: *} haftmann@21083: haftmann@21083: haftmann@21383: subsection {* Transitivity reasoning *} haftmann@21383: haftmann@21383: lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" nipkow@23212: by (rule subst) haftmann@21383: haftmann@21383: lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" nipkow@23212: by (rule ssubst) haftmann@21383: haftmann@21383: lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" nipkow@23212: by (rule subst) haftmann@21383: haftmann@21383: lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" nipkow@23212: by (rule ssubst) haftmann@21383: haftmann@21383: lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < b" hence "f a < f b" by (rule r) haftmann@21383: also assume "f b < c" haftmann@21383: finally (order_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < f b" haftmann@21383: also assume "b < c" hence "f b < f c" by (rule r) haftmann@21383: finally (order_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= b" hence "f a <= f b" by (rule r) haftmann@21383: also assume "f b < c" haftmann@21383: finally (order_le_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a <= f b" haftmann@21383: also assume "b < c" hence "f b < f c" by (rule r) haftmann@21383: finally (order_le_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < b" hence "f a < f b" by (rule r) haftmann@21383: also assume "f b <= c" haftmann@21383: finally (order_less_le_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a < f b" haftmann@21383: also assume "b <= c" hence "f b <= f c" by (rule r) haftmann@21383: finally (order_less_le_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> a <= f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= f b" haftmann@21383: also assume "b <= c" hence "f b <= f c" by (rule r) haftmann@21383: finally (order_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> f a <= c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= b" hence "f a <= f b" by (rule r) haftmann@21383: also assume "f b <= c" haftmann@21383: finally (order_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_le_eq_subst: "a <= b ==> f b = c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> f a <= c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a <= b" hence "f a <= f b" by (rule r) haftmann@21383: also assume "f b = c" haftmann@21383: finally (ord_le_eq_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_eq_le_subst: "a = f b ==> b <= c ==> haftmann@21383: (!!x y. x <= y ==> f x <= f y) ==> a <= f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x <= y ==> f x <= f y" haftmann@21383: assume "a = f b" haftmann@21383: also assume "b <= c" hence "f b <= f c" by (rule r) haftmann@21383: finally (ord_eq_le_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_less_eq_subst: "a < b ==> f b = c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> f a < c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a < b" hence "f a < f b" by (rule r) haftmann@21383: also assume "f b = c" haftmann@21383: finally (ord_less_eq_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: lemma ord_eq_less_subst: "a = f b ==> b < c ==> haftmann@21383: (!!x y. x < y ==> f x < f y) ==> a < f c" haftmann@21383: proof - haftmann@21383: assume r: "!!x y. x < y ==> f x < f y" haftmann@21383: assume "a = f b" haftmann@21383: also assume "b < c" hence "f b < f c" by (rule r) haftmann@21383: finally (ord_eq_less_trans) show ?thesis . haftmann@21383: qed haftmann@21383: haftmann@21383: text {* haftmann@21383: Note that this list of rules is in reverse order of priorities. haftmann@21383: *} haftmann@21383: haftmann@21383: lemmas order_trans_rules [trans] = haftmann@21383: order_less_subst2 haftmann@21383: order_less_subst1 haftmann@21383: order_le_less_subst2 haftmann@21383: order_le_less_subst1 haftmann@21383: order_less_le_subst2 haftmann@21383: order_less_le_subst1 haftmann@21383: order_subst2 haftmann@21383: order_subst1 haftmann@21383: ord_le_eq_subst haftmann@21383: ord_eq_le_subst haftmann@21383: ord_less_eq_subst haftmann@21383: ord_eq_less_subst haftmann@21383: forw_subst haftmann@21383: back_subst haftmann@21383: rev_mp haftmann@21383: mp haftmann@21383: order_neq_le_trans haftmann@21383: order_le_neq_trans haftmann@21383: order_less_trans haftmann@21383: order_less_asym' haftmann@21383: order_le_less_trans haftmann@21383: order_less_le_trans haftmann@21383: order_trans haftmann@21383: order_antisym haftmann@21383: ord_le_eq_trans haftmann@21383: ord_eq_le_trans haftmann@21383: ord_less_eq_trans haftmann@21383: ord_eq_less_trans haftmann@21383: trans haftmann@21383: haftmann@21083: wenzelm@21180: (* FIXME cleanup *) wenzelm@21180: haftmann@21083: text {* These support proving chains of decreasing inequalities haftmann@21083: a >= b >= c ... in Isar proofs. *} haftmann@21083: haftmann@21083: lemma xt1: haftmann@21083: "a = b ==> b > c ==> a > c" haftmann@21083: "a > b ==> b = c ==> a > c" haftmann@21083: "a = b ==> b >= c ==> a >= c" haftmann@21083: "a >= b ==> b = c ==> a >= c" haftmann@21083: "(x::'a::order) >= y ==> y >= x ==> x = y" haftmann@21083: "(x::'a::order) >= y ==> y >= z ==> x >= z" haftmann@21083: "(x::'a::order) > y ==> y >= z ==> x > z" haftmann@21083: "(x::'a::order) >= y ==> y > z ==> x > z" wenzelm@23417: "(a::'a::order) > b ==> b > a ==> P" haftmann@21083: "(x::'a::order) > y ==> y > z ==> x > z" haftmann@21083: "(a::'a::order) >= b ==> a ~= b ==> a > b" haftmann@21083: "(a::'a::order) ~= b ==> a >= b ==> a > b" haftmann@21083: "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" haftmann@21083: "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" haftmann@21083: "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" haftmann@21083: "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" haftmann@21083: by auto haftmann@21083: haftmann@21083: lemma xt2: haftmann@21083: "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" haftmann@21083: by (subgoal_tac "f b >= f c", force, force) haftmann@21083: haftmann@21083: lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> haftmann@21083: (!!x y. x >= y ==> f x >= f y) ==> f a >= c" haftmann@21083: by (subgoal_tac "f a >= f b", force, force) haftmann@21083: haftmann@21083: lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> haftmann@21083: (!!x y. x >= y ==> f x >= f y) ==> a > f c" haftmann@21083: by (subgoal_tac "f b >= f c", force, force) haftmann@21083: haftmann@21083: lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> f a > c" haftmann@21083: by (subgoal_tac "f a > f b", force, force) haftmann@21083: haftmann@21083: lemma xt6: "(a::'a::order) >= f b ==> b > c ==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> a > f c" haftmann@21083: by (subgoal_tac "f b > f c", force, force) haftmann@21083: haftmann@21083: lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> haftmann@21083: (!!x y. x >= y ==> f x >= f y) ==> f a > c" haftmann@21083: by (subgoal_tac "f a >= f b", force, force) haftmann@21083: haftmann@21083: lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> a > f c" haftmann@21083: by (subgoal_tac "f b > f c", force, force) haftmann@21083: haftmann@21083: lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> haftmann@21083: (!!x y. x > y ==> f x > f y) ==> f a > c" haftmann@21083: by (subgoal_tac "f a > f b", force, force) haftmann@21083: haftmann@21083: lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 haftmann@21083: haftmann@21083: (* haftmann@21083: Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands haftmann@21083: for the wrong thing in an Isar proof. haftmann@21083: haftmann@21083: The extra transitivity rules can be used as follows: haftmann@21083: haftmann@21083: lemma "(a::'a::order) > z" haftmann@21083: proof - haftmann@21083: have "a >= b" (is "_ >= ?rhs") haftmann@21083: sorry haftmann@21083: also have "?rhs >= c" (is "_ >= ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs = d" (is "_ = ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs > f" (is "_ > ?rhs") haftmann@21083: sorry haftmann@21083: also (xtrans) have "?rhs > z" haftmann@21083: sorry haftmann@21083: finally (xtrans) show ?thesis . haftmann@21083: qed haftmann@21083: haftmann@21083: Alternatively, one can use "declare xtrans [trans]" and then haftmann@21083: leave out the "(xtrans)" above. haftmann@21083: *) haftmann@21083: haftmann@21546: subsection {* Order on bool *} haftmann@21546: haftmann@22886: instance bool :: order haftmann@21546: le_bool_def: "P \ Q \ P \ Q" haftmann@21546: less_bool_def: "P < Q \ P \ Q \ P \ Q" haftmann@22916: by intro_classes (auto simp add: le_bool_def less_bool_def) haftmann@24422: lemmas [code func del] = le_bool_def less_bool_def haftmann@21546: haftmann@21546: lemma le_boolI: "(P \ Q) \ P \ Q" nipkow@23212: by (simp add: le_bool_def) haftmann@21546: haftmann@21546: lemma le_boolI': "P \ Q \ P \ Q" nipkow@23212: by (simp add: le_bool_def) haftmann@21546: haftmann@21546: lemma le_boolE: "P \ Q \ P \ (Q \ R) \ R" nipkow@23212: by (simp add: le_bool_def) haftmann@21546: haftmann@21546: lemma le_boolD: "P \ Q \ P \ Q" nipkow@23212: by (simp add: le_bool_def) haftmann@21546: haftmann@22348: lemma [code func]: haftmann@22348: "False \ b \ True" haftmann@22348: "True \ b \ b" haftmann@22348: "False < b \ b" haftmann@22348: "True < b \ False" haftmann@22348: unfolding le_bool_def less_bool_def by simp_all haftmann@22348: haftmann@22424: haftmann@23881: subsection {* Order on sets *} haftmann@23881: haftmann@23881: instance set :: (type) order haftmann@23881: by (intro_classes, haftmann@23881: (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) haftmann@23881: haftmann@23881: lemmas basic_trans_rules [trans] = haftmann@23881: order_trans_rules set_rev_mp set_mp haftmann@23881: haftmann@23881: haftmann@23881: subsection {* Order on functions *} haftmann@23881: haftmann@23881: instance "fun" :: (type, ord) ord haftmann@23881: le_fun_def: "f \ g \ \x. f x \ g x" haftmann@23881: less_fun_def: "f < g \ f \ g \ f \ g" .. haftmann@23881: haftmann@23881: lemmas [code func del] = le_fun_def less_fun_def haftmann@23881: haftmann@23881: instance "fun" :: (type, order) order haftmann@23881: by default haftmann@23881: (auto simp add: le_fun_def less_fun_def expand_fun_eq haftmann@23881: intro: order_trans order_antisym) haftmann@23881: haftmann@23881: lemma le_funI: "(\x. f x \ g x) \ f \ g" haftmann@23881: unfolding le_fun_def by simp haftmann@23881: haftmann@23881: lemma le_funE: "f \ g \ (f x \ g x \ P) \ P" haftmann@23881: unfolding le_fun_def by simp haftmann@23881: haftmann@23881: lemma le_funD: "f \ g \ f x \ g x" haftmann@23881: unfolding le_fun_def by simp haftmann@23881: haftmann@23881: text {* haftmann@23881: Handy introduction and elimination rules for @{text "\"} haftmann@23881: on unary and binary predicates haftmann@23881: *} haftmann@23881: haftmann@23881: lemma predicate1I [Pure.intro!, intro!]: haftmann@23881: assumes PQ: "\x. P x \ Q x" haftmann@23881: shows "P \ Q" haftmann@23881: apply (rule le_funI) haftmann@23881: apply (rule le_boolI) haftmann@23881: apply (rule PQ) haftmann@23881: apply assumption haftmann@23881: done haftmann@23881: haftmann@23881: lemma predicate1D [Pure.dest, dest]: "P \ Q \ P x \ Q x" haftmann@23881: apply (erule le_funE) haftmann@23881: apply (erule le_boolE) haftmann@23881: apply assumption+ haftmann@23881: done haftmann@23881: haftmann@23881: lemma predicate2I [Pure.intro!, intro!]: haftmann@23881: assumes PQ: "\x y. P x y \ Q x y" haftmann@23881: shows "P \ Q" haftmann@23881: apply (rule le_funI)+ haftmann@23881: apply (rule le_boolI) haftmann@23881: apply (rule PQ) haftmann@23881: apply assumption haftmann@23881: done haftmann@23881: haftmann@23881: lemma predicate2D [Pure.dest, dest]: "P \ Q \ P x y \ Q x y" haftmann@23881: apply (erule le_funE)+ haftmann@23881: apply (erule le_boolE) haftmann@23881: apply assumption+ haftmann@23881: done haftmann@23881: haftmann@23881: lemma rev_predicate1D: "P x ==> P <= Q ==> Q x" haftmann@23881: by (rule predicate1D) haftmann@23881: haftmann@23881: lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y" haftmann@23881: by (rule predicate2D) haftmann@23881: haftmann@23881: haftmann@23881: subsection {* Monotonicity, least value operator and min/max *} haftmann@21083: haftmann@21216: locale mono = haftmann@21216: fixes f haftmann@21216: assumes mono: "A \ B \ f A \ f B" haftmann@21216: haftmann@21216: lemmas monoI [intro?] = mono.intro haftmann@21216: and monoD [dest?] = mono.mono haftmann@21083: haftmann@21383: lemma LeastI2_order: haftmann@21383: "[| P (x::'a::order); haftmann@21383: !!y. P y ==> x <= y; haftmann@21383: !!x. [| P x; ALL y. P y --> x \ y |] ==> Q x |] haftmann@21383: ==> Q (Least P)" nipkow@23212: apply (unfold Least_def) nipkow@23212: apply (rule theI2) nipkow@23212: apply (blast intro: order_antisym)+ nipkow@23212: done haftmann@21383: haftmann@23881: lemma Least_mono: haftmann@23881: "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y haftmann@23881: ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" haftmann@23881: -- {* Courtesy of Stephan Merz *} haftmann@23881: apply clarify haftmann@23881: apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) haftmann@23881: apply (rule LeastI2_order) haftmann@23881: apply (auto elim: monoD intro!: order_antisym) haftmann@23881: done haftmann@23881: haftmann@21383: lemma Least_equality: nipkow@23212: "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" nipkow@23212: apply (simp add: Least_def) nipkow@23212: apply (rule the_equality) nipkow@23212: apply (auto intro!: order_antisym) nipkow@23212: done haftmann@21383: haftmann@21383: lemma min_leastL: "(!!x. least <= x) ==> min least x = least" nipkow@23212: by (simp add: min_def) haftmann@21383: haftmann@21383: lemma max_leastL: "(!!x. least <= x) ==> max least x = x" nipkow@23212: by (simp add: max_def) haftmann@21383: haftmann@21383: lemma min_leastR: "(\x\'a\order. least \ x) \ min x least = least" nipkow@23212: apply (simp add: min_def) nipkow@23212: apply (blast intro: order_antisym) nipkow@23212: done haftmann@21383: haftmann@21383: lemma max_leastR: "(\x\'a\order. least \ x) \ max x least = x" nipkow@23212: apply (simp add: max_def) nipkow@23212: apply (blast intro: order_antisym) nipkow@23212: done haftmann@21383: haftmann@21383: lemma min_of_mono: nipkow@23212: "(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)" nipkow@23212: by (simp add: min_def) haftmann@21383: haftmann@21383: lemma max_of_mono: nipkow@23212: "(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)" nipkow@23212: by (simp add: max_def) haftmann@21383: haftmann@22548: haftmann@22548: subsection {* legacy ML bindings *} wenzelm@21673: wenzelm@21673: ML {* haftmann@22548: val monoI = @{thm monoI}; haftmann@22886: *} wenzelm@21673: nipkow@15524: end